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Introduction

The Master Course Physics 3 for Electrical Engineers is an introductory lecture to the
fundamental concepts of modern physics. Here we present the basis of the disciplines
Quantum Mechanics and Solid State Physics, all in one semester. As both of these topics
are very broad we had to restrict the material presented to those areas which have the
greatest practical importance. The unconventional concepts of these disciplines provide
the physical basis for upt o dat engeneering. Therefore the method we are following does
not requires complicated and subtle mathematics. We rely on disciplines well known for
electrical engineers: the differential and integral calculus. Although during the semester
we introduce the basics of operator calculus, to understand that part only elementary
algebra is required.

The material in this book is organized in three distinct parts: Quantum Mechanics,
Solid State Physics and the Appendices.

The first part deals with (non-relativistic) Quantum Mechanics which is the base of
all of modern quantum physics. The phenomena, unexplainable in the frame of classical
physics (see Chapter 2), required a re-evaluation of our knowledge of the world. In the
beginning of the 20th century this lead to the development of quantum mechanics. In
Chapter 3 we introduce the stationary wave function (or state function) of a microscopic
particle (e.g electron) and solve a handful of problems that help to understand the con-
cepts. In Chapter 4 we discuss the problem of time dependent phenomena and introduce
the time dependent Schrödinger equation. The most abstract chapter is Chapter 5 where
the basics of the operator calculus and measurement theory is discussed. The next two
chapters (Chapter 6 and Chapter 7) are devoted to the study of atoms with a central
potential containing either a single or multiple electrons. This involves the quantum me-
chanics of the angular momentum, the hydrogen atom and elements inthe periodic table.
A discussion of formation of molecules follows (Chapter 8), which, leads to the under-
standing of chemical bonds. In Chapter 9 the basis of statistical physics are introduced
and the distribution functions of classical and quantum statistical physics are compared.
The final chapter in this part (Chapter 10) deals with the interaction between light and
matter and the operation of lasers is also discussed.
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The second part is about Solid State Physics. The first chapter of this part (Chapter
11) introduces the fundamental concepts. This mostly means crystal physics, although
amorphous materials are also discussed briefly. Basic concepts like crystal lattice and
crystal symmetries, primitive and other types of cells are introduced here. Chapter 12
presents experimental methods that are used for the determination of crystal structures.
Constituent atoms and molecules in crystals are vibrating around their equilibrium po-
sitions. These vibrations are the theme of Chapter 13, in which both classical and
quantum mechanical models are discussed. Chapter 14 introduces the concept of energy
bands used in solid state physics. This is the chapter where questions about the elec-
trical resistivity, the work function and contact potential of metals are discussed using
semi-classical theories. This theme is examined from the viewpoint of quantum mechan-
ics after introducing key concepts about movement of electrons in periodic structures
in Chapter 15. While the previous chapters deal with electrons in conductors Chap-
ter 16 is about homogeneous and inhomogeneous semiconductors and their applications.
Superconductivity is also discussed. Chapter 17 is a short introduction to this topic
with detailed examples for their practical application. Optical properties of solids are
discussed next in Chapter 18. X-ray and visible light absorption and emission are the
topics of this chapter. Chapter 19 discusses the magnetic properties of solids both from
a phenomenological and microscopical point of view. Some of these can be explained
using individual magnetic moments but quantum physics is required to explain for in-
stance ferromagnetism. This part is closed with Chapter 20 which is about the dielectric
properties of crystals.

Important 0.0.1. To make it easier to recognize important statements, we mark them
similar to this sentence1.

Example 0.1. Problems with solutions are presented throughout the book marked similar
to this.

The Appendix gives the reader an opportunity to see the details of the theories presented
and understand the formulas more deeply.

1The PDF version of this document marks the important statements and the examples by putting
them into colored boxes, however this feature is not available in the WEB version.
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Chapter 1

Quantum Mechanics
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Chapter 2

Experimental foundations

At the turn of the 20th century physics seemed to be a closed discipline1. Everything
seemed to fit perfectly. At the end of the 19th century all physical phenomena were
described by one or more of the well known disciplines of Mechanics, Statistical Physics,
Thermodynamics and Electrodynamics. This was the time when Maxwell’s electromag-
netic theory was considered the theory of the “ether”, the elastic solid medium whose
mechanical waves are the electromagnetic waves including light. The time when physi-
cists tried to trace back all problems to problems of classical mechanics. There were of
course some marginal unsolved problems left but almost all physicists agreed that physics
in the 20th century will be “the physics of the 6th decimal place” (Michelson 1903). But
some of the best physicists saw that this was not the case.

A closer examination shows that in fact many unsolved mysteries remained in physics
at that time. It is now clear some of these could not have been incorporated into a
classical theory at all. The problems that were considered unsolved at the beginning of
the 20th century among others included the following

the velocity of light in vacuum is invariant Why is it independent of the frame of
reference used? What happens between the ether and the bodies that move through
it?

periodic system of elements What are the principles behind the periodic table? Why
are the chemical behavior of elements in the same column similar?

spectra of atoms and molecules Why do we have discreet spectral lines? What is
the reason behind the simple rules that govern the spectrum? Why do the splitting

1For instance the Munich physics professor Philipp von Jolly advised the young Max Planck against
going into physics, saying, ”in this field, almost everything has been already discovered, and all that
remains is to fill a few holes.” Planck replied that he did not wish to discover new things, but only to
understand the known fundamentals of the field, and so began his studies in 1874 at the University of
Munich. In spite of this remark Planck’s discovery of the energy quantum was the most important step
towards Quantum Mechanics.
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of the spectral lines in a magnetic field (the Zeeman effect) not follow the laws of
the classical physics?

the problem of X-ray emission and absorption Why are X-rays emitted? How
are they absorbed?

specific heat Why is the equipartition theorem true at high temperatures and why does
it brake at low temperatures? Is it possible to have other statistical distribution
functions than the Maxwell -Boltzmann function?

thermal radiation What formula describes the shape of the electromagnetic spectrum
of an object at a given temperature? What is the physics behind it?

stability of the atoms According to electrodynamics an accelerating charge emits elec-
tromagnetic radiation and thereby loses energy. If we apply this principle to an
electron in an atom then we find the electron should radiate all of its kinetic energy
in about 10−8 sec, after that it should fall into the nucleus. But this is evidently
not the case.

chemical bond Is chemistry based on physics? Can physics explain the chemical bond?

(external) photoelectric effect Why are the laws for an electron emission from a
metal surface so complicated?

Compton effect Why does the frequency of the light change - when it is scattered by
a free electron - the way it does?

radioactivity What causes the radioactive decay?

This list is not complete. Some of the problems (e.g. the invariance of the speed of
light in vacuum) has lead to the development of the special then the general theory of
relativity, others may only be explained using another new branch of physics: quantum
mechanics. In this chapter we first discuss some of these phenomena that lead to the
development of this new physics, some others will be addressed in later chapters.

2.1 Black-body radiation.

It was well known that if we heat an object to temperatures high enough it will emit
visible light. The color of the light depends on the temperature of the material. The
higher the temperature the bluer the color. We know that (visible) light is electromag-
netic radiation with wavelengths in the 380 − 740 nm range. With suitable detectors we
can verify that heated materials emit electromagnetic radiation not only in the visible
part, but in every other part of the electromagnetic spectrum (infrared, ultraviolet).
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This emission is characterized by the emission coefficient (also known as the black-
body irradiance or emissive power) E(ν, T ), which gives the energy a body emits at a
given frequency at a given temperature in unit time. It has the dimension J/sec. The
emission can be more exactly described by its derivative according to surface area and

solid angle, called spectral radiance ε(ν, T ) =
∂E(ν, T )

∂ν∂T
which is the amount of energy

emitted at a frequency ν per unit surface area per unit time per unit solid angle per unit
frequency. It has the dimension J ·m−2 · sec−1 · sr−1 ·Hz−1.

The color of a heated light emitting object is determined by the frequency dependence
of ε(ν, T ), (e.g. the frequency at which ε(ν, T ) is maximum). As the temperature drops
then the position of the maximum will shift toward the red then into the infra red range
and the radio frequency range, but we can still detect electromagnetic radiation in the
whole frequency range emitted by the material.

The frequency dependance of the intensity of electromagnetic waves on the wavelength
frequency or energy over a specific portions of the electromagnetic spectrum is measured
by spectrometers. See Appendix 22.1 for further information on spectrometers.

Materials not only emit but also absorb electromagnetic radiation. This absorption
heats up the material. Therefore it is possible for an object to be in thermal equilibrium
with electromagnetic radiation. The absorption of radiation can be characterized by the
absorption coefficient a which tells us the ratio of the incoming radiation a body can
absorb. The absorption coefficient is dimensionless, may depend on the frequency of the
electromagnetic radiation and the temperature and must be between 0 and 1: 0 ≤ a ≤ 1.2

Important 2.1.1. Every material at all temperatures absorbs and above 0 K also emits
electromagnetic radiation in the whole frequency range. Some of the thermal energy
of a body is converted into this electromagnetic radiation therefore it is called thermal
radiation.

At the middle of the 19th century Kirchoff has found an interesting relationship between
the absorption and emission of electromagnetic radiation (light) based on thermodynam-

ics. Kirchoff deduced that the ratio
ε(ν, T )

a(ν, T )
must be the same for every material:

ε(1)(ν, T )

a(1)(ν, T )
=
ε(2)(ν, T )

a(2)(ν, T )
= ...

otherwise a device coud be constructed that transfers heat from a body of lower tem-
perature to a body of higher temperature without any external energy input, hereby
violating the 3rd law of thermodynamics.

2The part of the radiation that is not absorbed may be reflected back or may pass through the
material. The amount of this part is 1− a.
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If we now introduce a hypothetical object called a black-body3which absorbs all elec-
tromagnetic radiation falling on it independently of frequency and temperature, i.e. for
which a ≡ 1 then we need to deal with the frequency and temperature dependence of
ε(ν, T ) only:

ε(1)(ν, T )

a(1)(ν, T )
=
ε(2)(ν, T )

a(2)(ν, T )
= ... = ε(ν, T ) (2.1.1)

Black-bodies do not exist in nature. But some materials with high absorption can be
considered very close to this ideal black-body. Graphite, soot and lamp black4 have an
absorption coefficient a ≥ 0.95. NASA5 has developed a more modern ultra absorbent
material coated with carbon nanotubes which absorbs 99.5 % of the incoming UV and
visible light and 98 % of the longer wavelengths, with an average a = 0.99. Such coatings
can be used for instance for stealth aeroplanes.

The classical model of a black-body is a cavity in a rigid opaque body with rough
absorbing walls like the one in Fig 2.1. A small hole in thewall allows a small part
of the radiation exit that allows measurement of the internal radiation Such objects are
fabricated by some companies and may be bought. They are certified in a given frequency
range to behave like ideal black-bodies.

Because the absorption of a black-body is the largest absorption coefficient possible
(a = 1), its emission coefficient is larger than for any other object. This means that a
given temperature the black-body emits the most intensive radiation. It follows that for
instance if we compare the emission of various objects we find that at temperatures when
the maximum of the emission is in the visible range then black-bodies are the brightest
objects

It was found that

Important 2.1.2. for black-bodies in thermal equilibrium with the electromagnetic ra-
diation the product of the absolute temperature T and of the wavelength λmax where the
emission per unit wavelength has its maximum is constant ( peak wavelength):

λmax · T = 2.8977721(26) · 10−3Km (2.1.2)

This is Wien’s displacement law.

3Sometimes written as black body or blackbody.
4Also known as carbon black, furnace black or thermal black is a form of amorphous carbon that

has a high surface-area-to-volume ratio, although its surface-area-to-volume ratio is low compared to
that of activated carbon. It is dissimilar to soot in its much higher surface-area-to-volume ratio and
significantly lower (negligible and non-bioavailable) PAH (polycyclic aromatic hydrocarbon) content. Its
most common use is a pigment and reinforcing phase in automobile tires.

5NASA is an acronym for the agency National Aeronautics and Space Administration of the United
States government that is responsible for the nation’s civilian space program and for aeronautics and
aerospace research.
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Figure 2.1: A model of a black-body is the hole of a cavity in a rigid opaque body. All
incoming electromagnetic radiation is absorbed by the rough inner surface of the cavity
in consecutive steps even when a < 1 for the material of the body as there is little chance
for any reflected radiation to exit again through the hole.

Example 2.1. The effective temperature of the Sun is 5778 K. What is the value of
λmax for the Sun? Solution

λmax = 2.90 · 10−3/5778 = 5.02 · 10−7m = 502nm

This corresponds to the wavelength of green light near the peak sensitivity
of the human eye.

Example 2.2. According to theory, approximately a second after its formation the Uni-
verse was a near-ideal black-body in thermal equilibrium at a temperature above 1010K.
The temperature decreased as the Universe expanded and the matter and radiation in it
cooled. The cosmic microwave Background radiation observed today is ”the most per-
fect black-body ever measured in nature” as it has an anisotropy less than 1 part per
100,000. Now, some 15 billion years after the Big Bang the peak of the observed cosmic
Background radiation is at 1.07mm. What is the temperature of the cosmos? Solution

T = 2.898 10−3/λmax = 2.7K

The Stefan-Boltzmann law states that the total energy emitted (λ ∈ [0,∞]) by a black-
body per unit surface area is proportional to the 4th power of the absolute temperature:

PA = σ T 4 (2.1.3)
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where σ = 5.670373(21) · 10−8Wm−2K−4 is the Stefan-–Boltzmann constant

Example 2.3. A human body also radiates energy. Calculate the total energy needs for
an adult to keep the body temperature constant. Because the mid- and far-infrared emis-
sivity of skin and most clothing is near unity we may approximate the human body with
a black-body. The average total skin area of an adult human being is about 2m2, and in
an ambient temperature of 20 oC the temperature of the bare skin is about 33oC, while
under the clothing it is about 28 oC .
Solution From Wien’s law (equations (2.1.2)) the peak wavelength of the ther-
mal radiation of a naked human body is is about 9.5µm6. To calculate the
energy needed to keep the temperature of the body constant can be obtained
from the Stefan-Boltzmann law (2.1.3). The radiated power is the difference
between the power absorbed from the environment (which is also considered
a black-body) and the one emitted by the body:

Pbody = Pabsorption − Pemission = 4π σ (T 4
environ − T 4

body)A

= −95.10W

The total energy requirement for a whole day therefore is

E = −Pbody · 24 · 3600 = 8.216MJ = 1965 kcal

Example 2.4. Let us model the Earth with a perfect spherical black-body without an
atmosphere! Determine the effective or average surface temperature if the solar constant
Io, i.e. the amount of incoming solar electromagnetic radiation per unit area – that is
incident on a plane perpendicular to the rays, at a distance of one astronomical unit (AU)
(roughly the mean distance from the Sun to the Earth) – was 1361kW/m2! Solution In
the stationary state the “model ‘Earth” absorbs the same amount of energy
from the Sun as it emits. The Earth-Sun distance is so large that the rays of
sunshine are almost parallel when they reach us. Half of the Earth surface is
illuminated all the time by the Sun. The total energy absorbed by the Earth
as a black-body, therefore equals to the solar constant multiplied by the cross
section of the Earth perpendicular to the Earth-Sun direction7 and by the
duration ∆ t

Etot,absorbed = R2π · Io ·∆ t

6Therefore thermal imaging devices are tuned to be most sensitive in the 7–14 micron range. But the
human body emits at much larger wavelengths too. New imaging devices used in some border stations
or airports use wavelengths in the 1 cm–1 mm (terrahertz) range. These are most suited to detect people
smuggled in trucks.

7The sunlight I is perpendicular to the surface only at the point nearest to the Sun. Let us take a
cross section of the sunlight with an area of A at this point. At a θ angle to the direction of the Sun this
part of the sunlight hits a larger area A′ = A·cosΘ, but only the component perpendicular to the surface
is absorbed, which is I ′ = Io/cosθ. The total absorbed radiation flux therefore P = A·cosΘ·I/cosθ = IA
is the same at every point of the illuminated surface with a perpendicular surface area of A.
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If the surface temperature is T then the total radiated energy from the Earth
according to the Stefan-Boltzmann law is

Etot,rad = 4π R2σ T 4 ·∆ t

In a stationary state these two energies must be equal:

Etot,absorbed = Etot,rad

from which

T =
4

√
Io
4σ

= 278.3K = 5.3 oC

The real effective temperature of the Earth is higher, because of the atmo-
sphere.

Example 2.5. The albedo or reflection coefficient of the Earth is 0.3. This means that
30% of the solar radiation that hits the planet gets scattered back into space without ab-
sorption.
a) In the previous example what would be the temperature if the absorption coefficient of
the Earth was a = 0.7 instead of 1?
b) In climate calculations it is sometimes assumed that regardless to reflection the Earth
still emits like a black-body (this contradicts Kirchoff’s law). What would the temperature
be with this assumption?

Solution
a)

If a = 0.7 then the absorbed energy is Ia = Io a, a times as much as above, and
according to Kirchoff’s law the emission must be lower by the same factor,
i.e. E ′tot,rad = aEtot,rad, therefore the temperature is the same as was in the
previous example, namely 5.3 oC.
b)
In this case

Etot,absorbed = 0.3R2π · Io ·∆ tEtot,rad = 4π R2σ T 4 ·∆ t

and the temperature

T =
4

√
0.7 Io
4σ

= 254.58K = −18.58 oC

If a black-body can be fabricated (See Fig. 2.1), then ε(ν, T ) can be measured.
The resulting spectrum of such a measurement on materials, which at least in a limited
frequency (wavelength) range, absorb almost all of the electromagnetic radiation look like
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Figure 2.2: Calculated black-body emission curves and λmax values.

the curves shown in Fig 2.2. Knowing the spectrum of a black-body in equilibrium with
the electromagnetic radiation makes it possible to determine its temperature. Although
real objects just approximate black-bodies the knowledge of the black-body spectrum
and the spectra of the objects still gives a fairly good opportunity to remotely measure
their temperatures even when the condition of thermal equilibrium does not hold. An
example that the laws of black-body radiation can be applied with a good approximation
is shown in Fig. 2.3 where the emission curve of our Sun, measured both above and
below the atmosphere is shown8 together with the calculated spectrum of a black-body
of temperature 5250 K. In Fig. 2.3 the calculated black-body spectrum reflects our
present knowledge. Previous attempts could describe the radiation only at part of the
spectrum. The two most famous are: the formula of Lord Rayleigh and Sir James Jeans,
based on the equipartition theorem and Wien’s approximation. The Rayleigh-Jeans law
describes only the long wavelength (i.e. low frequency) part of the spectrum:

ε(λ, T ) =
2ckT

λ4
(2.1.4a)

or with the frequency

ε(ν, T ) =
2kTν2

c2
(2.1.4b)

8At sea level 3% of the radiation is ultraviolet, 44 % is in the visible range and 53 % is in the infrared.
The gaps in the spectrum measured at sea level (red) are caused by greenhouse gases like water vapor
and carbon dioxide. Water vapor has a larger absorption than CO2.
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– and tends to infinity as the wavelength decreases (or the frequency increases). This is
called the “ultraviolet catastrophe”. For short wavelengths (i.e. high frequencies) Wien’s
approximation combines Wien’s displacement law with the Stefan-Boltzmann law. It
contains two empirical constants9 C1 and C2:

ε(λ, T ) =
C1

λ5
e−

C2 h c
λT (2.1.5a)

ε(ν, T ) =
C1ν

3

c4
e−

C2ν
c T (2.1.5b)

– which tends to infinity as the wavelength increases (or the frequency decreases). This
is called the “infrared catastrophe.

Max Planck found an interpolation formula, which used empirical constants, in late
1900 and published it in 1901. Later he discovered the derivation of the same formula
for a black-body modeled as a cavity whose walls were in thermal equilibrium with the
electromagnetic radiation inside the cavity.

ε(λ, T ) =
2hc2

λ5

1

ehc/(λkBT ) − 1
ε(ν, T ) =

2hν3

c2

1

ehν/(kBT ) − 1
(2.1.6a)

But this derivation required that the energy of the material of the wall of the cavity and
of the electromagnetic field may only change in discreet values of ε = hν, where

h ≈ 6.62 · 10−34 J (2.1.7)

is the Planck constant10, which we now call the quantum of energy. This was a sig-
nificant leap for physics because every physicist (even Planck himself) were sure that
electromagnetic energy is a continuous quantity. He tried for some months to get rid of
this quantum in his derivation but without success.

In Fig. 2.4 we visually compare the three laws for a black-body of temperature
0.008 K.

Important 2.1.3. The concept of the existence of an energy quantum cannot be incorpo-
rated in classical physics. This was the first and most important step of the development
of quantum mechanics.

9Comparing Wien’s with the correct Planck’s formula in the limits we can determine these: C1 ≡ 2hc2

and C2 ≡ hc
kB

10The Planck constant h was introduced first in 1899.
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2.2 Photoelectric effect

In 1887 Heinrich Hertz observed that that electrodes illuminated with ultraviolet light
create electric sparks easily. It was established later that metal surfaces illuminated
by light of suitable frequencies emit electrons. This is called the photoelectric effect.
The experimental setup is shown in Fig. 2.5. Three electrodes (cathode (C), grid (G)
and anode (A)) are sealed inside a vacuum tube11. When light illuminates the cathode
electrons are emitted from it. These electrons are then accelerated toward the anode by
the U voltage producing a current which is measured by an ammeter. The grid electrode
is used to measure the kinetic energy of the electrons emitted. When the voltage UG
between the grid electrode and the cathode is such that the i current disappears then
the kinetic energy of the electrons is e · Ug. It seems easy to explain this behavior by
(classical) electrodynamics but the predictions of such a classical model disagree with
the measured characteristics of the emitted electron current, which are summarized in
Fig. 2.6.

1. Electron emission occurs less than 1 µsec after the illumination starts independent
of the light intensity. Classical theory predicts a light intensity dependent emission
time.

2. increasing the light intensity the current increases linearly, therefore all emitted
electrons have the same kinetic energy independent of the light intensity. Classical
theory predicts a non-linear relationship.

3. No current is observed if the frequency of the light is less than a threshold frequency,
which depends on the metal of the cathode. Classical theory predicts that emission
is independent of the frequency.

4. The kinetic energy of the electrons depends only on the frequency of the light but
independent of the light intensity. Classical theory predicts that kinetic energy
depends on the light intensity.

It was Albert Einstein who explained the measured characteristics of the photoelectric
effect12. He used Planck’s idea of the energy quantum and assumed that the energy of

11A.k.a. electron tube (in North America), thermionic valve, tube, or valve. It is a device controlling
electric current through a vacuum in a sealed container for switching and amplification of electrical
signals. Before transistors and integrated circuits were developed these vacuum tubes were used in
all electronic equipments. In those devices the cathode is heated to a high temperature and produces
electrons by the thermionic effect (see Section 14.4). The electrons are accelerated by the voltage
between the anode and cathode. One or more grids could also be placed inside the tube which may
control the current. In the photoelectric experiment the cathode needs not to be heated.

12Contrary to popular belief Einstein received the Nobel prize for the explanation of the photoelectric
effect and not for his theory of relativity.
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the light is also quantized, namely that the light consists of “particles” he called photons
that have an energy of h ν. The intensity of the light is the number of photons in it,
while the energy is the photon energy multiplied by the photon number. Therefore when
we illuminate a surface with light of frequency ν we bombard it with photons of energy
h ν. An electron is emitted from the material only when an incoming photon, that has
enough energy to overcome the electron binding energy W , called the work function13.

h ν =
1

2
me v

2 +W (2.2.1)

where W is the work function, v is the velocity and, me = 9.1 · 10−31kg is the mass of
the electron.

Important 2.2.1. In quantum mechanics the energy is usually measured in electronvolts
(eV). 1 eV is the energy an electron obtains if accelerated through 1 V. Because ∆E = eU ,
where U is the potential difference measured in volts and e is the elementary charge, which
is ≈ 1.60 · 10−19C :

1eV ≈ 1.6 · 10−19J

Units of milli-, kilo-, mega-, giga-, tera- or peta- electronvolts (meV, keV, MeV, GeV,
TeV and PeV respectively) are also used in practice14.

The probability of multiple “collisions” is negligible at normal light intensities, therefore
if the frequency is lower than a threshold frequency (i.e. the photon energy is smaller
than the work function) no electrons are emitted. As the emission of an electron occurs
immediately after the arrival of a photon with a frequency above the threshold the
intensity of the light does not matter. Furthermore increasing the light intensity only
increases the number of photon collisions and not the kinetic energy of the electrons,
therefore the current, which depends on the number and velocity of the electrons, will be
proportional with the intensity, as the velocity (kinetic energy) of the electrons depends
only on the frequency.

Important 2.2.2. The photoelectric effect can only be explained by assuming the exis-
tence of photons: the discreet energy quanta of electromagnetic radiation. These photons
behave like particles. They may collide with electrons for instance. Light (or electromag-
netic radiation of any frequency) is emitted and absorbed in quanta. Therefore electro-
magnetic radiation must be a corpuscular phenomena. But diffraction and interference
experiments can only be explained by assuming that light is a wave. This is the so called
particle-wave duality of the electromagnetic radiation.

13See also section 14.4.
14The velocity of an electron with a kinetic energy of 1 eV calculated using classical Newtonian (non-

relativistic) mechanics is v =

√
2 · e
me

= 1.5 · 106 m/s = 0.015 · c, where c ≈ 3 · 108 is the velocity of light

in vacuum. Using the correct relativistic formula, which ensures that the velocity of the electron never
reaches c no matter the kinetic energy of the electron yields the lower value of v = 5.93 · 105m/s
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Example 2.6. Determine the work function of potassium in electronvolts knowing that
when illuminated by a light with a wavelength of λ = 560nm it emits electrons with a
velocity of 190 km/s! Solution From equation (2.2.1)

W = h ν − 1

2
me v

2 = h
c

λ
− 1

2
me v

2 = 3.38 · 10−19J = 2.11 eV

Example 2.7. Determine the maximum speed of a photoelectron emitted from a chromium
surface when illuminated with light of a wavelength of 180 nm, from knowing that at a
wavelength of 150nm the maximum photoelectron energy is 3.92 eV ? How large is the
work function? (me = 9.1.10−31kg) Solution Let λ1 = 1.8·10−7m and λ2 = 1.5·10−7m
and the maximum photoelectron kinetic energy at λ2 Ekin(λ2) = 3.92 eV . From
equation (2.2.1) and using ν = c/λ the work function can be determined:

W = h
c

λ2

− Ekin(λ2) = 6.96 · 10−19J = 4.35 eV

Therefore the maximum velocity at λ1:

v(λ1) =

√
2

me

(
h
c

λ1

−W
)

= 945, 970m/s

2.3 Compton effect

By the early 20th century, researchers found that when X-rays of a known wavelength
interact with electrons, the X-rays are scattered through an angle θ and emerge at a
different wavelength related to θ. Although classical electromagnetism predicted that
the wavelength of scattered rays should be equal to the initial wavelength, multiple
experiments found that the wavelength of the scattered rays was longer (corresponding
to lower energy) than the initial wavelength. That is, regardless of light intensity inelastic
scattering always occurs when the frequency of the light is high enough (so that photon
energies are in the range corresponding to the electron rest mass: me c

2 = 511 keV ) and
the scattering angle is not zero.

According to classical electrodynamics the incident harmonic electromagnetic wave
accelerates the charged particle which, in turn, then emits an electromagnetic radiation of
the same frequency as of the incident wave. As long as the velocity of the particle is much
smaller than the speed of light in vacuum the magnetic component of the electromagnetic
wave does not affect the motion of the particle. The resulting, scattered wave therefore
will have the same frequency as the original one15.

15Classically, the electric field in light of sufficient intensity may accelerate a charged particle to
relativistic speeds, which will cause radiation-pressure recoil and an associated Doppler shift of the
scattered light, but the effect would become arbitrarily small at sufficiently low light intensities regardless
of wavelength.
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Light scattering on free electrons (or on other charged particles) can be elastic or
inelastic. Elastic scattering in which neither the particle kinetic energy, nor the frequency
of the light changes is called Thomson scattering. Inelastic scattering in which both the
energy and momentum of the electron (or any charged particle) and the frequency of the
light changes – the frequency of the light always decreases – is called Compton scattering,
and the frequency shift of the light is the Compton effect. Thomson scattering is the low
energy limit of Compton scattering.

Assuming light consists of photons which can collide with electrons we can easily
explain the observed behavior, by applying the (relativistic) energy and momentum con-
servation laws16. Details of the derivation are in Appendix 22.3. The result is

λ′ − λ =
h

mec
(1− cos θ), (2.3.1)

where λ is the initial wavelength, λ′ is the wavelength after scattering, h is the Planck
constant, me is the electron rest mass, c is the speed of light, and θ is the scattering
angle. The quantity

h

me c
= 2.43 · 10−12m (2.3.2)

is known as the Compton wavelength of the electron. The amount ∆λ = λ′ − λ the
wavelength changes by is called the Compton shift. It is between zero (for θ = 0o) and
twice the Compton wavelength of the electron (for θ = 1800).

Important 2.3.1. The Compton effect is another phenomenon that can only be ex-
plained by assuming the existence of photons.

Example 2.8. Calculate the scattering angle and the energy transferred to the electron
compared to the energy of the incoming photon in a Compton effect, if at wavelength
λ = 0.01nm ∆λ = 0.0024nm. Solution From (2.3.2) the Compton angle is

cos θ = 1− me c∆λ

h
= 0.989 ⇒ θ = 8.445 o

The energy transferred to the electron is

Ee = h c

(
1

λ
− 1

λ′

)
= h c

(
1

λ
− 1

λ+ ∆λ

)
= 3.84 · 10−15J = 24 keV

The energy of the incoming photon according to the theory of relativity is

Eph = h ν = h c /λ = 1.99 · 10−14 J, i.e
Ee
Eph

= 0.19.

16Because photons are characterized by their frequency the photon after the scattering is not the same
particle as the photon before the scattering.
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Example 2.9. What will be the momentum of the Compton electron if for λ = 0.005nm
the photon scattering angle is 90o? Solution If the Compton angle is 90o then
cos θ = 0 and

λ′ = λ+
h

mec
= 7.426 · 10−12m = 0.007426nm

Because of the momentum conservation the total momentum of the elec-
tron after the collision equals to the total momentum difference between
the incoming and outgoing photons. The photon momentum and energy is
connected by the formula pphoton = Ephoton/c = h ν/c. Therefore

∆ pe =
h ν

c
− h ν ′

c
=
h

λ
− h

λ′
= 4.33 · 10−23 kg ms−1
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Figure 2.3: Emission spectrum of the Sun. When measured above the atmosphere (yel-
low) the spectrum resembles that of a black-body whose temperature is 5250 K. At sea
(ground) level the spectrum (red) is distorted because gases in the atmosphere absorb
radiation at some wavelengths.
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Figure 2.4: Comparison of the Rayleigh-Jeans, Wien and Planck formulas for a black
body of temperature 8 mK.

Figure 2.5: Experimental setup of the measurement of the photoelectric effect. For
description see the main text.
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Figure 2.6: The photoelectric effect. a) current vs emission time, b) current vs light
intensity, c) kinetic energy vs frequency curve for K and Cu, d) The kinetic energy of

the electrons (
Ekin
e

= UG) is independent of the light intensity. It only depends on the

frequency and a material specific W constant.
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Chapter 3

Stationary states

3.1 Stationary States

One of the phenomena, mentioned above, which could not be explained by classical
physics, is the stability of atoms, molecules and even the stability of the atomic nucleus.

According to classical electromagnetic theory1 there can be no stable equilibrium in
a system of charged particles if no other interaction is present. As we now know all me-
chanical interactions between macroscopic bodies are in fact electrostatic interactions of
the outermost atoms of the interacting objects, so this means that the system of charged
particles must be in continuous motion, otherwise no stable macroscopic or microscopic
bodies could exist. On the other hand if moving charged particles are confined into a
finite volume of space they cannot move with constant velocity, therefore must acceler-
ate. But, according to the classical theory of electromagnetism, all accelerating charges
emit electromagnetic radiation, which means energy loss. Therefore neither the atoms,
nor the molecules could be stable. The calculation of the energy loss rate of the single
electron in a hydrogen atom for instance yields that the time during which all kinetic
energy of the electron is lost is less than 10−8 sec. As the universe is older than that
clearly something must be wrong with this picture.

The discrepancy between the theoretical predictions and the experiments can be
resolved if we assume, that there exist discreet stationary states of a system of charged
particles in which they do not emit electromagnetic radiation contrary to the prediction
of classical (macroscopic) electromagnetic theory. This was exactly what Bohr proposed
to explain the observed line spectra of atoms.

Important 3.1.1. The existence of stationary electronic states does not mean that the
laws of electrodynamics are invalid for electrons. Neither do they mean that there ex-
ists a special kind of “quantum mechanical interaction” between particles. There is no

1which itself was only discovered in the second half of the 19th century.
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such thing. There are only four fundamental interactions (sometimes called fundamen-
tal forces), namely electromagnetism, strong interaction (or strong nuclear force), weak
interaction (or weak nuclear force) and gravitation.

All of the “forces” we encounter in quantum mechanics are electromagnetic forces.
What must be modified is the classical concept of the electron being a classical charged

mass point.

So the fact electrons in stationary states in an atom do not emit electromagnetic radiation
means that – contrary to classical physics – they do not accelerate, i.e. they are not
orbiting the atom in a classical way.

But when charged particles change their state as a result of an interaction with their
environment then during the transition from one stationary state to an other one they
either emit or absorb energy. Energy may be absorbed for instance in a collision with a
photon of suitable frequency, and emitted in the form of a photon of the same frequency.

This picture can explain for instance the absorption and emission spectra of atoms.
We will denote stationary (bound) atomic or electronic state “A” by |A〉. The energy
of the electron in state |A〉 will be E(|A〉). As we will see the energy of electrons in
stationary states in atoms can have only discreet values E(|A〉), E(|B〉), etc. An atom
originally in the discreet stationary state |A〉 may absorb a photon and change its state
to another, higher energy discreet state |B〉 if and only if the following criterion is met:

E(|B〉)− E(|A〉) = ∆E (|A〉 → |B〉) = h ν

In the opposite process the atom goes from the higher energy state to the lower energy
one with an emission of a photon with same ν frequency:

∆E (|B〉 → |A〉) = −h ν

The discreet nature of atomic energies can be observed by experiments in which no
photons are involved at all.

The most famous such experiment was performed by James Franck and Gustav Luis
Hertz in 19142. The schematic of the Frank-Hertz experiment can be seen in Fig. 3.1.

What would we expect from this experiment if we assume that atomic stationary
states have discreet (quantized) energy values (called energy levels)? For simplicity
let us assume mercury atoms have two possible stationary states with discreet energies
(energy levels) with an ∆E energy difference between them.

Until the kinetic energy of the emitted and subsequently accelerated electrons is
smaller than ∆E no interaction is possible with the Hg atoms, because the atoms can

2They were awarded the Nobel Prize in 1925 for this work.
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Figure 3.1: Experimental setup of the Franck-Hertz experiment. Electrons are generated
by a heated cathode in a glass vacuum tube filled with low pressure mercury gas. They
are accelerated by the variable voltage between the cathode and the grid. The anode is
held at a slightly negative potential relative to the grid, so that only the electrons with
suitable kinetic energy may reach it. The accelerating voltage is varied and the I current
is measured.

only absorb ∆E energy not less and not more. Therefore only elastic electron–atom
collisions are possible, which do not change the kinetic energy of the electrons, only
randomize the direction of their velocity. This means that the current will increase
steadily after the acceleration voltage is higher than the grid voltage 0.5 V.

When the kinetic energy of the electrons reaches ∆E the current should drop almost
to zero, because now inelastic scattering leading to kinetic energy loss may also occur3.

A further increase of the acceleration voltage will lead to the increase of the current
again, because electrons can only loose ∆E of their kinetic energy in a collision and
not more. Until the remaining kinetic energy is smaller than ∆E no further inelastic
collision may occur. However when the average electron kinetic energy reaches 2 ∆E the
current drops again, as electrons now have enough kinetic energy to participate in two
consecutive inelastic collisions4. And this periodic increase and decrease of the current

3The current will not drop exactly to zero because of two reasons. First there will be electrons that
travel from the cathode to the grid without any collisions and, second, some percentage of the electrons
will still collide elastically with the atoms, as not all electrons will have the same amount of kinetic
energy.

4The minimum current will be higher than in the previous case, because the probability of two
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will repeat at 3 ∆E , 4 ∆E , etc, i.e. at every multiple of ∆E .
In Fig. 3.2 part of the results of the original experiment, which clearly displays the

expected behavior is shown. From the figure we can determine that for mercury

Figure 3.2: Accelerating voltage vs. anode current. The current is displayed in arbitrary
units (a.u.)

∆E = 4.9 eV

This periodic current may be observed up to at least 100 volts. The same experiment
with neon gas gives ∆Eneon = 19 eV .

Important 3.1.2. The Franck-Hertz experiment proves that stationary atomic energy
values are discreet. Clearly the quantized nature of some physical quantities is a basic
law of nature.

Example 3.1. The ground state and the first excited state (the stationary states with
the smallest and the next lowest energy) in a hydrogen atom have an energy of E0 =
−13.6 eV and E1 = −3.4 eV respectively relative to the energy of the free electron. What

consecutive inelastic collisions is smaller than the probability of a single one.
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is the frequency of the photon that, when absorbed, can excite the electron from the ground
state to the first excited state? What will be the frequency of a photon emitted during the
E1 → E0 transition? Solution For a photon to be absorbed the photon energy
must equal to the energy difference of the two states in question:

h ν = E1 − E0 = 10.2 eV = 1.634 · 10−18 J ⇒
ν = 2.47 · 10+15Hz

The frequency of the photon emitted in the reverse transition must be the
same as that of the absorbed photon.

3.2 Wave-particle duality

In previous sections we encountered the dual nature the electromagnetic waves. In some
cases (e.g. diffraction and interference) they behave like classical waves, in other cases
(e.g. Compton effect, photoelectric effect) like classical particles (photons). We also
saw that stationary states of physical systems may (and usually do) have discreet energy
values. A valid question therefore whether particles (e.g. electrons) may exhibit wave-like
behavior too.

This possibility first appeared in an 1924 paper of the French physicist and Nobel
laureate Louis de Broglie. According to the de Broglie hypotheses any moving particle
or object had an associated wave, with a wavelength determined by its momentum p:

λ =
h

p
(3.2.1a)

With the introduction of the wave number

k =
2 π

λ
(3.2.1b)

this formula can be written as

p =
h

λ
= ~k (3.2.1c)

where

~ ≡ h

2π

is the reduced Planck constant5. We can define the frequency of this wave by the energy
E as we did for photons:

E = h ν = ~ω (=
p2

2me

=
~2 k2

2me

) (3.2.1d)

5Pronounced “h-bar”. It is also known as Dirac’s constant.
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If the de Broglie hypothesis is true, then diffraction and interference patterns should
be observable in experiments involving only electrons and other particles. Indeed electron
diffraction experiments performed on thin metal foils clearly show these patterns. In
Figure 3.3 for instance we can compare X-ray and electron diffraction measurements
performed on the same aluminum foil. Both the electromagnetic X-rays and low energy
electrons have wavelengths of the same magnitude.

Example 3.2. Determine the wavelength of an electron that is accelerated through a
voltage U . What magnitude of voltage must be used to have a wavelength comparable
to atomic distances around 0.05-10 nm in solids? Solution The kinetic energy of

an electron of momentum p is Ekin =
p2

2me

. If the electron is accelerated

through a U voltage Ekin = eU (e is the elementary charge). The corresponding
momentum is

p =
√

2me eU

The de Broglie wavelength

λ =
h

p
=

h√
2me eU

Therefore the accelerating voltage for λ is

U =
h2

2me e λ2

For wavelengths 0.05nm and 10nm the required voltages are:

U(0.05nm) = 601.7V and U(10nm) = 0.015V

The Double-slit experiment with light and with electrons

The famous double-slit experiment illustrates best the difference between wave-like and
particle-like behavior. The original experiment used light, but the double-slit experiment
has been replicated with electrons (in 1961), atoms, and even entire molecules (in 1999).
The principle of the original experiment is as follows: a light source producing coherent
plane waves6 illuminates a thin plate pierced by two parallel slits. The light passing
thorough the slits then hits a screen. Because the light is (or more exactly as we have
seen before: may behave like) a wave we expect an interference pattern on the screen7.
See Fig. 3.4.

6Light is said to be coherent if it can be split into two or more parts whose relative phases, when united
again after traveling paths of different lengths does not change so the interference patterns produced
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Figure 3.3: Comparison of X–ray and electron diffraction experiments. a) X-ray diffrac-
tion on a thin aluminum foil. b) an electron beam directed through the same foil gave
this diffraction picture.

However when one of the slit is covered and light may only travel through the other
one the interference vanishes8 (Fig. 3.5).

These experiments conform to the expected behavior from a wave. If we put a pho-
todetector (photomultiplier, CCD or CMOS sensor, etc) near one of the slits we either
detect a photon or nothing at all again since the energy in electromagnetic waves are in
(particle like) photons. This makes it possible to determine which one of the slits the ac-
tual photon went through. Unexpectedly however, if we do this, the interference pattern
vanishes and the screen shows the sum of two overlapping intensity peaks, corresponding
to the two slits (See Fig. 3.6. ) Therefore it may seem logical that the wave and particle
properties of the light (or any particle whatsoever) are complementary : both cannot be
observed at the same time.

are stationary in time. Such light may be produced e.g. a monochromatic laser as a light source.
7The same interference pattern forms regardless of the light intensity only the required measurement

times vary. In 1909 this was proved in an experiment where such low light intensities were used that only
a single photon was present in the device at one time. In this case the interference pattern is built-up
the same way as is shown in Fig. 3.7 for electrons.

8You can still observe a diffraction pattern on c).

27



Figure 3.4: The double slit experiment 1. a) schematics with both slits open, b) intensity
measured on the screen, c) observable interference pattern

Figure 3.5: The double slit experiment 2. a) schematics with one slit covered, b) intensity
measured on the screen, c) observable interference pattern
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Figure 3.6: The double slit experiment 3. a) setup with a photon detector, b) intensities
of the two independent slits, c) the intensity on the screen is the sum of the intensities
of the two slits

Important 3.2.1. The wave and particle like behavior of either particles and waves
are both present simultaneously always. Which behavior manifests itself depends on the
properties of the object (e.g. photon or electron) and on the parameters of the experiment.

The measured intensity of a wave is the square of the absolute value of the instantaneous
complex amplitude A(x, t) = A0 e

i (ω t−k r). The difference between the interference pat-
tern in Fig. 3.4 and the intensity curve in Fig. 3.6 is that in the first case, when the
wave–like property of the photons is dominant, the resulting intensity is the square of
the sum of the instantaneous amplitudes:

I(x, t) = (A1(x, t) +A2(x, t))2 = A2
1 +A2

2 + 2A1 · A2

The third term in this expression is the interference term. It may be positive or negative
depending on the phase difference between A1 and A2.

When the particle–like property of the photons 9 is dominant the resulting intensity
is the sum of the intensities from the slits:

I(x, t) = I1(x, t) + I2(x, t) = A1(x, t)2 +A2(x, t)2

The difference being the missing interference term in the second case.
At first thought it may seem reasonable that the interference pattern is a result

of some kind of interaction between the particles. However as experiments show the
interference pattern can be detected even in cases when the particle flux is so low that
only a single particle is present in the system at any time . In this case the individual
particles arrive at the screen at seemingly random positions, but this randomness is not

9there are no fractional photons because photons cannot be split
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uniform. More particles arrive around positions where in the fully formed interference
pattern the maxima are located and almost no particle hits the screen at the minimum
positions. Fig. 3.7 shows what happens in such an experiment. The exact position

Figure 3.7: Simulation of a double-slit experiment with only a single electron present in
the system at any given time.

where the next electron hits the screen cannot be calculated. The only thing that can
be calculated is the probability of an electron hitting a given point10. These probabilities
are not random they are higher at the interference maxima and lower at the interference
minima. The more electrons arrive at the screen the easier to recognize the interference
pattern.

10This probability is not the sum of the individual probabilities, it is square of the sum of the probability
amplitudes, which – as we will see later – are connected of the wave function.
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3.3 Uncertainty relations

The conclusion of the previous section, that physical objects show both the wave–like
(characterized by λ) and particle–like (characterized by x) behavior at all times, means
that certain concepts of classical physics must be reconsidered in quantum mechanics.
There is no such thing as a particle at an exact spatial position or a particle with an
exactly determined momentum for instance.

If we had a particle with an exact momentum its state should be described by a wave
function which has an exact λ = h/p wavelength. But such functions, e.g.

sin(ω t− kr) where

|k| = 2π

λ
=
|p|
~

have the same amplitude in the whole infinite space which is clearly impossible if we
want to ascribe any physical meaning to the wave function.

On the other hand electrons are point-like particles with no known substructure11.
The nearest concept of a localized physical object (e.g. electron) therefore is a wave

packet, which – according to Fourier analysis – is a superposition of an infinite number
of plain waves. Neither exact position nor exact momentum can be attributed to a wave
packet however. But there exist relations between the uncertainty of the momentum
and position. As it turns out these are physical quantities whose uncertainties are not
independent and there is a non-zero minimum value of their product 12:

∆x ·∆px ≥
~
2

∆y ·∆py ≥
~
2

(3.3.1)

∆z ·∆pz ≥
~
2

(3.3.2)

These are the Heisenberg uncertainty relations13. The pair of quantities which are related
by an uncertainty relation are called canonical conjugates or conjugate variables. A zero
uncertainty of either of the conjugate variables would require an infinite uncertainty of

11The ’diameter’ of an electron given as 2.8179 ·10−15 m is calculated from the assumption that it has
a homogeneous charge density with an electrostatic self-energy that is equal to its mass-energy of about
511 keV . This however has nothing to do with the fundamental structure of the electron and highly
inaccurate. Observation of a single electron in a Penning trap (a device that uses a strong homogeneous
magnetic and an inhomogeneous electric field to confine charged particles) shows the upper limit of the
electron radius is 10−22 meters.

12See Appendix 22.4 for a detailed derivation of this minimum value for a Gaussian wave packet
13No such non-zero minimum uncertainty exists for the product of uncertainties of the individual
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the other member of the pair. Neither the zero nor the infinite uncertainty states are
physical states.

The
~
2

numerical constant on the right hand side of the (3.3.1) relation is the math-

ematically correct value, see Appendix 22.414.
Originally the uncertainty principle was considered as an example of the observer ef-

fect, which notes that measurements of certain systems cannot be made without affecting
the systems. According to this explanation the interference pattern in the double-slit ex-
periments when the slit the electron passed through is identified was destroyed, because
to observe an electron in the vicinity of the slit requires an external interaction which
affects the system. But this is not the real reason for the uncertainty relations. It has
become clear since then that the uncertainty is simply due to the matter wave nature of
all objects.

Important 3.3.1. The uncertainty relations reflect the fact that a particle can never
have an exact value of either of its conjugate variables at any time. There are always
some inherent uncertainty in the values of conjugate variables in any physical state and
this is independent of whether the particle interacts with other objects or not.

Position and momentum are conjugate variables therefore it is not possible for an
electron to have either an exact position or an exact momentum.

This means that such classical concepts as a particle at rest or electron trajectories do
not exist. This violation of the classical concepts however can only be observed for very
small objects: particles, atoms, molecules, etc, as it will be clear from the next example.

Example 3.3. What is the momentum and velocity uncertainty for a) a dust particle
of diameter 500µ and mass of about 5.4 · 10−4mg, b) an ammunition bullet with a size
of about 7 × 40 mm and mass 5.2 g, c) a 75 kg 1.8 m × 40 cm × 20 cm object if all of
them are seemingly at rest. Solution If these objects are at rest then the position
uncertainty equals to their size. Therefore

∆ p =
~

2 · size
, ∆ v =

~
2 ·m · size

components of the same components of r or p or of the different components of r and p, for instance:

∆x ·∆y ≥ 0

∆x ·∆py ≥ 0,

but there are physical quantities (e.g. the angular momentum) between whose components an uncer-
tainty relation does exist.

14Popular scientific books may use
h

2
or even with h instead of the correct

~
2

. These are less rigorous

estimations for the minimum uncertainty and are all larger than
~
2
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a) ∆x = 5 · 10−4m, ∆ p = 1.06 · 10−31kg m
s

∆ v = 1.95 · 10−25m
s

b) ∆x1 = 7 · 10−3m, ∆ p1 = 7.54 · 10−33kg m
s

∆ v1 = 1.45 · 10−30m
s

∆x2 = 40 · 10−4m, ∆ p2 = 1.31 · 10−33kg m
s

∆ v2 = 2.54 · 10−31m
s

c) ∆x = 1.8m, ∆ p = 2.93 · 10−35kg m
s

∆ v = 3.91 · 10−37m
s

∆x1 = 0.4m, ∆ p1 = 1.32 · 10−34kg m
s

∆ v1 = 1.75 · 10−36m
s

∆x2 = 0.2m, ∆ p2 = 2.63 · 10−34kg m
s

∆ v2 = 3.52 · 10−36m
s

As you can see the momentum and velocity uncertainties are to small to be
measured. That is the reason why we may say these objects are at rest.

For macroscopic bodies the uncertainties are so small that no measurement is sensitive
enough to show them, therefore in these cases there is no need to modify the classical
mechanical concepts of position, velocity, trajectory, etc. But these concepts can also
be applied to elementary particles like electrons, if the accuracy required is small. For
instance when an electron moves between the plates of a plain capacitor classical me-
chanics can calculate its trajectory. In this case however the required ∆ x accuracy is
low it is in the 0.1− 1mm range, which gives a minimum uncertainty of momentum to
be ≈ 10−32 − 10−31 kg m/s. This still gives a velocity uncertainty of ≈ 5.8 cm/s for an
electron due to the low electron mass.

Quantum phenomena can be observed if the motion of the physical object we study
is confined to a region of space. 15. Since the electron mass me = 9.1 10−31kg is very
small ∆ v ≈ 5.9 105m/s = 1/9 10−3 c.

Mathematically the uncertainties are the standard deviations16 of the corresponding

15Take for example an electron in an atom. The size of the atom is about ∆x ≈ 10−10m,∆p =
5.3 10−25kgm/s

16If we measure the value of some physical quantity (e.g. position) of a particle N times and the
measured values are x1, x2, . . . xN then the average value of x is

〈x〉 =
1

N

N∑
n=1

xn

and the square of the standard deviation is

σ2 = 〈
(
x− 〈x〉

)2〉 =
1

N

N∑
n=1

(xn − 〈x〉)2
(
= 〈x2〉 − 〈x〉2

)
The standard deviation may be non zero even when the average is zero (e.g. velocity distribution in an
ideal gas).
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quantities. That is a ∆ p momentum uncertainty says nothing about the value of the
momentum. The average momentum may be 0, while the uncertainty is never zero. In
this case the maximum and minimum values of the momentum itself will lie between
−∆ p and ∆ p.

Example 3.4. An electron gun emits electrons with a velocity of v⊥ = 1m/s perpen-
dicular17 to a thin metal plate which has a hole of diameter D = 1mm (see figure).
Determine the size minimum of the spot on a screen l = 1 cm behind the hole.

Solution The electrons arrive at the slit with a velocity and momentum per-
pendicular to the slit, so the component of their momentum parallel with
the slit is p‖ = 0. The slit restricts the diameter of the electron beam to D,
therefore right after the slit the position uncertainty of the electrons will be
D. This means an uncertainty in the p‖ momentum of

∆p‖ ≥
~

2D
= 5.27 · 10−32 kg m/s

and a velocity uncertainty of

∆ v‖ ≥ ∆ p‖/me = 0.058m/s

17This is only an approximation, because an exactly 0 momentum component would require an in-
finitely large position uncertainty in the parallel direction.
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The electrons need ∆ t = l/v⊥ time to reach the screen, during which the
maximum parallel distance they may travel is ∆ d = v‖∆ t. The minimal size
of the spot on the screen is therefore:

dmin = 2 v‖ l/v⊥ +D = 2.2mm

Energy-time uncertainty relation

There exists a special kind of uncertainty relation between the uncertainty of the energy
and the lifetime of a state:

∆ E ·∆ t ≥ ~
2

(3.3.3)

This relation is special first because, although formally corresponds to (3.3.1), contrary
to r and p, E and t are not conjugate variables, as t is simply a parameter. For instance if
∆E is the uncertainty of energy then the average lifetime of a particle having this energy

is ∆ t =
~

2 ∆E
. Another example: when a decaying particle is created in a high energy

particle collision ∆ E is its mass energy and ∆ t is the average lifetime of the particle
before it decays.

For stationary electron states in an atom ∆ Ecan be exactly 0 which means an infinite
lifetime of that state without external interactions.

3.4 The wave function

In classical mechanics the behavior of a particle is described by its position r(t) and
momentum p(t). These are observable and measurable physical quantities which we
will call simply observables. Similar observables are for instance the energy E and the
angular momentum L which may depend on r an p. Different particles can be identified
by results of a set of observables received under special experimental conditions.

According to the Heisenberg uncertainty relations in quantum mechanics neither
the position nor the momentum can be determined with an arbitrary precision without
influencing the accuracy of the value of the other one. So in quantum mechanics the
description must be based on something which takes into account the wave–like nature
of the particle.

Important 3.4.1. Because every physical object has wave–like properties a complex val-
ued function, called the wave function (sometimes written as wavefunction or matter
wave) ψ(x, t) is introduced, that describes the state of the physical object.

We will differentiate between the state itself and its description by a wave function.
We will denote the state described by ψ with |ψ〉.
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The wave function is inherently a complex function, therefore it cannot be directly
measurable, because results of measurements must be real numbers. The absolute square
of the wave function |ψ(r, t)|2 however is real and proportional to the probability of
finding the particle in a d3r ≡ ∆x ·∆ y ·∆ z (≡ ∆V ) volume around the position r:

P(r, d3r) = C · |ψ(r, t)|2 · d3r (3.4.1)

where the real number C is the proportionality constant.
The quantity C · |ψ(r, t)|2 is called the probability density.

C then can be determined from the condition that the probability that the particle is
present somewhere in the universe18 is 1:∫

whole space

|C · ψ(r, t)|2 · d3r = 1 (3.4.2)

Using the wave function the double-slit experiment with electrons may be explained very
similarly to the one with photons. Only the E(r, t) field strength must be replaced by the
wave function and the intensity, which for photons is proportional to E2 = (E1 + E2)2,
for electrons will be proportional to |ψ(r, t)|2 = |ψ1(r, t) + ψ2(r, t)|2. Therefore the wave
function may be called the probability amplitude.

3.5 The Schrödinger equation.

We look for the way of determining the wave function that describes the state of a physical
object i.e. allows to make predictions on the outcome of measurements of observable
physical quantities. Because we know from practice that classical mechanics is applicable
to macroscopic objects, which themselves, as we also know, are built from microscopic
constituents (atoms, molecules) for which quantum mechanics must be applied, we expect
quantum mechanics to be a generalization of Newtonian mechanics. Classical mechanics
is based on the Newton equations which themselves are based on experiments. Similarly
the base equation of quantum mechanics first introduced by Erwin Schrödinger is based
on experimental facts. The Schrödinger equation can be obtained by inductive reasoning,

18From this it follows that the determination of ψ(r, t) is not unique. First we may want to incorporate
C into ψ(r, t) to get a normalized wave function. And second if we multiply ψ(r, t) with a complex
number Â = ei A, where A is a real number with absolute value of 1 it will not change the probabilities
in (3.4.1) or (3.4.2). The set of all ψ wave functions which only differ in a such a multiplier are equivalent:

If ψ′(r, t) = Â · ψ(r, t),where|Â| = 1 ⇒ |ψ′(r, t)|2 = |ψ(r, t)|2
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detailed below, starting from classical mechanical formulas and our knowledge about the
wave-like nature of all particles, but this is not a deductive derivation.

In classical mechanics the velocity of a massive object changes only when external
forces are acting on it. In many important cases these forces are conservative, i.e. they
are the negative gradient of a potential energy:

F ≡ −grad Epot

In one dimension

F = −dEpot
dx

In quantum mechanics forces usually do not enter our equations, butare represented by
the potential energy.

Important 3.5.1. A convention in quantum mechanics that the potential energy is
called potential and usually denoted by V .
Never confuse quantum mechanical “potentials” with the potentials of classical physics!

The total energy of a classical particle is the sum of its kinetic and potential energies

E(≡ Etot) = Ekin + Epot =
p2

2m
+ V (x) (3.5.1)

In quantum mechanics the state of the physical object is described by the wave function
ψ(x, t). In one dimension using complex exponentials a wave can be described by the
formula

ψ(x, t) = Ae−i(ω t−k x)

According to the de Broglie hypothesis

~ω = E

~ k = p where k =
2π

λ

this can be written as
ψ(x, t) = Aei(p r−E t)/~

Its first order partial derivatives with respect to space and time are:

∂ ψ

∂ x
=
i

~
pψ and

∂ ψ

∂ t
= −i E

~
ψ (3.5.2)
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The total energy formula (3.5.1) contains the square of the momentum, so let us calculate
the second order partial derivative with respect to space:

∂2 ψ

∂ x2
= −p

2

~2
ψ (3.5.3)

Now multiply (3.5.1) with ψ and substitute the values for p2 and E from derivatives19

into (3.5.2) and (3.5.3)

E ψ =
p2

2m
ψ + V (x)ψ

p2 ψ = −~2∂
2 ψ

∂ x2

Eψ = i~
∂ ψ

∂ t
ψ

which results in the equations

− ~2

2m

∂2 ψ(x, t)

∂ x2
+ V (x)ψ(x, t) = E ψ(x, t) (3.5.4)

i~
∂ ψ

∂ t
= E ψ (3.5.5)

(3.5.4) is called the time independent or stationary Schrödinger equation, because it
does not depend on the time and it describes stationary states.

The two expressions for E ψ must be equal. From which we obtain the more general
form of the basic equation of quantum mechanics, called the time dependent Schrödinger
equation:

− ~2

2m

∂2 ψ(x, t)

∂ x2
+ V (x)ψ(x, t) = i~

∂ ψ(x, t)

∂ t
(3.5.6)

For a classical wave, the wave function should be the solution of the wave equation
instead, which in one dimension:

∂2 ψ(x, t)

∂ x2
=

1

c2

∂2 ψ(x, t)

∂ t2

where c would be the velocity of the classical wave.

Important 3.5.2. The Schrödinger equation is not a classical wave equation, because
particles are not classical waves. It is a new concept based on the ideas of de Broglie and
of the wave function being a quantity that describes the state of the physical object. It is
not a real but a complex equation, therefore the solution (the wave function) will also be
inherently complex.

19We used the equality −1/i = i.
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The solution for (3.5.5) is trivial:

T (t) = e−i
E
~ t (3.5.7)

Therefore
ψ(x, t) = ϕ(x) · e−i

E
~ t (3.5.8)

ϕ(x) is the solution of the time independent Schrödinger equation (3.5.4). However
its determination is far from simple. But there are some special idealized problems whose
solution is relatively straightforward These problems involve idealized potentials, which
may be used as an approximation of real world potentials.

Both the time dependent and time independent Schrödinger equations are linear,
which means that if ψ1(x, t) and ψ2(x, t) (or ϕ1(x) and ϕ2(x)) are solutions of the corre-
sponding equations then any linear combination of these

ψ(x, t) = C1 ψ1(x, t) + C2 ψ2(x, t)

ϕ(x) = C1 ϕ1(x) + C2 ϕ2(x),

where C1 and C2 are arbitrary complex numbers, is also a solution of the corresponding
equation

It follows that if we write the solution of the time dependent equation at t = 0 as a
linear combination of the solutions of the corresponding time independent Schrödinger
equation

ψ(x, 0) =
∑
n

Cn ϕn(x),

then we can calculate it at any t > 0 time by

ψ(x, t) =
∑
n

Cn ϕn(x) e−i En/~ t (3.5.9)

This is one of the reasons why we will use the time independent Scrödinger equation
most of the time. The main reason is, of course, that it describes the stationary states
of a physical object.

Important 3.5.3. As we will see the potential may put some restraints on the possible
values of E. In many cases our main goal is to determine the possible E values. The phys-
ically possible E values are called eigenvalues of the Schrödinger equation. The solutions
of the stationary Schrödinger equation for these E eigenvalues are called eigenfuntions.

(The prefix eigen- is adopted from the German word for ”self”, because quantum me-
chanics were first developed by German physicists.)

In classical mechanics the complex solution of the one dimensional wave equation is
written as f(x, t) = ei (ω t−k x) while in quantum mechanics the usual convention changes
the sign of the exponent, so the solution of the free electron problem is written as ψ(x, t) =
ei (k x−ω t) The corresponding solution of the time independent equation is ϕ(x) = ei k x.

39



Important 3.5.4. Although the solution of the time independent Scrödinger equation
does not describe a wave in the classical sense of the word, as it does not depend on t,
it is still usually called a wave. For instance ϕ(x) = ei k x with positive k is the “wave”
that describes an electron moving in the positive x direction. The missing t dependence
comes from the exponential factor e−i E/~ t.

In the following sections we will study some simple problems, solve the stationary
Schrödinger equation and find out how the potential and boundary conditions may re-
strict the possible values of the energy.

3.5.1 Free electron in 1 dimensional

For a free electron the solution of the stationary Schrödinger equation is
straightforward. When V = 0:

− ~2

2me

d2 ϕ

dx2
= E ϕ, from which

ϕ = C± e
± i k x, where k =

√
2meE

~

The plus/minus sign describes a particle moving in the positive/negative x
direction. The value of the C± complex constants is undetermined. This
is not a physical wave function, because it describes an electron which is
present everywhere in space and has no uncertainty in its momentum. But
(an infinite number of) such waves may be used to construct wave packets,
which may describe real electrons. The value of E is not restricted to discreet
values: the energy spectrum is continuous. The phase velocity of this wave

vph =
ω

k
=
E
~ k

=
~ k

2me

(3.5.10)

depends on the value of k which means that the relative phases of waves with
different wave numbers k in a wave packet change over time even in vacuum.
This will lead to the spread of the wave packet over time (See Appendix 22.2).

3.5.2 One dimensional potential step

An electron is moving in the following potential (Fig. 3.8:

V (x) =

{
0 when x < 0

V0 when x ≥ 0
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Figure 3.8: Electron in a one dimensional potential step. The wave function is displayed
for Etot < V0

Determine the wave function for an electron moving from the left to the right.
The total electron energy E can be either smaller or larger than V0. Solution
Because the potential divide the space (the x axis in our case) to
two distinct parts, both with a constant potential, the solution
of the time independent Schrödinger equation in our case is best
calculated by solving two equations: one for x < 0:

− ~2

2me

d2 ϕ1

d x2
= E ϕ1

and an one for x ≥ 0:

− ~2

2me

d2 ϕI
d x2

+ V0ϕ2 = E ϕI , from which

− ~2

2me

d2 ϕII
d x2

= (E − V0)ϕII ,

and connect the two solutions obtained using suitable boundary
conditions. Here me is the electron mass.

Both equations have the same structure:

d2 ϕ

dx2
= −k2 ϕ(x)

with

k2 =


2me E
~2

x < 0

2me (E − V0)

~2
x ≥ 0
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which have solutions in the form of:

ϕ(x) = const · e±i k x

The general solution of both equations is the linear combination of
these, where we must distinguish between the values of k in the
two regions. Instead of using subscripts we will denote kI with k
and kII with q

ϕI(x) = A · ei k x +B · e−i k x

ϕII(x) = C · ei q x +D · e−i q x

Here A and C are the amplitudes of the wave traveling in the pos-
itive x direction, while B and D are the corresponding amplitudes
for waves moving in the opposite direction.

Because an electron cannot be divided to two “half-electrons”, the
wave function must be continuous. This is the first boundary con-
dition.

And because the resulting wave function must be the solution of a
single equation containing a second derivative for the whole space,
the second boundary condition is the continuity of the first deriva-
tive of the wave function at x = 0:

ϕI(0) = ϕII(0)

dϕI
d x

∣∣∣∣
x=0

=
dϕII
d x

∣∣∣∣
x=0

Our electron originally arrives to the x = 0 boundary from the left
traveling in the positive x direction. This means that the amplitude
A 6= 0 for the wave traveling right in region ’I’. Part of the wave
function may be reflected back from the potential step into region
’I’ (B 6= 0) and part of it may enter the region of the higher potential
(C 6= 0). But there will be no part traveling backwards there,
therefore D = 0.

Substituting the wave functions into the boundary conditions we
get the following equalities:

A+B = C

i k (A−B) = i q C
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i.e. 2 equations for the 3 unknowns. This means that we can set the
value of one of the unknown parameters arbitrarily and determine
the others depending on its value20. In our case let us select the
value A = 1. With this selection

B =
k − q
k + q

=

√
E −

√
E − V0√

E +
√
E − V0

C =
2 k

k + q
=

2
√
E√

E +
√
E − V0

The wave function is then

ϕ(x) =

{
ei k x + k−q

k+q
e−i k x x < 0

2 k
k+q
· ei q x x ≥ 0

Up to this point we did not distinguish between the two cases when
E > V0 and when E < V0.

When E > V0, i.e. the kinetic energy of the incoming particle is
larger than the potential step both k and q are real. The part of
the wave function which enters region ’II’ is

ϕ2(x) ≡ C · e−i q x

which is a wave traveling in the positive x direction with constant
amplitude and constant |ϕII |2 = |C|2 probability density.

If the electron was a classical particle, whose movement is governed
by the laws of classical mechanics it could never turn around, it
would always move in the positive x direction. In quantum me-
chanics however there is always some possibility that the electron
is reflected back from the boundary, because if V0 > 0 then B 6= 0.

When E < V0,i.e. the kinetic energy of the incoming particle is
larger than the potential step then k is still real but q is imagi-

nary: q = i

√
2me (V0−E)

~ , this makes B and C complex. Part of the
wave function still reaches into region ’II’ but it is an exponentially
decreasing function:

ϕII(x) = C · ei·i·|q|x = C · e−·|q|x

In classical physics if the total energy of the particle is smaller
than the potential energy in some region of space the particle is

20Because the wave arriving from the left is infinite it can not be normalized.
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always reflected back from the boundary and cannot enter the re-
gion where E < V0. This reflection always occurs in quantum me-
chanics too, but the wave function will not be 0 inside region ’II’.
The probability density decreases exponentially from the bound-
ary: |ϕ2(x)|2 = |C|2 e−|q|x. The penetration depth δP is the distance
where the probability density falls to 1/e (about 37%) of its value
at the boundary, i.e.

δP =
~√

2me (V0 − E)

I.e. the higher is the potential the smaller is the penetration depth.

We learned from this calculation that

Important 3.5.5. The solution of the Schrödinger equaton (the wave
function) must be a finite valued, continuous and continuously
differentiable function. This is true even for V (x) potentials that
have an abrupt, but finite jump.

The potential we used in this example is of course an idealization. In realistic cases (see
the next section)the potential raises from 0 to a constant value not abruptly but in some
∆x = s distance. In classical mechanics you may imagine a ramp connecting the ground
with a raised platform. The potential energy of a classical object sliding or rolling on
this ramp has a potential energy of this shape. In quantum mechanics this potential can
be realized by a homogeneous electric field connecting two halves of space with different
potential.

But do not forget that the particle is moving along the x axis and not along the
potential curve!

3.5.3 Potential box in 1 dimension

Let us suppose that the potential is 0 inside a finite region of length L in 1
dimensional space while outside this region it is infinitely large. This potential
arrangement is called a potential box (see Fig. 3.9. Put an electron into this
box and determine the possible energy levels. Solution According to the
description we may select the following arrangement:

V (x) =


∞ x ≤ 0

0 0 < x < L

∞ x ≥ L
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Figure 3.9: Electron in a 1 dimensional potential box. Outside region II the potential is
infinite.

We present two solutions for this problem. The first one uses the
exponential notation, the second one jumps straight to harmonic
functions.

a)
Inside the box the electron can move freely, but it cannot leave the
box. Because the potential jumps to infinity at the boundaries the
penetration depth will be exactly 0. Therefore

ψ(x, t) = ϕ(x) e−i
E
~ t, where

ϕ(x) =


0 x ≤ 0

Aei k x +B e−i k x 0 < x < L

0 x ≥ 0

In this case there are only two unknown constants A and B in
the function and the boundary conditions at x = 0 and x = L are
enough. Because the wave function must be continuous these con-
ditions are:

A+B = 0, A ei k L +B e−i k L = 0

From these:

A
(
ei k L − e−i k L

)
= 2 i A sin k L = 0 ⇒ sin k L = 0
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k L = nπ n = 1, 2, 3...

k =
nπ

L
n = 1, 2, 3...

The wave numbers, the momentum and energy of the electron are
not continuous variables but can only take discreet values. The
value n = 0 would belong to a zero wave function ψ(x, t) = 0, which
“describes” an empty box without any electron inside it.

b)
Because the solution of the Schrödinger equation is a linear com-
bination of exponentials with imaginary power and harmonic func-
tions can be expressed as sums or difference of these we may use a
linear combination of sine or cosine functions instead of exponen-
tial functions. According to the boundary conditions the selected
function must be 0 at both boundaries. This means that we may
use a single sine function and that the integer multiple of the half
wavelength must be equal to L with the condition that:

ψ(x, t) = ϕ(x) e−i
E
~ t

ϕ(x) = Asin
x

λ

n
λ

2
= L n = 1, 2, 3...

λn =
2L

n

kn =
2π

λ
=
π

L
n n = 1, 2, 3...

Buth ways we arrive to the same formulas (here we explicitly note
that all quantities depends on the integer number n):

ϕn(x) = An sin kn x, where kn =
nπ

L
(3.5.11a)

pn = ~ kn =
~ π
L
n n = 1, 2, 3... (3.5.11b)

En =
p2
n

2me

=
π2 ~2

2me L2
n2 n = 1, 2, 3... (3.5.11c)

or En = n2 E1, where

E1 =
π2 ~2

2me L2
=

h2

8me L2
(3.5.11d)
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Notice that the energy expressed with k is of the same form as it

Figure 3.10: The wave functions (left) and the probability densities (right) for a 1 di-
mensional potential box.

would be for a free particle, the difference being that for a particle
confined in a box the energy spectrum is discreet, only discreet
energy levels are allowed.

The wave function and the probability density function for the 4
lowest lying state is shown in Fig 3.10.

Important 3.5.6. The lowest lying energy state (here E1) is called
the ground state, sometimes referred to as the zero point energy
of the physical object.

The value of the A constant can be determined from the normal-
ization of the wave function. The probability that the electron is
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found inside the box must be 1:
∞∫

−∞

|ϕ(x)|2 dx =

L∫
0

|ϕ(x)|2 dx = 1

L∫
0

|Asin n π
L
x|2dx = |A|2L

2
= 1

|A| =
√

2

L

ϕ(x) =

√
2

L
sin

n π

L
x

The square of the absolute value of the ϕ(x) wave function in the
integral is

|ϕ(x)|2 ≡ ϕ∗ ϕ

We will be interested in integrals containing different wave func-
tions. For this purpose it is useful to know that if ϕn(x) and ϕm(x)
are two eigenfunctions of the Schrödinger equation then

∞∫
−∞

ϕn(x)∗ ϕm(x) dx = δn,m

where δn,m is the Kronecker’s delta21:

δn,m =

{
0, if m 6= n

1, if m = n
(3.5.12)

The calculation is simple:

∞∫
−∞

ϕn(x)∗ ϕm(x) dx =

L∫
0

2

L

(
sin

n π

L
x · sin mπ

L
x
)
dx =

1

L

L∫
0

(
cos

(m− n) π x

L
− cos (m+ n) π x

L

)
dx = 0

21Named after the 19th century German mathematician Leopold Kronecker who worked on number
theory and algebra.

48



Integrals of different wave functions are so important in quantum
physics, that they have a special notation

〈φ |ϕ〉 :=

∞∫
−∞

φ(x)∗ ϕ(x) dx (3.5.13)

which is called the scalar product of the wave functions φ(x) and
ϕ(x) 22. This result is generally true:

Important 3.5.7. The scalar product of two different eigenfunc-
tions of a given Schrödinger equation is always 0. We say that
two different eigenfunctions are always “ orthogonal” to each other.
The scalar product of a wave function with itself must be positive
and finite, because it is proportional to the probability of finding
the particle somewhere in space. In other words the wave function
must be square-integrable a.k.a. quadratically integrable.

The ground state energy of a 1 dimensional potential box is in
agreement with the Heisenberg uncertainty relation too if we take

the constant on the right hand side to be h instead of the exact
~
2

value:
∆x ·∆ p ≥ h

In our case

∆x = L ⇒ ∆ p ≥ h

L
If we now consider ∆ p as the change of the momentum of the
particle when it collides with one of the walls, then

∆ p = 2 · p ⇒ E =
p2

2me

=
∆ p2

8me

E ≥ h2

8me L2
= E1

Example 3.5. What is the wavelength of the photon emitted by an electron transition
from the 4th to the 3rd level in a 1 dimensional potential box of size 100nm? Solution
From (3.5.11c) the energy difference between level 4 and 3 is

∆ E = E4 − E3 =
~π2

2me L2
(42 − 32) =

7 · π2

2 · 9.1 · 10−31 (10−7)2

= 6.02 10−24 J

22This name reflects the similarity between the mathematical properties of these integrals and that of
vectors in linear algebra, which we will discuss in some details in Chapter 5.
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and the photon frequency is

ν =
∆ E
h

=
6.02 10−24

6.62 10−34
= 9.09 109Hz

The wavelength of the emitted photon then

λ =
c

ν
= 3.3cm.

3.5.4 Potential box in 3 dimensions

A 3D potential box is a generalization of a 1 dimensional potential box. It
describes the situation of a particle confined in space. It is a model e.g. for
an electron in a metal, where it can move around freely, however it can not
leave it.Let the sides of the box be equal to Lx, Ly, Lz and let us put the
origin of the coordinate system into one of the corner of a box as in Fig 3.11
The potential:

Figure 3.11: The coordinate system for the 3D potential box. The potential is zero inside
and ∞ high outside of the box.
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V (x, y, z) =


0 0 < x < Lx,

when 0 < y < Ly and

0 < z < Lz

∞ otherwise

The stationary Schrödinger equation in 3 dimension is:

− ~2

2me

(
∂2

∂ x2
+

∂2

∂ y2
+

∂2

∂ z2

)
ϕ(x, y, z) + V (x, y, z) = E ϕ(x, y, z)

In this case it is easy to prove by substitution that the wave function can be
written as a product of three independent sine functions along the x,y and z
axes, where all three functions must vanish (i.e. ϕ = 0) at the corresponding
walls of the box:

ϕ(x, y, z) = A · sin kx x · sin ky y · sin kz z

where the three wave numbers must be

kx =
2π

λx
=

π

Lx
nx nx = 1, 2, 3... (3.5.14a)

ky =
2π

λy
=

π

Ly
ny ny = 1, 2, 3... (3.5.14b)

kz =
2π

λz
=

π

Lz
nz nz = 1, 2, 3... (3.5.14c)

The three wave numbers form the wave vector k ≡ (kx, ky, kz). The total
energy then becomes:

Enx,ny ,nz =
~2 k2

2me

=
~2 π2

2me

(
n2
x

L2
x

+
n2
y

L2
y

+
n2
z

L2
z

)
(3.5.15)

For a cubic box the three sides are of the same length L and

Enx,ny ,nz = E1

(
n2
x + n2

y + n2
z

)
, where (3.5.16a)

E1 =
~2 π2

2me L2
=

h2

8me L2
(3.5.16b)

The state of the physical object is characterized by the 3 quantum numbers
nx, ny and nz. Different combinations of n,m and l may give the same energy
value. The simplest way to show this is by an example.
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Example 3.6. Determine the first 3 energy levels in a cubic potential box whose size is
a = 10µm. Solution Substituting L = Lx = Ly = Lz = 10µm into (3.5.15) we get

Enx,ny ,nz =
~2 π2

2me L2
(n2

x + n2
y + n2

z) nx, ny, nz = 1, 2, 3, ...

Enx,ny ,nz = 6, 02 · 10−26(n2
x + n2

y + n2
z) nx, ny, nz = 1, 2, 3, ...

Because the result depends on the sum of the squares of the three numbers,
the same energy values will result for all permutations of the same three
numbers:

n m l E E
(E1 := 1.81 · 10−27J) ×10−27 J

1 1 1 3 · E1 1.807
1 1 2
1 2 1 6 · E1 3.61
2 1 1
2 2 1
2 1 2 9 · E1 5.42
1 2 2
2 2 2 12 7.23
1 1 3
1 3 1 11 · E1 6.63
3 1 1

Important 3.5.8. The set of states that have the same energy are called degenerate
states. The number of different states with the same energy are called the degeneracy
of the energy level. The scalar products of two different eigenfunctions are still 0 even
when the two eigenfunctions belong to the same degenerate energy levels.

The result in the previous example can be presented in a way that emphasizes the
degeneracies

factor states degeneracy
3 (1,1,1) 1
6 (2,1,1),(1,2,1),(1,1,2) 3
9 (2,2,1),(2,1,2),(1,2,2) 3
11 (3,1,1),(1,3,1),(1,1,13) 3
12 (2,2,2) 1
14 (1,2,3),(3,2,1),(2,3,1),(1,3,2),(2,1,3),(3,1,2) 6
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The number of the energy levels for a potential box is unlimited, so this table could be
continued indefinitely.

Example 3.7. An electron is confined in a 3D potential box with sides 10µm, 20µm
and 30µm. Give the energy and degeneracy of the 4 lowest lying states. Solution The
possible energy levels are

Enx,ny ,nz =
~2 π2

2me L2
(n2

x + n2
y + n2

z) nx, ny, nz = 1, 2, 3, ...

n m l E(×10−27J)
1 1 1 1.36
1 1 2 1.47
1 2 1 1.61
2 1 1 2.36
2 2 1 2.61
2 1 2 2.47
1 2 2 1.72
2 2 2 2.72
1 1 3 1.58
1 3 1 1.86
3 1 1 3.36
1 2 3 1.83
2 1 3 2.58
2 3 1 2.86
3 2 1 3.61
3 1 2 3.47
2 2 3 2.83
2 3 2 2.97
3 2 2 3.72
1 3 3 2.08
3 1 3 3.58
3 3 1 3.86
2 3 3 3.08
3 2 3 3.83
3 3 2 3.97
3 3 3 4.08

Enx,ny ,nz =
h2

8me

(
n2

L2
x

+
m2

L2
y

+
l2

L2
z

)
= 6.02 10−28

(
n2
x

1
+
n2
y

4
+
n2
z

9

)
[J ]
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The 4 lowest lying energy states can be determined by trying out different
combinations of the numbers 1,2 and 3 and selecting the ones with the 4
smallest energy values.

From the table we can see that there are no degenerate states for this
physical object and the indices for the 4 lowest lying levels sorted by energy
in ascending order are: (1,1,1), (1,1,2), (1,1,3) and (1,2,1).

3.5.5 Density of states

To answer such questions as “How many energy levels are inside a ∆ E interval around
a given E?” we have to enumerate all possible combinations of the 3 quantum numbers
nx, ny and nz to determine how nmany levels fall inside ∆ E . This is tedious, but luckily
there is an easier way.

From (3.5.14) we see that the difference between two consecutive k values

∆ ki =
π

Li
i = x, y and z (3.5.17)

is inversely proportional to the size of the box in that direction. It follows that if the size
of the box is sufficiently large then consecutive k values are close to each other. Because
the energy is dependent on k, in a sufficiently large box consecutive energy levels are also
close to each other. Even for a cubic box of size 10µm (see Problem 3.6) this energy
difference is only about 10−27 J or about 10−8 eV . To simplify our task we introduce a
(quasi) continuous function g(k) called the density of states function (per unit k) with
the following definition:

∆N (k,∆ k) = g(k) ·∆ k =
dN (k)

d k
·∆ k

where N (k) is the number of all states with wave numbers smaller than or equal to
k. Many physical quantities depend on k. Knowing the density of state per unit k
makes it possible to calculate the density of states for them as well. In our case this
other physical quantity is the energy. The functional dependence of E on k is called the
(energy) dispersion relation. For an electron in a 3 dimensional cubic potential box (see
(3.5.16)):

E(k) =
~2 k2

2me

⇒ k(E) =

√
2me E
~

and
d k

d E
=

√
2me

2 ~
√
E

(3.5.18)

Let us determine density of state per unit k g(k) and the density of state per unit
energy g(E) for a cubic box!
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Imagine a Cartesian coordinate system where the values of n,m and l are measured
on the three axes. Unless k is small the number of the possible states with wave vectors
less than or equal to k is very large (e.g 1 million or larger). We want to count the states
for which k is at most

k2 ≤ π2

L2
(n2

x + n2
y + n2

z)

(see (3.5.14)). If the 3 numbers could take on any values not just integers, this would
occupy a sphere with a radius of

ξ :=
√
n2
x + n2

y + n2
z =

√
k L

π

Because the 3 quantum numbers are all positive we must only consider the part of this
sphere inside the first octant of space. The volume of this eighth sphere is the (possibly
fractional) number of the unit volumes inside it and every (nx, ny, nz) triad determines
such a unit volume, therefore the volume is equal to the total number of states N (k) with
wave vectors whose length is shorter than or equal to k. Part of some of these volumes
will be outside the sphere and this introduces some error in the calculations. However if
the three numbers are large enough the error we make can be negligibly small compared
to the volume itself. Therefore

N (k) =
1

8
· 4 π ξ3

3
=

1

8
· 4 π

3

(
k L

π

)3

The factor V = L3 is the volume of the potential box. The density of states per unit k
therefore is

g(k) =
dN
d k

=
V

2π2
k2 (3.5.19)

From which the density of states per unit energy (or simply density of states) is

g(E) ≡ dN (E)

d E
=
dN (k(E)

d k
· d k
d E

= g(k(E))
d k

d E

From (3.5.18)23

g(E) =
V

2 π2
k2

√
2me

2 ~
√
E

=
V

2π2

2me E
~

√
2me

~
√
E

=
4π V

√
2m3

h3

√
E (3.5.20)

23Remember that ~ ≡ h/2π!
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Figure 3.12: Density of state function in a 3 dimensional potential box.

3.5.6 Linear harmonic oscillator.

In classical mechanics the simplest model of a linear harmonic oscillator was
a mass point on a spring. The potential energy of such a physical object is
quadratic in the excursion of the point from the origin:

Epot =
D

2
x2 =

1

2
mω2 x2, (3.5.21a)

where D is the spring constant and

ω =

√
D

m
(3.5.21b)

is the proper frequency of the harmoonic oscillator. A similar potential de-
scribes vibration of atoms or molecules. The one dimensional Schrödinger
equation for the harmonic potential

− ~2

2m

d2 ϕ

dx2
+

1

2
mω2 x2 ϕ = Eϕ (3.5.22)

The solutions are in Appendices 22.5 and 22.6. We find again the possible
energy values discreet:

En =

(
n+

1

2

)
~ω n = 0, 1, 2, ... (3.5.23)
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In this case the energy levels are equidistant, and the ∆E difference of con-
secutive levels is

En+1 − En = ~ω = h ν (3.5.24)

That is the energy of the linear harmonic oscillator may only change by an
integer multiple of the energy quantum h ν.

Figure 3.13: Wave functions a) and probability densities b) for a linear harmonic oscilla-
tor Note that both overreaches the limits of the classical motion and decays exponentially
fast in the walls

In Fig. 3.13 both the wave function and the probability densities are shown.
You can see that even indices belong to even, odd indices to odd wave func-
tions.

The fact that the energy quantum for the linear harmonic oscillator is the
same as for photons is not a coincidence. The reason behind it is that both the
vibration of the atoms in a solid (see Chapter 13) and of the electromagnetic
field itself can be modeled by independent linear harmonic oscillators.

The n constant is the number of energy quanta in the oscillator. The zero
point energy of this oscillator is

E0 =
1

2
~ω =

1

2
h ν
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3.5.7 One dimensional square potential well

The potential shown in Fig. 3.14 may be used for example as a crude ap-
proximation of the quadratic potential of the linear harmonic oscillator or
the Coulomb potential:

Figure 3.14: 1 dimensional potential well

V (x) =

{
V0, |x| ≥ L

2

0, |x| < L
2

(3.5.25)

Again we can solve the Schrödinger equation stepwise and use boundary con-
ditions to connect the pieces. But despite its simplicity this is a potential for
which no analytical solution exists. We may either use graphical or numerical
methods to determine the energy values. The reason we are talking about
this problem at all is twofold. First we wanted to show that sometimes the
solution to even simple quantum mechanical problems may be complicated
and second, that it allows us to draw some conclusions about the quantum
mechanical energy spectra of the physical objects. The whole calculation is
in Appendix 22.7 here we only show the results.

As previously we must distinguish between two cases when the total energy
of the particle is larger than V0 or smaller than V0.
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When the total energy of the particle is larger than V0 then the particle is can
move freely (not bound) and there are no constraints for the possible energy
values of these unbound states.

Important 3.5.9. The energy spectrum of unbound states is continuous i.e.
not quantized.

This result is also valid for instance for electrons, atoms and molecules when
the total energy is larger than the potential energy anywhere in the whole
space. Usually the zero of the energy scale is selected so that it marks the
boundary between bound and unbound states24.

In our case let us modify the potential using this convention:

V (x) =

{
0, |x| ≥ L

2

−V0, |x| < L
2

(3.5.26)

When E < 0, then in classical physics the particle is confined to the inside of
the potential well, however the wave function of a quantum particle extend
into the walls as it is shown in Fig. 3.15. The number of the possible energy

Figure 3.15: Possible wave functions in a potential well: a) even function, b) odd function.
The blue line is the wave function inside the well (ϕII in Fig. 3.14), the red line is the
part in the walls (ϕI and ϕIII)

levels for this potential well is finite.

24For example the zero energy of a Coulomb potential of an atom is set at an infinite distance from
the atom.
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3.6 Central potentials

Real potentials have no jumps in their values. According to classical physics the potential
between two oppositely charged ions is the attractive Coulomb potential. However if
this was the only force acting on them then they would collide and stick tightly together
instead of staying at a distance as in solids. We will see the physical reasons later on why
these ions are held apart. Here we only show a potential which can be used to describe
this behavior25.

The potential which an ion is exposed to looks like the one in Fig. 3.16.

Figure 3.16: Schematic potential of a central force. The points labeled ”A”,”C” are the
minimum possible distances between the ions and ”B” is the maximum distance in a
bound state. These are the classical turning points, r0 is the equilibrium position.

In classical physics when the total energy Etot < 0 the movement of the particle is
confined between points ”A”and ”B”, while for Etot > 0 the particle can move between the
point ”C’ and infinity. The kinetic energy of the particle Ekin(x) = Etot − V (x) becomes
0 in points ”A”, ”B” and ”C”. These are the classical turning points for the particle.
Therefore the particle is bound for Etot,1 < 0 and its movement is oscillatory (generally
it is not harmonic oscillation though). and unbound for Etot,2 > 0. The actual value of
both Etot,1 and Etot,2 is unrestricted: the energy spectrum is continuous in both cases.

25The potential displayed in Fig. 3.16 is called the Lenard-Jones (6-12) potential and it has the

formula: V (x) = ε
[(
r0
r

)12 − ( r0r )6].
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In quantum mechanics the energy spectrum of the unbound state (Etot > 0) is contin-
uous too, but the bound states may only have quantized energy levels, i.e. Etot < 0 has
a discreet spectrum. The wave function will extend into the potential walls to regions
where a classical particle may not go and vanish exponentially there. Near the equilib-
rium position r0 the potential may be approximated by a quadratic one and the vibrations
of the ions are approximately harmonic. This is one of the reasons why studying the
linear harmonic oscillator is important.

If the particle is in a bound state with energy Etot < 0 then the binding energy is
Eb = −Etot. If this is a potential between only two ions, then this is also the dissociation
energy.

3.7 The potential barrier, tunnel effect

As we saw in the previous examples the wave function may extend into regions where a
classical particle could not go. This part of the wave function decreases exponentially.
But what happens if the width of the region where the potential is larger than the total
energy of the particle is so thin that the wave function is not negligibly small at the other
side of this potential barrier? Can the particle cross the potential barrier? We know a
classical particle cannot.

This question is not academic and the answer is a definite “yes”. The effect is called
quantum tunneling, because a classical object with insufficient kinetic energy to climb a
hill (i.e. a potential barrier) could only go through it in a tunnel.

Tunneling describes - among others - the emission of electrons from a conductor
under the influence of an external electric field (field emission, see below). There are
devices, for instance the Scanning Tunneling Microscope (STM) and its cousin the Atomic
Force Microscope (ATM or AFM), whose operation is based on this effect, have about
1000 times the resolution of the optical microscope. But tunneling is also a source
of current leakage in very-large-scale integration (VLSI) electronics and results in the
substantial power drain and heating effects that plague high-speed and mobile technology.
It influences how small computer chips can be made.

Let us model the situation with a single incident electron traveling in the
positive x direction arriving at a square potential “wall” or ”barrier” of width
a like the one in Fig. 3.17. The stationary wave functions of the incident,
reflected and transmitted electron (or wave) are a linear combination of com-
plex exponential functions (or sine and cosine waves), while inside the wall
(Etot < V0) a linear combination of real exponentials. The wave functions in
the three regions are:

ϕI = Aei k x +B e−i k x k =

√
2m E
~

(3.7.1a)
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Figure 3.17: Quantum tunneling. A wave function corresponding to an incident particle
with a total energy of Etot arrives at the potential barrier from the left. Some of it
is reflected back, and some of it travels through the barrier. The total energy of the
electron does not change only the amplitude of the transmitted part of the wave function
is smaller in region III than in region I.

ϕII = C e−q x +D eq x q =

√
2m (V0 − E)

~
(3.7.1b)

ϕIII = Gei k x (3.7.1c)

The 4 boundary conditions are the usual ones:

ϕI(0) = ϕII(0) (3.7.2a)

ϕ′I(0) = ϕ′II(0) (3.7.2b)

ϕII(a) = ϕIII(a) (3.7.2c)

ϕ′II(a) = ϕ′III(a) (3.7.2d)

We are interested in the transmission coefficient T , which is defined as

T :=

∣∣∣∣GA
∣∣∣∣2
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and can be calculated from the boundary conditions. As it turns out it is
easier to calculate 1/T instead. From equations (3.7.1) and (3.7.2):

A

G
=

[
1

2
+
i

4

(
q

k
− k

q

)]
e(i k+q) a +

[
1

2
+
i

4

(
k

q
− q

k

)]
e(i (k−q) a (3.7.3)

If we assume that V0 � E then it follows that q � k and q
k
− k

q
≈ q

k
.

Furthermore let a be so large that q · a > 1, which results in eq a � e−q a.
Using these simplifications

T =

∣∣∣∣(1

2
+
i q

4 k

)
e(i k+g) a

∣∣∣∣2 =
16

4 +
(
q
k

)2 ,

which, with
∣∣∣ q
k

∣∣∣2 = V0−E
E leads to the result:

T ≈ e−2 q a = e−2

√
2m (V0−E)

~ a (3.7.4)

Example 3.8. In an aluminum–aluminum oxide–aluminum layer structure
a current of electrons with energies of 1 eV flows through the 0.5nm thick
insulating oxide boundary, which we represent as a square potential barrier
with V0 = 10 eV . What is the probability of an electron to pass through the
barrier? Solution

q =

√
2me (V0 − E)

~
=

√
18 · 10−19 · 9.1 · 10−31

1.055 · 10−34

= 1.0537 · 1010m−1

q a = 7.685

T ≈ e−g a = 2.11 · 10−7

When the total energy of a classical particle is larger than the height of the
potential barrier (E > V0) it always passes through it. However particles with
quantum mechanical descriptions may be reflected (i.e. B 6= 0) even in this
case, except if their energy is such that

q a = nπ i.e.

En = V0 +
h2

8ma

when they pass through without reflection (i.e. B = 0). This is called
resonance tunneling.
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Nitrogen inversion in ammonia

Quantum tunneling can describe the inversion of an ammonia26 (N H3) molecule called
nitrogen inversion. As you see in Fig 3.18 the N atom in the molecule may be placed
in two equivalent equilibrium positions. It can move to and fro between these through
the plane of the hydrogen atoms. Because the equilibrium positions correspond to the

Figure 3.18: The N atom in an ammonia molecules may undergo a geometrical inversion.

minima of the potential there is a potential barrier between them created by the hydrogen
atoms. See Fig 3.19. The total energy of the N atom is close to the minimum energy,
therefore it can only move from one position to the other by quantum tunneling. In this
system there are two kinds of oscillations present. First there is an oscillation around
either of the minima, then there is a slower oscillation between the two minima. The wave
function of the nitrogen atom is the superposition of these two oscillating states. The
height of the potential barrier is about 24.7 kJ/mol (0.256 eV/atom) and the resonance
frequency is 23.79GHz (λ = 1.260 cm) in the microwave range27.

Field emission

Inside a metal (conductor) the potential the electrons move in is the superposition of the
potentials from the ion cores and the other electrons. The resulting potential inside the
conductor is lower than that of the free electron, called the vacuum level (which is usually
considered to be 0) and we set it approximately constant. At the surface the potential
climbs to the vacuum level. The (conduction) electrons in a conductor may move freely

26’Household ammonia’ or ’ammonium hydroxide’ is a 5-10 wight% solution of ammonia in water.
27The absorption at this frequency was the first microwave spectrum to be observed.
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Figure 3.19: Potential of the nitrogen atom in an ammonia molecule. Around the equilib-
rium the potential can be approximated by the quadratic potential of the linear harmonic
oscillator.

around28, but ordinarily they cannot leave it because outside the solid the potential is
∆Φ higher than the total energy of any electron inside it. To remove an electron from

Figure 3.20: Schematic potential energy of electrons in a conductor a), and field emission
b)

the solid therefore we either provide it with an additional ∆E = e∆Φ energy by thermal
excitation or photon impact or we apply an external static electric field which distorts
the potential (as in Fig 3.20 forming a potential barrier b). In the latter case we are
talking about field emission.

28The picture we present here is a simplification, you can find a more exact discussion in Chapter 14
and 15.
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Chapter 4

Time dependent Schrödinger
equation

4.1 Solutions of the time dependent Schrödinger equa-

tion

In section 3.5 we saw that the general solution of the time-dependent Schrödinger equa-
tion can be written using the solutions (eigenfunctions) of the time-independent Schrödinger
equation (see (3.5.9)):

ψ(x, t) =
∑
n

Cn ϕn(x) e−i En/~ t (4.1.1)

where the Cn numbers are complex. The probability density will be time dependent too
(the asterisk denotes the complex conjugate):

P(x, t) = |ψ|2 = ψ∗ · ψ =

(∑
n

C∗n ϕ
∗
n(x) e+i En~ t

)
·

(∑
m

Cm ϕm(x) e−i
Em
~ t

)
=

=
∑
n,m

C∗nCm ϕ
∗
nϕm e

i
(En−Em)

~ t =

=
∑
n

C∗nCn ϕ
∗
nϕn +

∑
n 6=m

C∗nCm ϕ
∗
nϕm e

i
(En−Em)

~ t =

I.e.

P(x, t) =
∑
n

|Cn|2 |ϕn|2 +
∑
n 6=m

C∗nCm ϕ
∗
nϕm e

i
(En−Em)

~ t (4.1.2)

The first sum is the weighted sum of the probability densities of the eigenfunctions and
the second sum is the interference term. As you see the probability density function is
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not constant as it would be in the stationary case, but contains terms oscillating with
angular frequencies

ωn,m =
En − Em

~
(4.1.3)

These oscillations describe transitions between stationary states. The frequency of these
oscillations is the frequency of photons the system can absorb or emit:

h ν = En − Em (4.1.4)

At t = 0 (4.1.2) further simplifies to

P(x, 0) =
∑
n

|Cn|2 |ϕ|2

Example 4.1. As an example let us use a wave function which is the linear combination
of only two eigenfunctions1

ψ(x, t) = C1 ψ1 + C2 ψ2 = C1 ϕ1 e
−iE1~ t + C2 ϕ1 e

−iE2~ t

P(x, t) = |ψ|2 = |C1 ψ1 + C2 ψ2|2 =

= |C1|2 |ψ1|2 + |C2|2 |ψ2|2 + C∗1 C2 ψ
∗
1 ψ2 + C1C

∗
2ψ
∗
2 ψ1 =

= |C1|2 |ϕ1|2 + |C2|2 |ϕ2|2 + C1C
∗
2 ϕ
∗
1 ϕ2 e

i
E1−E2

~ t+

C1C
∗
2 ϕ1 ϕ

∗
2 e
−i E1−E2~ t

That is the probability density function now oscillates with a single angular frequency of

ω =
E1 − E2

~
(4.1.5)

The integral of the probability density function P for the whole space is the probability of

1This is a special case of (4.1.2) when Cn = 0 for n 6= 1, or 2
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the particle being somewhere in space, therefore it must be equal to 1, independent of t:

1 =

∞∫
−∞

P(x, t) d x =

∞∫
−∞

P(x, 0) d x =

=

∞∫
−∞

ψ∗(x, 0)ψ(x, 0) d x =

=

∞∫
−∞

(C1 ψ1 + C2 ψ2)∗ · (C1 ψ1 + C2 ψ2) d x (4.1.6)

=

∞∫
−∞

(
|C1|2 |ψ1|2

)
d x+

∞∫
−∞

(
|C2|2 |ψ2|2

)
d x+

∞∫
−∞

(C∗1 C2 ψ
∗
1 ψ2 + C1C

∗
2 ψ1 ψ

∗
2) d x =

= |C1|2
∞∫

−∞

|ψ1|2 d x+ |C2|2
∞∫

−∞

|ψ2|2 d x+

C∗1 C2

∞∫
−∞

ψ∗1 ψ2 d x+ C1C
∗
2

∞∫
−∞

ψ1 ψ
∗
2 d x (4.1.7)

If you recall the (3.5.13) definition of the scalar product, you can write (4.1.6) and the
equivalent (4.1.7) in a shorter form as

〈ψ |ψ〉 = 〈C1 ψ1 + C2 ψ2 |C1 ψ1 + C2 ψ2〉 = 1

so

|C1|2 〈ψ1 |ψ1〉+ |C2|2 〈ψ2 |ψ2〉+
C∗1 C2 〈ψ1 |ψ2〉+ C∗2 C1 〈ψ2 |ψ1〉 = 1

From which you can see the properties of the scalar product:

Important 4.1.1.

|ψ|2 ≡ 〈ψ |ψ〉 ≥ 0

〈ψ1 |ψ2〉 = 〈ψ2 |ψ1〉∗

〈ψ1 + ψ2 |ψ3〉 = 〈ψ1 |ψ3〉+ 〈ψ2 |ψ3〉 (4.1.8)

〈ψ |C ψ〉 = C 〈ψ |ψ〉
〈C ψ1 |ψ2〉 = C∗ 〈ψ |ψ〉
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If ϕ1 and ϕ2 were normalized wave functions themselves then

〈ψ1 |ψ1〉 = 〈ϕ1 |ϕ1〉 = 1

〈ψ2 |ψ2〉 = 〈ϕ2 |ϕ2〉 = 1

and because they are different eigenfunctions of the same Schrödinger equation they are
orthogonal to each other

〈ψ1 |ψ2〉 = 〈ψ2 |ψ1〉 = 0

therefore the normalization condition gives

|C1|2 + |C2|2 = 1 (4.1.9)

4.1.1 Free electron in 1D

The energy spectrum of a free electron is continuous and the wave function of a free
electron is

ψ(x, t) =
∑
k≥0

(
C

(+)
k ei (k x−ω t) + C

(−)
k e−i (k x+ω t)

)
where ’+’ and ’-’ refers to the waves traveling in the positive and negative x direction
respectively. We may incorporate this sign into k and notice that because k is continuous
we must add values with infinitely close k indeces, and this is what the integral calculus
were invented for:

ψ(x, t) =
∑
k

Ck e
i (k x−ω t) ⇒

∞∫
−∞

C(k) ei (k x−ω t) d k (4.1.10)

4.1.2 Particle in a 1 dimensional potential box

The eigenfunctions in this case can be written as (see section 3.5.3)

ψn(x, t) = An sin
n π

L
x · e−i

E
~ t =

An
2 i

[
ei (

π n
L
x−E~ t) − e−i (

π n
L
x−E~ t)

]
(4.1.11)

This standing sine wave is a result of two waves of the same wavelength λn =
2L

n
and

amplitude moving in the opposite directions. This is a stationary wave because the
probability

|ψ|2 = |ϕ|2

density does not depend on time.
The wave functions we used are not the only ones possible for a potential box, because

any linear combination of them is also a solution.

69



4.2 Perturbation theory

We learned in the previous section that if the wave function of the system is a superpo-
sition (i.e. linear combination) of eigenfunctions, then the probability density contains
oscillating terms, which describe the transition from one state to the other. In this
section we will discuss how and why can such a transition occur.

To make the system jump from one stationary state to an other one we need some
external interaction, called perturbation. This can be in the form of excitation by the
radiation field (photons) or excitation by thermal vibrations for instance. But how can
we include this excitation into the Schrödinger equation?

Suppose that we can solve the Schrödinger equation for the V (x) potential, i.e.

− ~2

2m

∂2 ψn(x, t)

∂ x2
+ V (x)ψn(x, t) = i ~

∂ψn(x, t)

∂ t
⇒ ψn(x, t) = ϕn(x) e−i

En
~ t

where the mutually orthogonal ϕn(x) eigenfunctions are known. We describe the per-
turbation as an additional K(x, t) potential which is small compared to V . Then in the
time dependent Schrödinger equation:

− ~2

2m

∂2 ψ(x, t)

∂ x2
+ (V (x) +K(x, t))ψ(x, t) = i ~

∂ψ(x, t)

∂ t
(4.2.1)

The small K(x) potential only slightly modifies – we say perturbates – the potential in
the system.

Although we probably cannot solve this modified equation exactly we may derive
an equation from it which can be solved by iteration. First we try to write the un-
known solution as a linear combination of the known eigenfunctions of the unperturbed
Schrödinger equation. For this we use (4.1.1) modified in a simple way: we introduce
time dependency into the complex coefficients Cn

ψ(x, t) =
∑
n

Cn(t)ϕn(x) e−
i
~ En t (4.2.2)

The Cn(t) coefficients satisfy the following equation2:

dCm(t)

d t
= − i

~
∑
n

Kmn(t)Cn(t) ei ωmn t (4.2.3)

where ωmn =
Em − En

~
and Kmn(t) is called the m,n-th matrix element of the potential

K(x, t) and defined by

Kmn(t) :=

∞∫
∞

ϕ∗m(x)K(x, t)ϕn(x) dx (4.2.4)

2You find the derivation in Appendix 22.8
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Using the notation introduced for the scalar product (4.2.4) can be written in the form:

Kmn(t) := 〈ϕm(x) |K(x, t)ϕn(x)〉 = 〈ϕm(x)|K(x, t)|ϕn(x)〉 (4.2.5)

too, where the second notation is called the m,n matrix element of the potential K(x, t).
In this second form 〈ϕ| corresponds to the factor ϕ∗ in the integral. The complicated
(4.2.3) equation may be solved by successive approximation. The r − th approximation
is (see (22.8.2)):

C(r)
m (t) = C(r−1)

m (0)− i

~
∑
n

∞∫
−∞

Kmn(τ) ei ωmnτ C(r−1)
n (τ) dτ (4.2.6)

4.3 Transition probabilities and selection rules

Example 4.2. Let us suppose that we have a system with only two eigenstates ψ1(x, t)
and ψ2(x, t). Under the influence of the external K perturbation it jumps into the super-
position of these eigenstates. In this case

ψ(x, t) = C1(t)ϕ1(x) e−
i
~ E1 t + C2(t)ϕ2(x) e−

i
~ E2 t

If ψ is normalized then |C1(t)|2 + |C2(t)|2 = 1. The equations for C1 and C2 are

dC1(t)

d t
=
i

~

[
K11(t)C1(t) +K12(t)C2(t) e−

E2−E1
~ t

]
dC2(t)

d t
=
i

~

[
K22(t)C2(t) +K21(t)C2(t) e

E2−E1
~ t

]
If at t = 0 the system was in its ψ1(x, t) eigenstate, with C1(0) = 1 and C2(0) = 0, and
after a certain t1 time it is found in its ψ2(x, t) eigenstate, i.e. C1(t1) = 0, C2(t1) = 1,
then the system underwent a transition from ψ1(x, t) to ψ2(x, t).

In the first approximation therefore

C
(1)
2 (t) = − i

~2

t∫
0

K21(τ) ei ω21 τ dτ

|C2(t)|2 is the probability that the system is in state “2” at time t. In other words the
probability of the transition between states “1” and “2” is

W (1→ 2) = |C2(t)|2 =
1

~2

∣∣∣∣∣∣
t∫

0

K21(τ) ei ω21 τ dτ

∣∣∣∣∣∣
2

(4.3.1)
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If at t = 0 the system was in its n-th eigenstate (i.e. Ck(0) = δkn for k = 1, 2, ...) and
after the transition it will be in its m-th eigenstate (i.e. Ck(0) = δkm for k = 1, 2, ...),

then in the first approximation (Cm(t) ≈ C
(1)
m (t))

W (n→ m) = |Cm(t)|2 =
1

~2

∣∣∣∣∣∣
t∫

0

Kmn(τ) ei ωmn τ dτ

∣∣∣∣∣∣
2

m 6= n (4.3.2)

The transition probabilities depend on the matrix elements Kmn. It is possible that
although both the m-th and the n-th states are stationary eigenstates of the system still
Kmn = 0 may hold therefore no n→ m transition is possible in the first approximation.
The no n → m transition is called a forbidden transition. Because for the perturba-
tion theory to remain applicable the K(x, t) “potential” must be small relative to V (x)
higher approximations give only small corrections to the first approximation. But when
a transition is prohibited in the first approximation these small corrections may become
observable and the transition may occur although with a very small probability. Of
course it is also possible that a transition is prohibited in all approximations.

Example 4.3. Determine the transition probability in a 1 dimensional two level system
under the influence of en external electromagnetic field. In this case the perturbation is
of the form:

K(x, t) = K(x) · cosω t,

where ω is very close to ω21 in the sense3 that

ω21 + ω � |ω21 − ω|

and both are in the optical range (≈ 1014Hz). What is the range of validity of the pertur-
bation theory in this case? What interesting behavior will you find and why? Solution
From (4.3.1)

W (1→ 2) =
1

~2

∣∣∣∣∣∣
t∫

0

K21cos(ω τ) ei ω21 τ dτ

∣∣∣∣∣∣
2

where ω21 = (E2 − E1)/~ and K21 ≡
∞∫
−∞

ϕ∗2(x)Kϕ∗1(x) dx. Because cos ω τ =
(
ei ω τ +

3This is not a serious limitation, because perturbations with other frequencies have a negligible
probability to cause a transition anyway.
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e−i ω τ
)
/2

W (1→ 2) =
|K21|2

2 ~2

∣∣∣∣∣∣
t∫

0

(
ei (ω21+ω) τ + ei (ω21−ω) τ

)
dτ

∣∣∣∣∣∣
2

=

=
|K21|2

4 ~2

∣∣∣∣ei (ω21+ω) t − 1

ω21 + ω
+
ei (ω21−ω) t − 1

ω21 − ω

∣∣∣∣2
Now because of our assumptions for ω and ω21 the first term in the absolute
sign may be neglected as it is much smaller than the second one (the nu-
merator is of the same magnitude, while the denominator of the first term is
much greater than in the second one)

W (1→ 2) ≈ |K21|2

4 ~2

∣∣∣∣ei (ω21−ω) t − 1

ω21 − ω

∣∣∣∣2 =

=
|K21|2

4 ~2

∣∣∣∣ei (ω21−ω) t/2

ω21 − ω

∣∣∣∣2 · ∣∣ei (ω21−ω) t/2 − ei (ω21−ω) t/2
∣∣2 =

=
|K21|2

~2

sin2[(ω21 − ω) t/2]

(ω21 − ω)2

If |ω21 − ω| � 1 then the sine can be approximated with its argument and
the maximum of W ∝ |K t/~2 which increases with t. However the assumption
that this is a small perturbation will become invalid long before this maximum
reaches 1. Therefore our result is only valid for relatively small t.

The most interesting feature of this solution is that the transition proba-
bility oscillates sinusoidally as a function of time between 0 and a maximum
value which is still much less than 1, otherwise this would not be a small

perturbation. When t =
2π n

|ω21 − ω|
, where n = 1, 2, 3, ... the particle will be back

in the lower state.

The reason for this behavior is that although ψ1 and ψ2 are eigenfunctions
(i.e. stationary states) of the non-perturbed system they are not eigenfunc-
tions of the perturbed system.

4.3.1 Selection rules

Selection rules determine whether a transition is possible (i.e. W (1→ 2) > 0). In some
cases there is no need to calculate the integral, because these are connected to conser-
vation laws (e.g. conservation of angular momentum). Symmetry arguments can also
be used. For instance when the f(x) := ϕm(x)K(x, t)ϕn(x) function under the integral
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is antisymmetric, i.e. f(−x) = −f(x) the integral is always zero and the corresponding
transition is forbidden.

In the case of the linear harmonic oscillator the selection rule states that only photons
with the eigenfrequency of the oscillator can be absorbed or emitted (~ω = Em − En),
therefore the selection rule in this case states that

m = n± 1 ⇒ ∆n = ±1

4.4 Radiative transitions

Particles in a particular potential are considered a quantum mechanical system. Let
us consider a system with two energy the transitions between them. When an electro-
magnetic radiation of suitable frequency (h ν = Em − En) interacts with this system and
the transition is allowed the system may absorb the photon and go to the higher lying
energy level with the transition probability of W (n→ m). If the transition in the reverse
direction is also possible the system may return to its original state by emitting a photon
with the same frequency as of the absorbed one. Why would it do this?

If a higher energy level is occupied and a lower one is empty this is not a stable
state. It is only metastable. There are two possible processes for photon emission from
this state. First a second photon with the same frequency as the first may disturb the
metastable state. According to our formulas the role of levels n and m are interchange-
able4. Therefore a photon of the same frequency is needed to excite and de-excite the
system. In this case two photons of the same frequency will leave the system: the emit-
ted, and the perturbing one. This is called induced emission or stimulated emission.
Therefore the principle of light amplification is simple: take a number of atoms, excite
them to a higher metastable energy state by any means and then use a single incident
photons to force one of them to return to the lower energy state. This will produce 2
photons, which can de-excite two atoms which in turn will emit 4 photons, etc. This
will generate an enormous number of photons with the same frequency that leave the
system at almost the same time. Of course you must be sure that most of the atoms are
excited, because excitation and stimulated emission are competing processes. The photo
amplification described serves the fundamental mechanism for lasers5

The other possible process is called spontaneous emission. In that case seemingly
nothing disturbs the system but it still returns to its lower energy state by emitting a
single photon. Spontaneous emission can only be understood with Quantum Electrody-
namics, which gives an uncertainty relation between the fields E and B. As a consequence
there is no such thing as an “empty space”, the electromagnetic field has zero point vi-
brations. This is similar to the zero point vibrations of a linear harmonic oscillator and

4In the example above we only need to change ω21 to ω12 = −ω21 and neglect the second term instead
of the first.

5Acronym for “Light Amplification by Stimulated Emission of Radiation”. See Section 10.3
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Figure 4.1: Possible radiative processes

usually called the zero point energy of the vacuum. This means that strictly speaking
there is no such thing as a really spontaneous emission because this emission is caused by
the interaction of these zero point vibrations of the electromagnetic field called vacuum
fluctuations.
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Chapter 5

Formal quantum mechanics

5.1 Formal quantum mechanics. Operators

We have become familiar with many features of quantum mechanics that describes the
behavior of microscopic particles which are vastly different from the things we were
accustomed to in classical physics:

1. The energy of spatially restricted (bound) particles may have only discreet values.

2. Particles are not described with coordinates and velocities, but with wave functions,
which are solutions of the Schrödinger equation.

3. Some physical quantities (like the position and momentum) form so called conju-
gate pairs and there is an uncertainty relation between these pairs: the value of
either member of such a pair can be determined with any degree of accuracy on the
expense of decreasing accuracy (or increasing uncertainty) of the other member.
They never can have exact values.

4. Classical electrodynamics is still valid1, e.g. accelerating charged particles do emit
electromagnetic radiation but e.g. electrons in stationary quantum states in atoms
do not accelerate therefore do not radiate.

Most of the mathematical basis of formal quantum mechanics have been covered
already, but there are some “new” mathematics involved too, like the use of linear vector
spaces or matrix calculus.

Let us summarize the mathematical foundations in three dimensions2:

1Quantum Electrodynamics not included.
2In previous discussions we used simpler 1D equations, but for the completeness of this section we

will use 3 dimensions notation whenever it is not too inconvenient.
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• The state |ψ〉 of a quantum mechanical system is described by the wave function
ψ(r, t), which is3

– complex valued,

– continuous,

– continuously differentiable (except where the potential has an infinite jump),

– and quadratically integrable, functions. I.e. :

∞∫∫∫
−∞

ψ∗(r, t)ψ(r, t)dr <∞ (5.1.1)

Functions with all of these properties are called regular functions.

• Wave functions are solutions of the time dependent Schrödinger equation4:

− ~2

2m
∇2 ψ(r, t) + V (rψ(r, t) = i ~

∂ψ(r, t)

∂ t

• Some wave functions can be written in the form

ψ(r, t) = ϕ(r) e−iE/~, (5.1.2)

where ϕ(r) is the solution of the stationary Schrödinger equation:

− ~2

2m
∇2 ϕ(r) + V (r)ϕ(r) = Eϕ(r) (5.1.3)

and E is the energy eigenvalue of the system. These are called eigenfunctions of
the stationary Schrödinger equation5.

Therefore the only new mathematical notion we have to introduce here is that of the
operator.

3If there are more than one particle in the system, then the wave function is a function of all of the
coordinates of all of the particles of the system: |ψ〉 = ψ(r1, r2, ..., t)

4∇ϕ ≡
(
∂ ϕ
∂ x ,

∂ ϕ
∂ y ,

∂ ϕ
∂ z

)
, and ∇2 ϕ ≡

(
∂2 ϕ
∂ x2 + ∂2 ϕ

∂ y2 + ∂2 ϕ
∂ z2

)
5The meaning of the term “eigenfunction” is explained below
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5.1.1 Operators

Most of the functions we are used to associate a single number or vector to every number
or vector in a set, called domain by a formula. The set of the values associated to
the elements of the domain is called codomain. Examples: the real valued f(x) =

√
x

function on the set of the real numbers associates a single real value for all positive real
x numbers and 0, while the complex valued g(z) =

√
x function on the set of the real

numbers associates a single complex value to any real number:

x f(x) g(x)
1 → 1 1
2 → 4 4
3 → 9 9
-1 → – i
-2 → – 4 i
-3 → – 9 i

Functions are defined by their domain and codomain together with the rule of assignment.

Important 5.1.1. An operator Ô assigns a new function to an existing one:

g(x) = Ô f(x)

or in other words it transforms one function (f(x)) to an other one (g(x)). An operator
is defined by its domain and its codomain of functions and the rule of the assignment or
transformation (exactly as a function is defined).

E.g. differentiation is described by the formula g(x) =
d f(x)

dx
. For every differentiable

functions f(x) it associates its derivative g(x), therefore it too may be written as an
operator expression:

g(x) = D̂xf(x) ≡ d f(x)

dx

f(x) g(x) = d f(x)
dx

const → 0
x → 1
x2 → x2

x3 → x3

sinx → cosx

Now we do a strange thing: we formally separate the symbols of the differentiation from
the function and make a correspondence between them and the D̂ operator:

D̂xf(x) ≡ d

dx
f(x) ⇒ D̂x ≡

d

dx
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We can therefore say that the operator of differentiation with respect to x is
d

dx
. In this

case the ’hat’ symbol is not used. What are the properties of this operator? The same
as the properties of the differentiation, i.e. if

f(x) = C1 f1(x) + C2 f2(x) and

g1(x) = D̂x f1(x) ≡ d

dx
f1(x), and

g2(x) = D̂x f2(x) ≡ d

dx
f2(x)

then

g(x) = D̂x

(
C1 f1(x) + C2 f2(x)

)
≡

d

dx

(
C1 f1(x) + C2 f2(x)

)
≡
d
(
C1 f1(x) + C2 f2(x)

)
dx

=

= C1
d f1(x)

dx
+ C2

d f2(x)

dx
=

= C1
d

dx
f1(x) + C2

d

dx
f2(x) =

= C1 g1(x) + C2 g2(x) =

= C1 D̂x f1(x) + C2 D̂x f2(x)

i.e.

D̂x

(
C1 f1(x) + C2 f2(x)

)
= C1 D̂x f1(x) + C2 D̂x f2(x) (5.1.4)

The D̂x operator transforms a linear combination of functions to the same linear combina-
tion of the transformed functions. Such operators are called linear operators. Examples
of linear operators:

• n-th order ordinary or partial differentiation with respect to any a variable:

D̂(n)
x :=

dn

dxn
, D̂(n)

l :=
∂n

∂ xnl

Example:

D̂(n)
x [Af(x) +B g(x)] =

dn [Af(x) +B g(x)]

dxn
=

= A
dn f(x)

dxn
+B

dn g(x)

dxn
=

= AD̂(n)
x f(x) +B D̂(n)

x g(x)
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• integral of a function:

Î :=

∫
... dx

Example:

Î [Af(x) +B g(x)] =

∫
[Af(x) +B g(x)] dx =

= A

∫
f(x) dx+B

∫
g(x) dx =

= A Î f(x) +B Î g(x)

• multiplication with a number or with a function:

V̂ := V (x)·

Example:

V̂ [Af(x) +B g(x)] = V (x) [Af(x) +B g(x)] =

= AV (x) f(x) +B V (x) g(x) =

= A V̂ f(x) +B V̂ g(x)

In contrast the operator of squaring is not a linear operator, because

Ŝ · (f(x) + g(x)) = Ŝ · f(x) + 2 · f(x) · g(x) + Ŝ · g(x) 6= Ŝ · f(x) + Ŝ · g(x)

Example 5.1. We define some operators with the formulas:

Ô1v(t) := vx - x coordinate of the velocity vector

Ô2f(t) := Asinf(t) - sine of a time dependent function, e.g f(t) = ω t

Ô3f(k) :=
1√
2 π

∞∫
−∞

f(k) e−i k xdk -Fourier transform of f(k)

Ô4f(x) := 3
√
f(x)

Which of these are the linear operators? Solution Ô1 and Ô3

One advantage of using operators is that we can define operations between them too.
This makes our calculations easier. Some possible operations involving operators are:
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Important 5.1.2. Addition of operators The sum of two operators is also an oper-
ator. This operator transforms a function f(x) to the sum of the two transformed
functions:

if Ô = Ô1 + Ô2, then Ô f(x) = Ô1 f(x) + Ô2 f(x)

Multiplication of operators The product of two operators is also an operator. This
operator is defined by the successive application of the two operators in the given
order:

if Ô = Ô1 · Ô2, then Ô f(x) = Ô1

(
Ô2 f(x)

)
The order of the operators in a product may be important. If

Ô P̂ 6= P̂ Ô

then the operators do not commute:

Multiplication of an operator with a (complex) number Operators can be mul-
tiplied with a (complex) number. The result is also an operator:

if Ô = C · Ô1, then Ô f(x) = C · Ô1 f(x)

An example for non-commuting operators is the differentiation of a scalar function with
respect to x (D̂x = d

d x
) and the multiplication with the coordinate x (X̂ = x·), because:

(D̂x X̂) f(x) =
d

d x

(
x · f(x)

)
=

= f(x) + x · d f(x)

d x

(X̂ D̂x) f(x) = x · d f(x)

d x

which means that

D̂x X̂ f(x) 6= X̂ D̂x f(x)

D̂x X̂ 6= X̂ D̂x
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5.1.2 Operators in Quantum Mechanics. Angular momentum

One axiom of formal quantum mechanics is, that

Important 5.1.3. In quantum mechanics every physical quantity is represented by a
linear, self-adjoint (or Hermitian6) operator, which acts on complex valued functions.
This operator can be found using the definition of the corresponding quantity from clas-
sical mechanics and substituting all of the classical physical quantities in it with the
corresponding operators. As all classical mechanical quantities can be expressed with a
combination or as a function of the momentum p and position vector r, we can determine
their operators if we know the operators r̂ and p̂.

This means that we have some freedom in selecting operators for the momentum and
position, but the operators of other physical quantities must be calculated using these.

We can use the stationary Schrödinger equation to determine suitable operators for
p̂ and x̂:

Take the classical mechanical formula for the total energy of a particle and replace
E , p and V (r) with operators Ê , p̂ and V̂ respectively. This will result in an operator
equation. Apply both sides of this equation to the wave function ϕ(x) then compare
the resulting formula with the stationary Schrödinger equation to determine a possible
representation of these operators. In one dimension:

E =
p2

2m
+ V (x) classical mechanics

Ê =
p̂2

2m
+ V̂ (x) operator equation in quantum mechanics

Êϕ(x) =
p̂2

2m
ϕ(x) + V̂ (x)ϕ(x) applied to the wave function

E = − ~2

2m

∂2 ϕ

∂ x2
+ V (x)ϕ the stationary Schrödinger equation

From this (using the rules of the sum and product of operators) we obtain the definitions
of the operators p̂ and x̂:

Ê ϕ ≡ E ϕ ⇒ Ê = E· (5.1.5)

p̂2 ϕ

2m
≡ − ~2

2m

d2 ϕ

dx2
⇒ p̂ =

~
i

d

dx
V̂ (x)ϕ ≡ V (x)ϕ ⇒ V̂ (x) = V (x)· (5.1.6)

The last one for V (x) = x implies that

x̂ = x· (5.1.7)

6For the meaning of the terms “self-adjoint” and “Hermitian” see (5.1.21).
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Using these definitions it is easy to see (c.f. end of previous section) that the operators
of p and x do not commute, and

x̂p̂− p̂x̂ = i ~ (5.1.8)

To characterize the commutativity of operators we introduce a notation:

Important 5.1.4. For any two quantum mechanical operators the quantity

[Ô, P̂ ] := Ô P̂ − P̂ Ô (5.1.9)

is called the commutator of Ô and P̂ .
If the two operators commute [Ô, P̂ ] = 0.

Commutators are useful. In Appendix 22.6 for instance we used only commutators to
derive the possible energies of the linear harmonic oscillator.

The commutator of the position and momentum in 1D is

[x̂, p̂] = i ~ (6= 0) (5.1.10)

and we know there is an uncertainty relation between x and p. This is a general principle.

Important 5.1.5. If the commutator of two operators is not zero then there exists an
uncertainty relation between the corresponding physical quantities.

In 3 dimensions we must define operators for all three components of the momentum and
position vectors. We have to use partial derivatives in this case. These operators may
also be combined into a vector operator

p̂ := (p̂x, p̂y, p̂z) = −~
i

(
∂

∂ x
,
∂

∂ y
,
∂

∂ z

)
(5.1.11)

In this case the operator of p is a constant multiplied symbolic vector, for which there is
a special notation, the ∇ symbol, called nabla or del :

∇ ≡
(
∂

∂ x
,
∂

∂ y
,
∂

∂ z

)
(5.1.12)

Although this is not a real vector in many cases we may use it as one. For instance the
square of it, which is called the Laplace operator and denoted by ∆ is:

∆ := ∇2 ≡ ∇ · ∇ =

(
∂

∂ x
,
∂

∂ y
,
∂

∂ z

)
·
(
∂

∂ x
,
∂

∂ y
,
∂

∂ z

)
= (5.1.13)

=

(
∂2

∂ x2
,
∂2

∂ y2
,
∂2

∂ z2

)
(5.1.14)
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Similarly the position operator r is a symbolic vector:

r̂ := (x̂, ŷ, ẑ) = (x·, y·, z·) (5.1.15)

The commutators of the components of p̂, and r̂ then can be written in a single formula:

Important 5.1.6.

[xk, pl] = i ~ δkl where k, l = 1, 2, 3 and e.g. x2 ≡ y, p2 ≡ py (5.1.16)

i.e. different components of the position and the momentum commute, but the same
components do not, therefore there is no uncertainty relation between different compo-
nents, only between the same components of r̂ and p̂.

The combination of the operators p̂ and V̂ in the 1D and 3 dimensions Schrödinger
equation are operators themselves. They are called the (1D and 3 dimensions) Hamilton
operator or Hamiltonian of the system:

Ĥ := − ~2

2m

d2

dx2
+ V (x)· 1D (5.1.17a)

Ĥ := − ~2

2m
∇2 + V (r)· 3 dimensions (5.1.17b)

Therefore the one and three dimensional stationary Schrödinger equations both can be
written as an operator equation:

Ĥ ϕ(x) = E ϕ(x) and (5.1.18)

Ĥ ϕ(r) = E ϕ(r)

When dealing with the quantum mechanical problem of an electron in a centrally sym-
metric potential e.g. in the hydrogen atom it will be much easier to solve the Schrödinger
equation in an (r, θ, φ) spherical coordinate system than in a Cartesian one. In this case
the operator form of the equation will not change, although the formula for the Hamil-
tonian will change significantly (see Appendix 22.9):

Ĥ =− ~2

2m

[
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2

]
+

+V (r)· (5.1.19)

Important 5.1.7. If we use the operator form of an equation it will remain the same
independent of the coordinate system, only the representation of the operator will change.
This is another important and very useful property of the operators.
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For the use in quantum physics it is important to know the behavior of operators in
a scalar product.

Let Ô an operator that acts on wave functions. We can calculate the scalar product
of a function ϕ2 with Ô ϕ1. In 1D:

〈ϕ2 | Ô ϕ1〉 ≡
∞∫

−∞

ϕ∗2 · (Ô ϕ1) dx (5.1.20)

Let us introduce a new operator Ô†, called the adjoint of Ô with the definition:

〈Ô†ϕ2 |ϕ1〉 = 〈ϕ2 | Ô ϕ1〉 (5.1.21a)
∞∫

−∞

(Ô† ϕ2)∗ · ϕ1 dx =

∞∫
−∞

ϕ∗2 · (Ô ϕ1) dx (5.1.21b)

Some operators are self-adjoint, which means that they are equal to their adjoint:

Ô† = Ô. Self-adjoint operators are also called Hermitian7.

Example 5.2. Determine the adjoint of the operators p̂, x̂ and Ĥ! Solution a) adjoint
of the momentum operator

According to the definition of the adjoint operator:

〈p̂†ϕ2 |ϕ1〉 = 〈ϕ2 | p̂ ϕ1〉 i.e.

〈p̂†ϕ2 |ϕ1〉 = 〈ϕ2|
~
i

d ϕ1

d x
〉

∞∫
−∞

(p̂† ϕ2)∗ · ϕ1 dx =

∞∫
−∞

ϕ∗2 · (p̂ ϕ1) dx or

∞∫
−∞

(p̂† ϕ2)∗ · ϕ1 dx =

∞∫
−∞

ϕ∗2 ·
~
i

d ϕ1

d x
dx

The right hand side can be calculated with integration by parts:

∞∫
−∞

ϕ∗2 ·
~
i

d ϕ1

d x
dx =

~
i

[ϕ∗2 · ϕ1]∞−∞ −
∞∫

−∞

~
i

d ϕ∗2
d x
· ϕ1 dx

7For the sake of completeness: all self-adjoint operators are Hermitian, but not all Hermitian opera-
tors are self-adjoint, but for our purposes the two notions are equivalent.
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Because both ϕ1 and ϕ2 are physical wave functions they must be square
integrable, therefore they must vanish when x→∞, so the first term is zero

∞∫
−∞

(p̂† ϕ2)∗ · ϕ1 dx = −
∞∫

−∞

~
i

d ϕ∗2
d x
· ϕ1 dx

Because (p†ϕ)∗ = (p†)∗ ϕ∗ =
(
−~

i
d
d x

)∗
ϕ∗:

p̂† ≡ ~
i

d

d x
= p̂

The momentum operator is self-adjoint.

b) adjoint of the position operator
This is much simpler, because x̂ ≡ x· is a multiplication with a real number (or
vector in 3 dimensions) and it commutes with the wave functions, therefore

x̂† = x̂

The position operator is self adjoint too.

c) the Hamiltonian

The Hamiltonian is a linear combination of the operators p̂2 = −~2 d2

dx2 and
V (x) = V (x)·. It is easy to prove that the product and sum of self-adjoint
operators is also a self-adjoint operator.

Because the operator of the potential is a multiplication with a function
it is self-adjoint, and p̂2 = p̂ p̂ is a product of the self-adjoint p̂ with itself, the
Hamiltonian is also self-adjoint:

Ĥ† = Ĥ

5.2 Measurement in quantum mechanics

In gaining information about any object in the world experimental physics characterizes
objects by observables, quantities which can be measured in a physical experiment. One
of the tasks of physics is to predict the result of such a measurement. We have already
seen that the possible energy levels of the system can be calculated using the station-
ary Schrödinger equation. These energy levels are the eigenvalues of the Schrödinger
equation. We also know that these energy levels correspond to stationary states of the
system, which are eigenstates of the Schrödinger equation and that those are the only
energy states we can observe.
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Important 5.2.1. For any operator Ô the equation

Ô ϕλ = λϕλ (5.2.1)

is called an eigenvalue equation, ϕλ is the eigenfunction for the eigenvalue λ.

The stationary Schrödinger equation is an eigenvalue problem of the Hamiltonian of
the system. Therefore the possible stationary states and energy values are the eigenstates
and eigenvalues of the Hamiltonian respectively. The eigenfunctions are orthogonal in
the sense that

〈ϕj |ϕk〉 = const · δjk
Any possible state of the system can be written as a linear combination of the possible
eigenfunctions of Ĥ. Because all observables are represented in quantum mechanics by
an operator, we can write separate eigenvalue equations to any of them.

Example 5.3. Determine the eigenfunctions and eigenvalues for the 3D momentum
operator! Solution

p̂ϕp(r) = pϕp(r)

~
i
∇ϕp(x, y, z) = pϕp(x, y, z)

~
i

(
∂, ϕp(x, y, z)

∂ x
,
∂, ϕp(x, y, z)

∂ y
,
∂ϕp(x, y, z)

∂ z
,

)
= (px, py, pz)ϕp(x, y, z)

ϕp(x, y, z) = ei(px x+py y+pz z)/~ = eip r/~

i.e. the eigenfunctions of the p̂ operator are plane waves with eigenvalues
corresponding to a continuous set of exact momenta. Because these functions
are not quadratically integrable, they can not describe any physical state of
the system separately. As we saw (Section 3.3) we must use wave packets
created as a linear combination of an infinite number of these eigenstates (⇒
Fourier transformation.) to describe a physical state.

If the eigenfunctions of an operator of an observable Ô are normalized, i.e. 〈ϕo |ϕo〉 = 1
then the eigenvalue can be determined by multiplying the

Ôϕo = λϕo
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eigenvalue equation from the left by ϕ∗o and integrating it for the whole space. In 1D8:

∞∫
−∞

ϕ∗o (Ô ϕo) dx =

∞∫
−∞

ϕ∗o λϕo = λ

∞∫
−∞

ϕ∗o ϕo dx = λ,

or

λ =

∞∫
−∞

ϕ∗o (Ô ϕo) dx (5.2.2)

According to the definition of the adjoint operator Ô†

∞∫
−∞

ϕ∗o (Ô ϕo) dx =

∞∫
−∞

(Ô† ϕo)
∗ ϕdx

∞∫
−∞

ϕ∗o (λϕo) dx =

∞∫
−∞

(λ† ϕo)
∗ ϕdx

λ

∞∫
−∞

ϕ∗o ϕo dx = λ†∗
∞∫

−∞

ϕ∗o ϕdx

λ = λ†∗

where λ† is the eigenvalue of the adjoint operator. Because an observable is a measurable
physical quantity and the result of all measurements should be real and not just complex,
λ is a real number. And the same must be true for λ†. This means that all eigenfunctions
and eigenvalues of the operator Ô of an observable are the same as those of its adjoint
Ô†, which means that:

Important 5.2.2. Operators of observables must be self-adjoint.

Let us suppose that ϕn is an eigenfunction of the 1D Hamiltonian Ĥ with the eigenvalue
En, where the n quantum number can go over all positive integer numbers:

Ĥ ϕn = En ϕn n = 1, 2, ... (5.2.3)

8In the shorthand notation

〈ϕo | Ô ϕo〉 = 〈ϕo |λϕo〉 = λ 〈ϕo |ϕo〉 = λ

λ = 〈ϕo | Ô ϕo〉
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Any possible wave functions of the system can be expressed as a linear combination of
eigenfunctions:

ϕ = C1 ϕ1 + C2 ϕ2 + ... =
∑
n=1

Cn ϕn (5.2.4)

where for normalized wave functions the sum of the absolute square of the Cn coefficients
must be 1: ∑

n

|Cn|2 = 1 (5.2.5)

Now apply the Hamiltonian to this wave function:

Ĥ ϕ = Ĥ
∑
n=1

Cn ϕn (5.2.6)

because the Ĥ operator is linear:

Ĥ ϕ = Ĥ
∑
n=1

Cn ϕn =
∑
n=1

Cn Ĥ ϕn =
∑
n=1

Cn En ϕn (5.2.7)

The state of the system after the measurement of its energy is one of the possible sta-
tionary states of the system and that the value we measure is one of the eigenvalues.
Calculate the probability that after the measurement we find that the energy of the
particle is Em and its wave function is ϕm? Multiply (5.2.7) with ϕ∗ and integrate for
the whole of space:

Pm =

∞∫
−∞

ϕ∗ (Ĥ ϕ) dx =

∞∫
−∞

ϕ∗ Ĥ ϕ dx =

=

∞∫
−∞

(∑
m=1

C∗m ϕm

)
Ĥ

(∑
n=1

Cn En ϕn

)
dx =

=
∑
n,m=1

C∗mCn En

 ∞∫
−∞

ϕ∗m ϕn dx


︸ ︷︷ ︸

=δnm

=

=
∑
n=1

C∗nCn En =
∑
n=1

|Cn|2 En (5.2.8)

We see that the |Cn|2 coefficients are the probabilities that after a measurement the wave
function will be the n-th eigenfunction of Ĥ and that the measured value is En. We may
generalize this result.
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Important 5.2.3. Let ϕ
(O)
n denote the set of eigenfunctions of an observable Ô. Any

state of the system can be written as a linear combination of these eigenfunctions. If the
state of the system before a measurement is :

|ϕ〉 =
∑
n

Cn ϕ
(O)
n

then as the result of a measurement it will reduce to one of the possible eigenfunctions for
that observable with a probability of |Cn|2. The measured value then is the corresponding
eigenvalue. It is impossible to tell exactly beforehand which one of these eigenvalues
will be measured. The expectation value (average) of the measured observable can be
calculated by

〈O〉 =
〈ϕ | Ô ϕ〉
〈ϕ |ϕ〉

=

∞∫
−∞

ϕ∗ (Ô ϕ) dx

∞∫
−∞

ϕ∗ ϕdx

(5.2.9)

Mathematically a measurement is represented by this formula.

As we discussed if the commutator of two observables is not 0 then there is an
uncertainty relation between the two observables. This means that the two observables
can not be measured simultaneously with arbitrary accuracy, therefore the two operator
can not have the same set of eigenfunctions9.

Important 5.2.4. Two observables can have the same set of eigenfunctions and both
can be measured with any accuracy (no uncertainty relation between them), if, and only
if their commutator is 0.

For instance the commutator of the Hamiltonian and the angular momentum in a 3D
centrally symmetric potential (e.g in the hydrogen atom) is 0 (see Chapter 6):

[Ĥ, L̂] = 0

therefore they have a joint system of eigenfunctions. The eigenfunction system of Ĥ
is said to be degenerate, because more than one diferent eigenfunctions have the same
energy, but a different angular momentum for the centrally symmetric potential. The
eigenfunctions of Ĥ and L̂ for a bound state are discreet and can be labeled by the index
of the corresponding eigenvalues of both operators, in this case with n for the energy
values, l for the maximum of the z-component of the angular momentum and m for the
actual z component. These are 3 quantum numbers (see Chapter 6):.

9Let Â and B̂ two observables with a non zero commutator: [Â, B̂] = Ĉ 6= 0. For any ϕ function
then [Â, B̂]ϕ = Ĉ ϕ which is never zero because the only operator that results in 0 when applied to any
function is the 0̂ operator. However if ϕ was an eigenfunction of both operators, with eigenvalues λA
and λB then [Â, B̂]ϕ = Â B̂ ϕ− B̂ Â ϕ = λB λA ϕ− λA λB ϕ = 0, which is a contradiction.

90



Chapter 6

Central potential. The hydrogen
atom.

An atom consists of a positively charged nucleus that restricts the motion of the neg-
atively charged electrons by the Coulomb force that is attractive and centrally (spher-
ically) symmetric. Therefore motion of particles in centrally symmetric potentials is
crucial understanding atoms.

6.1 Angular momentum.

Classically angular momentum is a conserved physical quantity for objects moving in cen-
trally symmetric potentials. Using the general principles introduced above we determine
the quantum mechanical operators for the three components of the angular momentum.
Starting from the classical formulas:

L = r× p

Lx = y pz − z py
Ly = z px − x pz
Lz = x py − y px

and substituting all quantities with the corresponding operators we get the quantum
mechanical operators for the components of the angular momentum:

L̂x = ŷ p̂z − ẑ p̂y =
~
i

(
y
d

d z
− z d

d y

)
L̂y = ẑ p̂x − x̂ p̂z =

~
i

(
z
d

d x
− x d

d z

)
L̂z = x̂ p̂y − ŷ p̂x =

~
i

(
x
d

d y
− y d

d x

)
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Example 6.1. Determine whether there exists an uncertainty formula for the different
components of the angular momentum operator. Solution An uncertainty formula
between two physical quantities exists only if their commutator is not 0. Let
us calculate [L̂x, L̂y]! This requires simple algebra and not higher mathematics.
We do not even have to know the concrete form of the operators, because
their commutators show exactly how their products can be rearranged.

[L̂x, L̂y] = L̂x L̂y − L̂y L̂x =

= (ŷ p̂z − ẑ p̂y) (ẑ p̂x − x̂ p̂z)− (ẑ p̂x − x̂ p̂z) (ŷ p̂z − ẑ p̂y) =

= ŷ p̂z ẑ p̂x
−−−−−−

− ŷ p̂z x̂ p̂z
======

− ẑ p̂y ẑ p̂x
∼∼∼∼

+ ẑ p̂y x̂ p̂z
++++++

−

−ẑ p̂x ŷ p̂z
−−−−−−

+ẑ p̂x ẑ p̂y
∼∼∼∼

+ x̂ p̂z ŷ p̂z
======

− x̂ p̂z ẑ p̂y
++++++

where the different “underlines” mark terms from which common factors may
be pulled out, because some or all of the operators in them commute and
therefore their order is not important. E.g. ŷ p̂z ẑ p̂x ≡ ŷ p̂x p̂z ẑ, because p̂x
commutes with all other operators in this term. But the order of ẑ and p̂z is
important as they do not commute.

[L̂x, L̂y] = (ŷ p̂x p̂z ẑ − ŷ p̂x z p̂z)
−−−−−−−−−−−−

+ (x̂ ŷ p̂z p̂z − x̂ ŷ p̂z p̂z)
============

+

(ẑ ẑ p̂y p̂x)− ẑ ẑ p̂y p̂x)
∼∼∼∼∼∼∼∼∼∼∼∼

(x̂ p̂y ẑ p̂z − x̂ p̂y p̂z ẑ)
++++++++++++

=

= ŷ p̂x (p̂z ẑ − ẑ p̂z) + 0 + 0 + x̂ p̂y (ẑ p̂z − p̂z ẑ) =

= (x̂ p̂y − ŷ p̂x) (ẑ p̂z − p̂z ẑ)

Because (x̂ p̂y − ŷ p̂x) = L̂z and (ẑ p̂z − p̂z ẑ) = [ẑ, p̂z] = i~

[L̂x, L̂y] = i ~ L̂z (6.1.1a)

Similar formulas could be derived for the commutator of any two components:

[L̂y, L̂z] = i ~ L̂x (6.1.1b)

[L̂z, L̂x] = i ~ L̂y (6.1.1c)

Because their commutator is not zero, the different components of the
angular momentum may not be determined with arbitrary accuracy simulta-
neously. There is an uncertainty relation between them.

This presents the most striking differences between the physics of the angular momentum
in classical and quantum mechanics:
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Important 6.1.1. In quantum mechanics the length of the angular momentum vector
is always larger than the maximum of any of its components and a non-zero angular
momentum (e.g. in an atom) does not necessarily imply the acceleration of particles.

Example 6.2. Determine the eigenvalues and eigenfunctions of L̂z! Solution This
problem is best dealt with in a spherical polar coordinate system. The form
of the L̂z operator in spherical polar coordinates is (see Appendix 22.9)

L̂z =
~
i

∂

∂ φ
(6.1.2)

In such a system the form of the eigenvalue equation of L̂z becomes

~
i

d ϕ

d φ
= λϕ ⇒ ϕ(φ) = C e

i
~ λφ,

where the C normalization constant is determined from the equation

2π∫
0

|ϕ(φ)|2 d φ = 1

2π∫
0

|C|2 d φ = 2π |C|2 = 1

C =
1√
2 π

and because ϕ is periodic in φ:

ϕ(φ+ 2 π) = ϕ(φ)

e
i
~ λ 2π = 1

λ

~
= m, where m is an integer, i.e.

λ = m ~, m = 0,±1,±2,±3, ...

i.e. the z component of the angular momentum is quantized, its value is an integer
multiple of ~ and it can only change in ~ increments.

It is easy to prove that the magnitude (or the square of the magnitude) of the angular
momentum however commute with any of its components, therefore with. L̂z too. Con-
sequently both L̂z and L̂2 can be measured simultaneously with any accuracy required.

The operator of L̂2 in spherical polar coordinates (see 22.9.7):

L̂2 =− ~2

[
+

1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂φ2

]
(6.1.3)
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The eigenfunctions of this equation are usually denoted by Y (θ, φ) and are called spherical
harmonics. The eigenvalue equation is:

L̂2 Y (θ, φ) = L2 Y (θ, φ) (6.1.4)

−~2

[
+

1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂φ2

]
Y m
` (θ, φ) = L2 Y m

` (θ, φ) (6.1.5)

where ` and m are two quantum numbers, ` equals to the maximum possible value of
Lz/~ and is an integer1 and m is

m = 0,±1,±2, ...± ` (6.1.6)

Y m
` (θ, φ) is called a spherical harmonic function of degree ` and order m.

Figure 6.1: Visual representation of the first few spherical harmonics. Red denotes
regions where Y m

` is positive, green where it is negative. ` is 0 at the top and increased
by one in every row below it.

The eigenvalue L2 in (6.1.4) is

L2 = ` (`+ 1)~2 (6.1.7)

This formula and (6.1.6) together state that the angle of the angular momentum with
the z-axis can only take discreet values.

1At least for the orbital angular momentum. We will discuss the spin momentum later in Section 6.3
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The formula for the calculation of the spherical harmonics is

Y m
` (θ, φ) =

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm
` (cos θ) eimφ (6.1.8)

where Pm
` (x) are the associated Legendre polynomials2.

6.2 The hydrogen atom.

Before the advent of quantum physics people imagined atoms as miniature solar systems
with the positively charged heavy nucleus in the center and negatively charged electrons
orbiting around it, bound by the electric Coulomb field of the nucleus. The simplest atom
in the Universe is the hydrogen atom. It only contains a positively charged proton as a
nucleus and a single negatively charged electron. The proton is 1836 times as heavy as the
electron, so according to the classical model the proton does not move perceptibly while
the electron is orbiting it3. Because an accelerating charge loses energy by radiation this
is not a classically consistent model. For a little generalization let us consider hydrogen
like ions, i.e. atoms with Z protons in their nucleus ionized until only a single electron
remains.

Example 6.3. After the discovery of de Broglie that electrons may have wave like prop-
erties the danish physicist Niels Bohr proposed a simple model for the hydrogen atoms
which we now call the Bohr model. He proposed that the electron will not emit radia-
tion if it moves on such (classical) circular orbits where the circumference is an integer
multiple of the wavelength of the electron (c.f. 3.1):

2 r π = nλe = n
h

p
, where n = 1, 2, ...

2Associated Legendre polinomials are the solution of the differential equation

(1− x2)y′′ − 2xy′ +
(
l(l + 1)− m2

1− x2
)
y = 0;

The first few associated Legendre polynomials are

P 0
0 (x) = 1, P 0

1 (x) = x, P 1
1 (x) = −

√
1− x2,

3We could get rid of this assumptions by using the reduced mass of this 2-body problem instead of
the electron mass me:

m =
memN

me +mN
,

where mN is the mass of the nucleus. For hydrogen m = 0.99945me.
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This is the same as the statement that the orbital angular momentum of the electron is
quantized, as with simple rearrangement

r p =
h

2π
n = n ~ (6.2.1)

and in our case the momentum vector is perpendicular to the radius vector, therefore
|L| = |r × p| = r p = rme v. This semiclassical result is different from (6.1.6) (not
known to Bohr at his time).

The electron is held in orbit by the Coulomb force, which provides the necessary
centripetal force:

1

4π εo

Z e2

r2
=
me v

2

r
. (6.2.2)

This gives the total energy of the hydrogen atom to be half of its potential energy

Etot =
1

2
me v

2 − 1

4 π εo

Z e2

r
= − 1

8π εo

Z e2

r
(6.2.3)

From (6.2.1) and (6.2.2)

n2 ~2

me

=
1

4π εo
Z e2 r therefore (6.2.4)

i.e. the electron can orbit only at discreet radii rn.

rn =
(4π εo) ~2

me Z e2
n2 (6.2.5)

The radius of the first orbit r1 in a hydrogen atom (Z = 1) is denoted by ao

ao =
4 π εo ~2

me e2
≈ 0.0529nm (6.2.6)

and is called the Bohr radius4. For a hydrogen like atom:

rn = ao
n2

Z

4Sometimes ao is written as

ao =
~

me c α
,

where c is the speed of light in vacuum and α is called the fine structure constant, introduced by Arnold
Sommerfeld in 1916, which is the coupling constant characterizing the strength of the electromagnetic
interaction. Being a dimensionless quantity, it has the same numerical value in all systems of units.

The current recommended value of α is 7.2973525698(24) · 10−3 = 1/137.035999074(44)
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The total energy then

Etot,n = − 1

4π εo

Z e2

2 rn
= −

[
(Z e2)2me

2 (4π εo)2~2

]
1

n2
, or (6.2.7)

Etot,n = − Z2

2 a2
ome

1

n2
= −RE

1

n2
, (6.2.8)

where RE ≈ 13.6 eV is called the Rydberg constant or the Rydberg unit of energy and
the index n denotes the n-th electron orbit.

In quantum mechanics to get the possible energy levels and wave functions of the electron
in the H atom we must solve the 3 dimensional time independent Schrödinger equation
(3.5.4) for the centrally symmetric Coulomb potential of the proton:

Ĥ ϕ(x, y, z) = E ϕ(x, y, z)

− ~2

2me

∇2 ϕ+ V ϕ = E ϕ

− ~2

2me

(
∂2 ϕ

∂ x2
+
∂2 ϕ

∂ y2
+
∂2 ϕ

∂ z2

)
+ V (x, y, z)ϕ(x, y, x) = E ϕ

where

V (x, y, z) = − 1

4 π εo

Z e2

r
(where r =

√
x2 + y2 + z2) (6.2.9)

Because this potential is spherically symmetric we will be better off if we write this
equation in spherical coordinates (see (5.1.19), or (22.9.6)):

Ĥ ϕ(r, θ, φ) = E ϕ(r, θ, φ)

− ~2

2me

[
1

r2

∂

∂r

(
r2∂ ϕ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ ϕ

∂θ

)
+

1

r2 sin2 θ

∂2 ϕ

∂φ2

]
+

+V (r)
e2

r
ϕ = E ϕ (6.2.10)

Note that the sum of the 2nd and 3rd terms in the square brackets is equal to 1
r2 L̂

2 ϕ,

and remember, the eigenfunctions and eigenvalues of L̂2 we already know. Therefore we
can separate the radial and angular dependence of ϕ. Let ϕ(r, θ, φ) = R(r)Y m

` (θ, φ),
where Y m

` (θ, φ) is a spherical harmonics, the eigenfunction of L̂2, with the eigenvalue
` (`+ 1) ~2. With this

− ~2

2me

[
d2R

d r2
Y m
` +

2

r

dR

d r
Y m
` +R

L̂2

~2 r2
Y m
`

]
+ V (r)

e2

r
R Y m

` = E RY m
` (6.2.11)
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Now multiply both sides with r2 and divide them with ϕ = RY m
` then reorder the terms

containing only the radial and only the angular part on the opposite sides of the equal
sign:

− ~2

2me

r2

R

[
d2R

d r2
+

2

r

dR

d r

]
+ V (r) e2 r − r2 E =

1

2me

1

Y m
`

L̂2 Y m
` (6.2.12)

Because Y m
` is the eigenfunction of L̂2 with the eigenvalue ` (`+1) ~2 the right hand side

becomes

~2

2me

` (`+ 1)

therefore the equation for the radial part of the wave function is

− ~2

2me

[
d2R

d r2
+

2

r

dR

d r
− ` (`+ 1)

r2
R

]
+ V (r)R− E R = 0 (6.2.13)

Note that this is “only”an ordinary second order differential equation, which nevertheless
contains the unknown eigenvalue E , i.e this is also an eigenvalue equation. A mathemat-
ical trick leads to a much simpler form. Let us introduce a new function u(r) with the

formula: R(r) =
u(r)

r
. After some easy mathematical steps we get:

− ~2

2me

d2 u(r)

d r2
+

[
V (r) +

~2 ` (`+ 1)

2me r2

]
u(r) = E u(r) (6.2.14)

which is a 1D Schrödinger equation with the effective potential

Veff (r) = V (r) +
~2 ` (`+ 1)

2me r2
=

~2 ` (`+ 1)

me r2
− 1

4π εo

Z e2

r

The non-Coulomb part of this is sometimes called the centrifugal potential This potential

is repulsive. The resulting effective potential have a minimum where
∂ Veff
∂ r

= 0.

rmin =
4π εo ~2 ` (`+ 1)

me Z e2
=

1

Z
ao ` (`+ 1)) for l > 0 (6.2.15)

(where ao is defined in (6.2.6)).
Even after such simplifications this equation is hard to solve and we will not attempt

to do it here. For our purposes it is sufficient to show the eigenvalues and eigenfunctions.
The eigenfunctions can be characterized by 2 quantum numbers : a positive integer

n = 1, 2, ..., which determines the energy and ` which describes what spherical harmonics
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Figure 6.2: Radial and angular parts of the full wave functions and the total wave
function for the first three energy level in a hydrogen atom (Z=1).

belong to this function5. In Fig. 6.2 we summarized the different wave functions for the
first three energy levels (n = 1, 2 and 3) in a hydrogen atom.

5The form of the radial part is

Rn,`(r) =

√(
2Z

nao

)3
(n− `− 1)!

2n(n+ `)!
e−Zr/nao

(
2Zr

nao

)`
L2`+1
n−`−1

(
2Zr

nao

)
, (6.2.16)

where L
(k)
n are the generalized (or associated) Laguerre polynomials. These can be defined as:

L(k)
n =

ex x−k

n !

dn

d xn
(
e−x xn+k

)
(6.2.17)

The first few generalized Laguerre polynomials are

L
(k)
0 (x) = 1 (6.2.18)

L
(k)
1 (x) = −x+ k + 1 (6.2.19)

L
(k)
2 (x) =

x2

2
− (k + 2)x+

(k + 2)(k + 1)

2
(6.2.20)

L
(k)
3 (x) =

−x3

6
+

(k + 3)x2

2
− (k + 2)(k + 3)x

2
+

(k + 1)(k + 2)(k + 3)

6
(6.2.21)
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In quantum mechanics the classical notion of a trajectory or orbit does not apply6.
What quantum mechanics have instead is called an atomic orbital in an atom and molec-
ular orbital in a molecule.

Important 6.2.1. An atomic or molecular orbital is a one electron wave function in an
atom or a molecule respectively.

If an atom has more than one electron than both the Hamiltonian and its eigenfunctions
contain the coordinates of all electrons. In this case the eigenfunctions are usually written
as a linear combination of atomic orbitals.

Fig. 6.3 shows the radial part of the wave function for n = 1, 2 and 3.

Using the correct quantum mechanical calculation for a hydrogen like ion gives exactly
the same energy levels as the Bohr model:

En = −
[

(Z e2)2me

2 (4π εo)2~2

]
1

n2
(6.2.22)

But, in contrast with the Bohr model, in the ground state the angular momentum of the
electron is 0, the electron is not orbiting the nucleus! Similar states exist for at every n,
because ` can be 0. And even in cases where the total angular momentum is not zero
the electron does not move on classical orbits.

Important 6.2.2. The reason electrons in an atom or molecule do not emit electromag-
netic radiation (except when exited from one stationary state to an other one) is that they
do not move around the nucleus on classical orbits, therefore they do not accelerate in
their stationary states.

The solutions of the original 3D Schrödinger equation of the hydrogen atom are
characterized by 3 quantum numbers :

• the principal quantum number n = 1, 2, ..., that determines the energy level

• the (orbital) azimuthal (or angular momentum) quantum number ` = 0, 1, 2, ..., n−
1, which corresponds to the length of the angular momentum (sub-level or subshell),
and

• the magnetic quantum number m = ±1,±2, ...,±`, which determines the z-components
of the angular momentum7.

6When chemists talk about the “orbit” of an electron in atoms or molecules they usually refer to the
range in space where the electron can be found with an (arbitraryly chosen) 90% probability.

7There is a 4th quantum number, called spin which we will discuss later.
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Figure 6.3: Radial part Rn,` of the hydrogen wave function for the first three principal
quantum numbers
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Because all possible orbitals with the same principal quantum number have the same
energy most of the energy levels are degenerate.

For historical reasons the states with different ` values have single letter names8 as
well, as summarized in the following table.

` name
0 s
1 p
2 d
3 f
...

...

Table 6.1: Names for the different angular momentum states

The expressions 1s2 2s1 2p5, ... etc denotes the orbitals or electron shells where the
number before the letter is the value of n, the letter determines the subshell (the value of
`) and the “exponent” is the number of electrons occupying that subshell in the ground
state of the atom. The electron structure of an atom is then written as a series of these
expressions. E.g. hydrogen has an electron structure of 1s1, helium with 2 electrons is
1s2 and argon with 10 electrons is 1s2 2s2 2p6.

As you can see the radial part of the ground state (the lowest energy) wave function

R1,0 = 2

(
Z

ao

)3/2

e−Z r/ao (6.2.23)

neither have a minimum nor a maximum around ao/Z. The corresponding Y 0
0 (θ, φ) =

1

2
√
π

is constant. So not only R1,0 does not have a minimum, but neither have

ϕ1,0,0 = R1,0Y
(0)

0 . So what does the Bohr-radius ao correspond to?

The probability that the electron is found in a dr range around the distance r from
the nucleus is

Pn`m(r) d r =

∫
angular part

Pn`m(r) dV

8Letters are abbreviations for “sharp”, “principal”,”diffuse” and “fundamental”. These are historical
names used for the spectroscopic lines.
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where dV ≡ d3r = r2 sin θ dφ dθ dr:

Pn`m(r) d r =

 2π∫
0

π/2∫
−π/2

Pn`m(r, θφ) r2 sin θ dφ dθ

 dr =

=

 2π∫
0

π/2∫
−π/2

|ϕn`m(r)|2 r2 sin θ dφ dθ

 dr =

= |Rn`m(r)|2 r2 dr ·
2π∫
0

π/2∫
−π/2

|Y (m)
` |2 sin θ dφ dθ

For the state with ` = 0 (therefore m = 0 as well) this gives

Pn`m(r, d r) dr = |Rn`m(r)|2 r2 dr

2π∫
0

π/2∫
−π/2

1

4π
sin θ dφ dθ =

= |Rn`m(r)|2 r2 dr,

since the integral equals to
1

4 π
4π = 1. This, however has a maximum. For the ground

state of a hydrogen like ion, substituting P1,0,0:

P1,0,0 = r2

∣∣∣∣∣2
(
Z

ao

)3/2

e−Z r/ao

∣∣∣∣∣
2

=
4Z3

a3
o

r2 e−2Z r/ao

The probability may have an extremum where dP1,0,0/d r = 0

dP1,0,0

d r
=

4Z3

a3
o

[
2 r − 2Z

ao
r2

]
e−2Z r/ao = 0,

which can only be zero if the expression in the square brackets are zero.

2 r − 2Z r2

ao
= 0 ⇒ 1− Z

ao
r = 0 ⇒ r =

ao
Z
,

i.e. the maximum of the radial probability for an electron in the ground state of a
hydrogen like ion is at a distance rmax probab = ao/Z. For hydrogen rmax probab = ao.

In Fig. 6.4 we depicted the spatial probability as a function of the distance for the 5
lowest orbitals.
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Figure 6.4: Radial probability functions in a hydrogen atom.

6.3 Electron spin

Before going into detailed quantum mechanical description of the hydrogen spectrum let
us take a little detour to discuss the problem of the spin, especially the electron spin, the
inherent internal angular momentum of the electron.

In 1922 two German physicists, Otto Stern and Walther Gerlach, performed an ex-
periment to explain the doublets (see below) observed in atomic spectra, which lead
to the discovery of a strictly quantum mechanical phenomena, something that has no
counterpart in classical physics at all.

In the experiment illustrated in Fig. 6.5 a beam of neutral silver atoms is shot into
a region of strong inhomogeneous magnetic field.

The electronic structure of silver is similar to that of H in that, that out of its 47
electrons 46 are “compensated” (their resulting angular momenta is 0, see section 6.7),
one 5s1 electron is on an s orbit with zero angular momentum (` = 0). However ac-
cording to classical physics (and the Bohr model) the 5s1 electron orbits around the
nucleus, therefore even when the momentum of all other electrons are “compensated” the
angular momentum of the outermost electron is not. In general when a charged parti-
cle, like the electron, has non-zero angular momentum it possesses a magnetic moment
as well, therefore according to classical physics the silver atom must have a non-zero
angular momentum, while quantum mechanics predicts that it does not have one. In
the inhomogeneous magnetic field a beam of silver atoms (magnetic dipoles) is deflected,
depending on the orientation of the magnetic moment. If the orientation of the magnetic
moments are random and continuous (not discreet) the deflected particles will create a
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Figure 6.5: Schematics of the Stern-Gerlach experiment. Both the classical physical
prediction and the observed behavior is shown.

continuous band on the screen.
Quantum mechanically no deflection is expected, resulting in a single spot on the

screen.
However Stern and Gerlach observed two spots on the screen corresponding to 2

discreet deflection angles. But this means that for the Ag atom

2`+ 1 = 2 ⇒ ` =
1

2

Lelectron = `electron ~ = s ~ =
~
2

This magnetic moment and angular momentum must belong to the electron because
the total orbital angular momentum of the silver atoms is zero. This self angular momen-
tum vector of the electron is called electron spin9 and denoted by S. The corresponding

spin operator is Ŝ and the eigenvalues of its z component are s ~, where s = ±1

2
. Not

just the electron, but all other particles have spins (which can be of different discreet
values including 0).

Important 6.3.1. Elementary particles possess an internal angular momentum called
spin, which has no classical physical equivalent. Particles whose spin angular momentum

is an odd multiple of
1

2
~ (e.g. s =

1

2
,
3

2
, etc) are called half-integer spin particles. Other

9If we had tried to explain the spin of an electron as a rotation of the particle, then the linear velocity
of the circumference of the electron would exceed the speed of light in vacuum. The spin has no classical
physical equivalent.
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particles are called integer spin particles. Electrons are half-integer spin particles with a
spin of s = 1/2, photons are integer spin particles with a spin of s = 1.

The magnetic moments µL and µS associated with the orbital and spin angular momen-
tum L and S respectively are multiples of

µB :=
e ~

2me

(6.3.1)

the Bohr-magneton:

µL = −gL
µB
~

L, or (6.3.2a)

µS = −gS
µB
~

S where gS ≡ −ge, (6.3.2b)

g is called the gyromagnetic factor (or g-factor for short). The orbital g-factor, gL is
exactly 1. The electron g-factor, ge is less than zero (gS = −ge = |ge|) and is about −2.
The z-component of the magnetic moments are then

µ(L)
z = −gL µBm`, (6.3.3)

µ(S)
z = −gS µBms, where ms = ±1

2
(6.3.4)

The electron g-factor ge ≈ 2 is one of the most precisely measured values in physics with
its uncertainty beginning at the twelfth decimal place10.

The magnitude of the spin vector cannot be measured, it can only be calculated from
the formula

|S| =
√
s (s+ 1) ~ =

√
3

2
~ (6.3.5)

where s is the maximum of the z-component of the spin in ~ units.
The spin operator Ŝ has very similar properties to the angular momentum operator.

For instance it has a similar commutator between its elements (see:(6.1.1))

[Ŝj, Ŝk] = εjknŜn. (6.3.6)

The eigenvalue equations for the electron spin are analogous to the ones for the orbital
angular momentum:

Ŝ2 χms =
3

4
~2 χms (6.3.7)

Ŝz χms = ms, χms (6.3.8)

But unlike orbital angular momentum the χ eigenfunctions are not spherical harmonics,
as there is no angle dependence in Ŝ.

10Its value is ge = −2.0023193043622. This accuracy is surpassed by the Rydberg constant whose
value is measured with 13 decimal digits accuracy

106



Important 6.3.2. If we measure the spin along any direction in space we can still only

get the values
1

2
~ and −1

2
~, but calculations are simplest if we select the z-axis.

Instead of writing fully the z-component of the spin, usually the ~ is omitted and simply

the ms quantum number is used. The state where ms =
1

2
is called the up, the ms = −1

2
the down state. The ↑ and ↓ symbols are also used for these.

The complete wave function of the electron describing stationary states in a hydrogen
atom then is written using 4 quantum numbers as

ϕn,`,m,ms(r, θ, φ) = R(r)m` Y
m
` (θ, φ)χms (6.3.9)

There is a third g-factor gJ in an atom which connects the total angular momentum
(J ≡ L + S ) of the electron with its total magnetic moment. It is called the Landé
g-factor and its formula is:

µ = −gJ
µB
~

J (6.3.10)

6.3.1 Addition of angular momenta

How can we calculate the possible values for the sum of two or more total angular
momenta? Let

J = J(1) + J(2)

where J(1) and J(2) can be any combination of orbital and spin momenta. Then the
z-component of J is

Jz = J (1)
z + J (2)

z (6.3.11)

Because the z-component of J(1) can only assume (2 j(1) + 1) different discreet values
between −j(1) and +j(1) and similar formulas are true for j(2) and j, to determine all
possible values of Jz we must add together all possible values of J

(1)
z and J

(2)
z . J

(1)
z

can vary from −(j(1) + j(2)) to +(j(1) + j(2)) by steps of 1, so j,the maximum of the z
component (a positive number) must be between the values |j(1)− j(2)|, for anti-parallel,
and (j(1) + j(2)), for parallel J (1) and J (2) momenta. As an example in Table 6.2 we
summarized the result for

J(1) ≡ L, and (6.3.12)

J(2) ≡ S (6.3.13)

In this case
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` 0 1 2 3
j 1

2
1
2

3
2

3
2

5
2

5
2

7
2

s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2

Table 6.2: Possible values for an atomic angular momentum. The third row contains the
name of the given state.

j =

{
`± 1/2 ` > 0

1/2 ` = 0

Please note that for ` = 0 there is no “parallel” direction, therefore only s = 1/2 is
possible.

6.4 Quantum mechanical analysis of the spectrum of

the H atom. Spin-orbit coupling.

As we saw in Section 2.1 we can measure with a spectrometer the spectrum of absorption
and emission of electromagnetic radiation that correspond to the transitions (according
to Chapter 4) between stationary states characterized by the quantum numbers. Both
the Bohr model and quantum mechanics gives the same formula for the energy of the
stationary states. But the Bohr model needs special additional condition to ensure that
electrons in stationary states do not emit electromagnetic radiation, while this condition
is fulfilled automatically in quantum mechanics.

In the previous sections we learned that electron states are degenerate11. Without
the spin there is one possible state for n = 1, the 1s state ϕ1,0,0. There are 4 possible
degenerate states for n = 2: one 2s state ϕ2,0,0 and three 2p states: ϕ2,1,−1, ϕ2,1,0 and
ϕ2,1,1. The angular part of the wave function for the first 3 values of ` is in Fig. 6.6. The

surfaces correspond to Y
(m)
` = const.

Because for a given n there are n different values for ` (` = 0, ..., n− 1) and for every
` we have 2 ` + 1 states for m (m = −`, ..., 0, ..., `) the total number of possible states
(without the spin) is

N =
n−1∑
`=0

(2 `+ 1) = n+ 2
(n− 1)n

2
= n2 (6.4.1)

If we take the spin into account too the number of the states must be multiplied by

11All hydrogen states, including the ϕ100 state are degenerate when we take the spin quantum number
into consideration.
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Figure 6.6: Angular part of the hydrogen wave function for the first 3 angular momenta
(s,p and d orbitals)
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2, which means that on the n-th shell there are 2n2 stationary states for electrons with
different quantum numbers.

Electrons may emit radiation only when they move from one state to the other. In
hydrogen the law of energy conservation states that during a transition from the state
with principal quantum number n to a state with principal quantum number m < n the
electron emits a photon with energy equal to the energy difference of these two states:

h ν = En − Em = RE

(
1

m2
− 1

n2

)
(6.4.2)

This is called the Rydberg formula. The hydrogen spectrum is non-continuous it fea-
tures separate lines (non-zero intensities at discreet wavelengths Fig. 6.8). Each line
corresponds to a possible transition.

Figure 6.7: The first 4 energy levels of hydrogen and the possible transitions determined
by the selection rule ∆ ` = ±1. A single photon is emitted or absorbed in any possible
transition.

In Fig. 6.7 the lowest lying 4 energy levels of the hydrogen atom are shown together
with the possible transitions. There exists a selection rule that states the angular mo-
mentum difference between the original and resulting states must be12 ∆ ` = ±1 (i.e.
∆L = ±~ ). The emission spectrum lines of hydrogen are classified in 6 series depending

12This condition corresponds to the law of the conservation of angular momentum, because the spin
of the photon is 1.
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on the principal quantum number of the state the emissive transition ends. The series
of spectrum lines in the visible and in the ultraviolet part of the spectrum where the
transition ends at the m = 2 level is called the Balmer series. Table 6.3 shows the data
of the Balmer series13.

Trans. 3→ 2 4→ 2 5→ 2 6→ 2 7→ 2 8→ 2 9→ 2 ∞→ 2
Name H − α H − β H − γ H − δ H − ε H − ζ H − η
λ (nm) 656.3 486.1 434.1 410.2 397.0 388.9 383.5 364.6
Color Red Cyan Blue Violet UV UV UV UV

Table 6.3: Some lines of the Balmer series

In Fig. 6.8 the measured hydrogen spectrum lines are shown.

Figure 6.8: Measured hydrogen spectrum.

6.5 Spin-orbit coupling

Table 6.2 confirms what we had already discussed: the spin momentum of an electron for
` > 0 can have two orientations relative to the orbital angular momentum: j = `± 1/2.

Important 6.5.1. There is an associated magnetic moment for both the spin and the
orbital angular momentum, proportional with them. Because magnetic moments interact,
there is a small interaction energy between these two moments which then depends on

13The Lyman series corresponds to transitions from the n-th level to the ground level (m = 1) and
lies in the ultraviolet range. The Paschen (or Bohr) series are in the infrared band with m = 3, The
Bracket, Pfund and Humpfreys serieses correspond to m = 4, 5, 6 respectively
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the product of µL and µS, which, in turn are proportional to S and L respectively:

ESL = aS L (6.5.1)

This is called spin-orbit coupling or spin-orbit interaction.

Depending on the relative orientation of S and L the interaction energy ESL (j = `±1/2),
is either positive or negative. This interaction energy should be added to the En energy
level to get the actual energy, i.e.

E ′n = En + ESL

Spin-orbit coupling leads to a splitting of every, but the s levels into two close lying
levels. The split will materialize as a split of the spectral lines into two close lying
doublets. For instance sodium has 2 yellow (or D) lines with wavelenghts of 589.0nm
and 589.6nm14, which is a 0.002 eV split.

Figure 6.9: The first 4 energy levels of hydrogen and the possible transitions in the
presence of spin-orbit coupling. The dashed lines correspond to ∆ j = 0 and has a low
probability, therefore most transition appears as a doublet. The splitting indicated is
not to scale (magnified).

14The study of these doublets led to the discovery of the electron spin, which only have two different
orientations.
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Spin-orbit coupling modifies the possible transitions depicted in Fig. 6.7, because
of the creation of doublets. The selection rules that include spin-orbit interaction for
hydrogen will become the following:

∆ ` = ±1, ∆ j = 0,±1 and ∆m = 0,±1 (6.5.2)

From these the ∆ j = 0 has a low probability, because it requires ∆ ` = ±1 together with
∆ s = ∓1. Fig. 6.9 shows the possible transitions. As you see all lines with ` > 0 in Fig
6.7 are split into doublets.

We may think that states 2s1/2 2p1/2 should have the same energy. However this is not
the case. The small difference, caused by the interaction of the electron with the so called
vacuum fluctuations, called the Lamb shift The deviation from the theoretical spectrum
caused by the electron spin and relativistic corrections is very small so it appears as the
fine structure of the spectrum.

6.6 The structure of atoms

Atoms consist of a nucleus containing Z protons (Z is the atomic number) and A − Z
neutrons, where A is the atomic mass number (a.k.a as mass number or nucleon number)
and the electron cloud of Z electrons surrounding it. Atoms with the same number of
protons but a different number of neutrons in their nucleus are called isotopes. The name
“electron cloud” is used to emphasize that electrons are not classical particles.

The electrons can occupy states corresponding to the eigenfunctions in a centrally
symmetric potential. The states with the same energy are called together as shells. The
electrons do not all occupy the lowest energy shells for reasons we will discuss shortly,
but are forced to fill in the shells in a strict order.

The electrons on the highest energy (“outermost”) shells determines the chemical
properties of the atom.

The Schrödinger equation of the electrons of an atom contains the attractive Coulomb
potential between electrons and the nucleus and the repulsive Coulomb potential between
the electrons. The wave function of the electrons in the atom therefore must contain the
coordinates of all electrons: ϕ(r1, r2, ...). This is a very complicated system, whose
eigenvalue equation cannot be solved analytically.

6.7 He atom. Independent particle model. Pauli

exclusion principle.

Hydrogen is the lightest element and also the most abundant element in the observable
Universe. The next lightest and most abundant element is helium, discovered in 1868 in
the spectrum of the Sun. It is about 24 % of the total elemental mass of the Universe,
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which is more than 12 times the mass of all the heavier elements combined, but it is a
relatively rare element on Earth (5.2 10−4 % by volume). It is also the element with the
second simplest structure as it consists of only two protons, one or two neutrons15 and
two electrons. Although the Schrödinger equation for helium cannot be solved exactly
the approximation methods we use here can give solutions in perfect agreement with
experimental results. The Hamiltonian of helium (Z = 2) is

Ĥ = − ~2

2me

∇1 −
~2

2me

∇2 +
2 e2

4πεo

(
− 1

r1

− 1

r2

)
+

1

4πεo

e2

|r1 − r2|
(6.7.1)

where the third term containing the bracket is the potential energy of the electrons in the
field of the nucleus while the last term is the interaction energy between the electrons.
The wave function of this system of two electrons ϕ(r1, r2) depends on the r1 and r2

position vectors (coordinates) of both electrons, and

∇j =

(
∂

∂ xj
,
∂

∂ yj
,
∂

∂ zj

)
j = 1, 2

This is a very complicated equation that cannot be solved analytically, therefore we
will use a two step approach. First we will neglect the electron-electron interaction term
and consider the electrons independent of each other. Then we will use perturbation
calculus and take this term into account as a shielding of the field of the nucleus.

6.7.1 Independent particle model

If the two electrons are independent then the total wave function of the system can be
written as the product of two atomic wave functions:

ϕ(r1, r2) = ϕ1(r1)ϕ2(r2) (6.7.2)

The energy is then also written as the sum of two energies: E = E1 + E2. Substituting
these into the eigenvalue equation, dividing both sides with ϕ and reordering the terms
gives:(

− ~2

2me ϕ1

∇1 ϕ1 −
2 e2

4πεo r1

− E1

)
+

(
− ~2

2me ϕ2

∇2 ϕ2 −
2 e2

4πεo r2

− E2

)
= 0 (6.7.3)

15The two isotopes of He on Earth are 3He - 0.000137% and 4He - 99.999863%
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Both brackets contain the Schrödinger equation for a single electron in a hydrogen like
atom as expected, therefore

ϕ1 ≡ ϕn`ms

ϕ2 ≡ ϕn′`′m′s′

E1,n = E2,n = 22 ∗ Ehydrogenn =
−4 ∗ 13.6 eV

n2
=
−54.4 eV

n2

E = −108.8 eV
1

n2

The measured ground state (n=1) energy however is −79 eV and not −108.8 eV ! So the
independent electron model is not good enough.

6.7.2 Shielding potential

In this approximation the effect of the electron–electron interaction energy is considered
a perturbation. However the normal perturbation theory cannot be applied here, because
this is not a small perturbation as it must add +29.8 eV to the total energy. What we can
do is to average the effect of the other electron on the one we examine by approximating
it with a central averaged potential, which partially shields the charge of the nucleus
from the electron. Supposing the shielding decreases the charge acting on the selected
electron by Zsh the value of this shielding factor can be calculated from the required
total ground state energy of −79 eV :

−79 eV = 2 (Z − Zsh)2 Ehydrogen1 = 2 (2− Zsh)2 (−13.6 eV )

Zsh = 0.32

6.7.3 The Pauli exclusion principle

If we try to write the two complete wave function of the system as the product of
two single electron wave functions as in (6.7.2) we run into a problem. The two wave
functions may not describe the same single electron state (ϕ1(r1) 6= ϕ2(r2)), therefore
we must determine which electron is in which state.

So the question arises: can we distinguish between the two electrons, can we identify
them?

Example 6.4. Please note that we did not ask how we would do this, we asked whether it
is possible at all. This is a very subtle difference, which has an enormous effect. A simple
thought experiment may illustrate it. Let us consider a box which contains two objects.
These objects (e.g. gas molecules, electrons) can move around in the box randomly. Let
us further suppose that we are unable to distinguish between these objects. Divide the
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box into two equal partitions. Now determine the probability of finding one object in each
partition!

Refer to the two partitions of the box as “left” and “right” respectively. If we assume
the objects are distinguishable – in principle, (but maybe not in practice) – then we can
label them, let us say with A and B. There are 4 different possibilities of the distribution
of the objects in the boxes, each with the same probability as seen in the next figure:

Therefore the probability of one object in both partitions is 1/4 + 1/4 = 1/2. So if we
measure this probability as 1/2, we can conclude that the objects in the box are, in fact
distinguishable.

Now let the object be indistinguishable even in principle. In this case we cannot label
the objects and the following figure shows the different possibilities.

Therefore the probability of one object in both partitions is 1/3. So if the measured
probability is 1/3, we can conclude that the objects in the box we cannot distinguish are,
in fact indistinguishable.

Important 6.7.1. Experiments show that electrons are indistinguishable objects in re-
gions where their wave functions overlap.

This means that we can distinguish between two electrons when they are e.g. in two
separate free atoms, but we cannot distinguish between electrons of the same atom.
This we can take into account by writing the wave function as a linear combination of
all possible ordering of the one-electron wave functions

ϕ(r1, r2)± =
1√
2

(ϕ1(r1)ϕ2(r2)± ϕ1(r2)ϕ2(r1)) (6.7.4)

where the 1/
√

2 factor is the normalization constant. We can only measure the absolute
square of the wave function and for both signs it is the same

|ϕ+(r1, r2)|2 = |ϕ−(r2, r1)|2 (6.7.5)
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The combination ϕ+ is a symmetric function for the exchange of the coordinates of the
two electrons

ϕ+(r1, r2) = ϕ+(r2, r1),

while

ϕ−(r1, r2) = −ϕ−(r2, r1)

is antisymmetric. It is easy to see from (6.7.4) that the antisymmetric wave function is
ϕ− ≈ 0, when the two electrons are in the same atom and described by the same n, `,m
quantum numbers and r1 ≈ r2. This means that the probability density of two electron
atoms with antisymmetric (spatial) wave functions is higher when the two electrons with
the same quantum numbers are apart from each other, i.e. this is the preferred state.
If the electrons are further apart the effective shielding of the nucleus will be smaller,
the other electron will bound to the nucleus tighter with lower energy. For symmetric
(spatial) wave functions no such restriction apply. Therefore the energy of the electrons
with antisymmetric wave functions is smaller then that for symmetric wave functions.
(Note that these energy levels can be measured spectroscopically.)

The complete wave function of the electron in an atom however includes the spin as
well. The spin of the two electrons can be parallel (s = s1 + s2 = 1) or anti-parallel
(s = s1− s2 = 0). In the first case the z-component can be ms = −1, 0, 1, which is called
a triplet and has symmetric spin functions, while in the second case ms = 0, which is a
singlet that is an anti-symmetric spin function. If the function for “up” spin of the first
electron is χ1,↑and for “down” spin is χ1,↓ and for the second the index 2 is used then the
complete spin function can be one of the following combinations

χs =


χ1,↑χ2,↑

1√
2

(χ1,↑ χ2,↓ + χ1,↓ χ2,↑) triplet

χ1,↓χ2,↓

χa =
1√
2

(χ1,↑ χ2,↓ − χ1,↓χ2,↑) singlet

The complete wave function also can be symmetric or antisymmetric:

ϕs(r1, r2) =

{
ϕ+(r1, r2)χs

ϕ−(r1, r2)χa
(6.7.6)

ϕa(r1, r2) =

{
ϕ+(r1, r2)χa

ϕ−(r1, r2)χs
(6.7.7)

Spectroscopic measurements show that the symmetric spatial ϕ+ state is always a sin-
glet, which requires the antisymmetric spin function χa, while ϕ+ is always a triplet, i.e.
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it must have the symmetric spin function χs.

It follows the complete electron wave function must always be antisymmetric.

This principle is true not only in an atom and not only for electrons, but for any
systems consisting of the same half-integer spin particles (e.g. electrons, protons or
neutrons).

Important 6.7.2. The complete wave function, which includes the spin, of a system of
any half-integer spin particles must be antisymmetric for the exchange of the coordinates
of any two particles.

This is called the Pauli exclusion principle or simply the exclusion principle.

The name exclusion principle emphasizes the consequence of the antisymmetric nature
of the complete wave function, – and not only in an atom – namely that no two electrons
can be in the same state, where all of their quantum numbers would be equal.

This is another, equivalent phrasing of the Pauli exclusion principle.

In an atom the exclusion principle says that no two electron wave functions may have
all of their four quantum number to be the same. But if we consider two non interacting
free atoms, than it is possible that they have electrons with the same n, `,m,ms quantum
numbers.

Important 6.7.3. The Pauli exclusion principle results in a strong repulsive force be-
tween electrons of a multi-electron system that does not allow them to occupy the same
state. This force is electrostatic in nature, therefore the exclusion principle does not
introduce any new kind of force.

The wave function of an N-electron system (e.g. a multi-electron atom) depends on
the quantum numbers and coordinates of all of the electrons. To make the equations
easier to read we denote a given combinations of the four quantum numbers n, `,m,ms

with a single letter and replace all arguments with a number, i.e.

{n, `,m} ⇒ a

{n′, `′,m′} ⇒ b

ϕa,b,...(r1, r2, . . . )⇒ ϕa,b,...(1, 2, . . . )

It is easy to see that with this notation the antisymmetric spatial wave function of a
two electron system can be written as a determinant:

1√
2

∣∣∣∣ϕa(1) ϕb(1)
ϕa(2) ϕb(2)

∣∣∣∣ =
1√
2

(ϕa(1)ϕb(2)− ϕa(2)ϕb(1)) (6.7.8)
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Similarly for N electrons (variables)

ϕabc... =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕa(1) ϕb(1) ϕc(1) · · ·
ϕa(2) ϕb(2) ϕc(2) · · ·
ϕa(3) ϕb(3) ϕc(3) · · ·

...
...

...
. . .

∣∣∣∣∣∣∣∣∣ (6.7.9)
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Chapter 7

Electron structure of atoms.

7.1 The periodic table of elements.

The periodic table of elements by the Russian scientist and inventor Dmitri Ivanovich
Mendeleev appeared in print in 1869. It contained all 63 elements known at that time
grouped by their chemical properties. He developed his table to illustrate periodic trends
in the properties of the then-known elements. What is more Mendeleev was able to predict
the properties of then unknown elements that would be expected to fill gaps in his table,
elements, most of which were discovered later with chemical properties predicted by him.
The table has been expanded and refined with the discovery of further new elements,
the ones after californium (atomic number 98) have only been synthesized in laboratory.
The last one (so far) is ununoctium with an atomic number of 1181. An example for the
periodicity is shown in Fig. 7.2. The ionization energy is the energy needed to remove
one electron2 from a neutral atom. The periodicity of the ionization energy suggests
that elements with similar ionization energies may have the same number of outermost
electrons.

The periodic table was constructed phenomenologically. Only after the discovery of
quantum mechanics and especially the Pauli exclusion principle became a physical ex-
planation available.

We have seen that atomic orbitals may be characterized by 4 quantum numbers

{n, `,m,ms}, where n = 1, 2, ..., ` = 0, 1, 2, ..., n − 1, m = −`, ..., 0, ...` and ms = ±1

2
.

For any ` (subshell) there are 2 ` + 1 possible m values, which when combined with the
spin produce X = 2 (2 `+ 1) different combinations of the quantum numbers for a given

1The number of possible elements are not known. There are different estimates for it. It is of some
interest that in the Bohr model atoms with atomic numbers above 137 would require the 1s electrons
to travel faster than the speed of light in vacuum.

2As we will see soon the outermost electron of the atom will be removed.
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Figure 7.1: Standard form of the periodic table. It can be deconstructed into four
rectangular box: the s-block - first two columns to the left, the p-block - columns 13-18
to the right, the d-block (columns 3 to 12) in the middle and the f-block - lanthanides and
actinides below the d-block. The rows are called periods, the columns are called groups.

Figure 7.2: Ionization energies of neutral elements. The names indicates the noble gases
in column 18th of the periodic table.
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principal quantum number n. According to the Pauli principle the maximum number
of electrons that can be put on this subshell (or in these states) for a given n is also
2 (2 `+ 1). The total number of electrons that can be in the same shell n is 2n2.

As we have already introduced in Section 6.2 the usual notation for a given atomic
electron configuration is a series of expressions n `X , where the “exponent” X is the
number of electrons occupying that subshell. For instance for hydrogen it is 1s1, for
helium this is 1 s2, for lithium 1s2 2s1 and for beryllium 1 s2 2 s2, etc. 3 as [He] 2 s2.
Similarly to the angular momentum (subshell) the shells themselves also have single
names of capital letters. n = 1 ⇒ K,n = 2 ⇒ L, n = 3 ⇒ M,n = 4 ⇒ N, etc.

7.2 Hund’s rules.

Let us see how the atoms of the elements are built up starting with hydrogen at Z = 1.
At any Z the electrons are added to the lowest energy state allowed by the exclusion
principle. When the maximum number of electrons that can be accommodated by a shell
(a given n) is reached the next new shell is used. As we saw with helium, electrons in the
inner shells partially shield the charge of the nucleus from the outer electrons, therefore
it is possible that a new shell is started before the shell below it is completely filled in.
Fig. 7.3 shows the build up of the first 10 elements4. 5

Important 7.2.1. Hund’s rule states the lowest energy atomic state is the one which
maximizes the sum of the S values for all of the electrons in the open subshell. The
orbitals of the subshell are each occupied singly with electrons of parallel spin before

3This can is also be abbreviated. The symbol in the square bracket is always the symbol of the noble
gas with electron structure corresponding to that of the inner shells of the element in question.

4The complete table of atomic configuration is in Appendix ??.
5 There are three general rules of thumb how to determine the term symbol (e.g. 2p1), called Hund’s

rules6, which are the following:

1. For a given electron configuration, the term with maximum multiplicity has the lowest energy.
The multiplicity is equal to 2S+ 1, where S is the total spin angular momentum for all electrons.
The term with lowest energy is also the term with maximum S.

2. For a given multiplicity, the term with the largest value of the orbital angular momentum number
L, has the lowest energy.

3. For a given term, in an atom with outermost subshell half-filled or less, the level with the lowest
value of the total angular momentum quantum number J lies lowest in energy. If the outermost
shell is more than half-filled, the level with the highest value of J , is lowest in energy.

From these the first one is the most important for chemistry and is often referred to as Hund’s rule.
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Figure 7.3: Buildup of the first 10 elements. The boxes represent the sub-shells, the
arrows the unpaired and paired electron spins. Note that selecting the up state for an
unpaired electron is just for the representation.

double occupation occurs7. If we have a look at Fig. 7.3 we see this rule in action. We
have already explained the physical explanation for this phenomena for helium: electrons
in singly occupied orbitals are less effectively shielded from the nucleus, so that such
orbitals contract and electron–nucleus attraction can be more intense.

Physical and chemical properties of atoms are determined by the electronic configu-
ration in the ground state and in the closely laying excited states.

Elements with completely filled shells (all of the electrons are paired) are the most
stable configurations They are called noble gases because their paired electrons are hard
to excite. Although beryllium also has only paired electrons like helium it is not a noble
gas as the L shell is not completely filled and only a small amount of energy is needed
to excite one of its 2s electrons to one of the empty states of the p subshell.

When there is only a single unpaired electron on the outermost subshell (e.g. in Li,
Na, K) it can easily be excited and this leads to metallic behavior.

7.3 Valence electrons

Total orbital and spin angular momenta of the closed shells are zero. The system of
electrons on inner, completely filled (closed) shells is called the core or kernel and its

7This is occasionally called the ”bus seat rule” since it is analogous to the behavior of bus passengers
who tend to occupy all double seats singly before double occupation occurs.
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electrons are called core electrons. It requires a lot of energy, so it is hard to excite core
electrons of the atoms. Electrons on the outermost partially filled shells feel the shielded
nuclear charge and they are more easy to excite. This means that only these outer shell
electrons take part in most interactions that involves the atom. These electrons are
responsible for chemical bonding too, for this reason they are called valence electrons.

As an example let us examine the electronic structure of the simplest single-valence
electron atom lithium. The electron configuration is 1 s2 2 s1, so the core is the two 1s
electrons and there is one valence electron. As the charge distribution (−e |r2R(r)|2) of

Figure 7.4: Radial charge distributions in lithium. The grayed area denotes the core
electrons. Notice how the valence (2s and 2p) electron distributions intersects the core.

the valence electron penetrates into the area of the core the effective nuclear charge that
acts on it will change. It will be +e when the valence electron is far out, as the nuclear
charge is shielded by the core electrons, and +3 e when it is deeply inside the kernel and
the shielding is virtually non-existent. The corresponding energy then is between that for
hydrogen and that for Li2+. But the penetration depends on the angular momentum too.
The smaller the angular momentum the larger the penetration: the s orbital penetrates
deeper than the p orbital. This would be true for other single valence electron atoms
too. So unlike to hydrogen like ions the energy of the single valence electron depends
not only on the principal quantum number n but also on the angular momentum as you
can see in Fig. 7.5

7.4 X-ray emission

As we said in the previous section core electrons are hard to excite. It requires a lot of
energy but it is not impossible. For instance when high velocity electrons, with energies
in the > 10 keV range, collide with a metal target they can kick out core electrons from
their shells. Either a higher energy core electron or an electron from an outer shell, or
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Figure 7.5: Lithium valence electron energy levels compared to hydrogen electron energy
levels.
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even a free electron may fall into the remaining core hole or vacancy, while emitting high
energy electromagnetic radiation, called X-rays (Röntgen rays)

X-rays have a wavelength in the range of 0.01 to 10 nanometers, corresponding to
frequencies in the range 3 1016Hz to 3 1019Hz and energies in the range 100 eV to
100 keV . They are shorter in wavelength than UV rays and longer than gamma rays8.
X-rays with photon energies above 5 − 10 keV (below 0.2 − 0.1nm wavelength), are
called hard X-rays, these are used in medical imaging and crystallography, while those
with lower energy are called soft X-rays as they are easily absorbed by air (but are also
used in mammography).

X-ray photons carry enough energy to ionize atoms and disrupt molecular bonds.
This makes X-rays a type of ionizing radiation and thereby harmful to living tissue. A
very high radiation dose over a short amount of time causes radiation sickness, while
lower doses can increase the risk of radiation-induced cancer. In medical imaging this
increased cancer risk is generally greatly outweighed by the benefits of the examination.

The spectrum of the emitted X-rays contains one or more sharp peaks, the character-
istic X-ray peaks, corresponding to the energy of the recombination of the electron with
the hole and a lower intensity continuous part emitted by the electrons deflected by the
electric field of the nucleus, called brehmstrahlung after the original German expression9.
If the energy of the colliding electrons is not high enough no characteristic peaks can be
observed as seen in Fig. 7.6.

The maximum energy of X-ray photons is determined by the energy of the colliding
electrons, therefore below a cutoff wavelength no radiation is produced as it is shown
in this figure10. The X-ray peak is labeled by the name of the shell where the hole is
generated plus a greek letter, the latter defines the source level. E.g. Kalpha x-rays are
produced when the hole is on the K shell (n=1) and the electron that fills this hole come
from the n=2 shell, Kbeta rays when the electron comes from the n=3 shell.

X-ray emission is not the only possible way to lose the excess energy. It may be
transferred to another electron of the atom which is then ejected from it. This process is
called the Auger process and the emitted electron is the Auger electron There is a material
science method called Auger Electron Spectroscopy or AES based on this effect.

The design and actual implementation of the most widely used type side-window

8The distinction between X-rays and gamma rays is not universal. One distinction may be based on
their origin: X-rays are emitted by electrons, while gamma rays are emitted by the atomic nucleus. The
one we use is based on an arbitrarily chosen wavelength limit of 10−11m, below which the radiation is
called gamma rays

9“Bremsen” means “to break” and “strahlung” means radiation.
10The formula for the cutoff wavelength is

λmin =
h c

e V
≈ 1239.8 · 10−9m

V in kV
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Figure 7.6: X-ray intensity vs wavelength function. Below a cutoff energy no X-ray peaks
are produced.

Figure 7.7: A typical side-window X-ray tube. Fig. a) schematics, Fig. b) photo of a
Coolidge X-ray tube from around 1917.
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X-ray vacuum tube can be seen in Fig. 7.7. Electrons created by a hot cathode “C” are
focused and accelerated toward the anode “A”, made out of tungsten or molybdenum, by
a high Ua voltage. Because both X-ray producing process is very inefficient (efficiency
is about 1%) most of the energy of the colliding electron heats the anode up. To ensure
proper operation the anode must be cooled by either a circulating coolant (e.g. water)
or by mechanical rotation. X-rays are emitted essentially perpendicular to the electron
current. The anode is angled at 1− 20o degrees off perpendicular to the electron current
allowing some of the generated X-rays to leave the tube through a special side window.
The power of such an X-ray tube is in the range of 0.1 to 18 kW11.

11X-rays may be generated by other processes, e.g. by synchrotron radiation, which is generated by
particle accelerators. Its unique features are X-ray outputs many orders of magnitude greater than those
of X-ray tubes.

128



Chapter 8

Molecules

8.1 H+
2 - The hydrogen molecule ion

The notion of a molecule was first accepted in chemistry because of Dalton’s laws of
“definite and multiple proportions” and Avogadro’s law. The word molecule means an
electrically neutral group of two or more atoms held together by chemical bonds. But
what does “chemical bond” mean in physics? This is the question we search the answer
for in this section.

Molecules are components of matter and are common in organic substances. However,
the majority of familiar solid substances on Earth, including most of the minerals that
make up the crust, mantle, and core of the Earth, while they contain many chemical
bonds, but are not made of identifiable molecules1.

The answer to our question is best answered by using an example of a molecular ion,
the hydrogen molecule ion or dihydrogen cation, H+

2 . It consists of two protons and one
electron. As this molecule has only one electron, understanding it is as fundamental in
the study of the chemical bonds as was the hydrogen atom for the structure of the atoms
of the periodic table of elements. The ion is commonly formed in molecular clouds in
space, and is important in the chemistry of the interstellar medium.

Fig. 8.1 shows the schematics of this ion. The figure obviously is only meant as a
base for the coordinate definitions and does not represent the real structure of the H+

2

ion. The wave function of the system will depend on the positions of all three particles,
therefore the Schrödinger equation of this system is

−~2

2

(
1

M
∇2
R1

+
1

M
∇2
R2

+
1

me

∇2
r

)
ϕ+ V (r1, r2, R)ϕ = E ϕ (8.1.1)

where ϕ(r1, R) is the complete wave function of the system, M and me are the proton and
electron mass respectively and the lower index of the ∇ operators denotes the variable

1As we will see in Chapter 11 most of the crystals are not made of molecules.
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Figure 8.1: Schematic representation of the H+
2 ion. The origin of the coordinate system

O is in the middle between the protons, the positions of protons are therefore R1 = −R/2
and R2 = R/2, and the electron coordinate vector is r. The proton-electron distances
are r1 and r2, where

the differentiation is respect to. The potential in this molecule is

V (r1, r2, R) =
e2

4π εo

(
− 1

r1

− 1

r2

+
1

R

)
(8.1.2)

(8.1.1) is a complicated equation which we will try to solve by separating the move-
ment of the electron and the protons based on their greatly different masses and assuming
the protons are the equilibrium distance of 0.106nm from each other. That is we dis-
regard the movement of the protons and solve the eigenvalue equation of the electron
only:

Ĥϕ(r) = E ϕ(r) where

Ĥ = − ~2

2m
∇2 + V (r1, r2, R).

To help understanding the H+
2 molecule ion it can be thought to be formed by a

combination of a neutral hydrogen atom and a single proton2: H +H+ ⇒ H+
2 .

• Imagine H and H+ are far apart. In this case the electron is localized at the H
atom. There are two equivalent configurations as the H atom may be the one that
contains either proton P1 or P2 and these are indistinguishable configurations. See
Fig 8.2. In this case the ground state the electron wave function will be the 1 s

function in hydrogen: ϕ1s =
1

√
π a

3/2
o

e−r/ao

2This is not the natural process of the formation of this dihydrogen ion though. It is formed in nature
when cosmic rays knock an electron off the hydrogen molecule leaving the cation behind. The ionization
energy of the H2 molecule is 15.603 eV .

130



Figure 8.2: Two equivalent configurations of the H +H+ system

• If we decrease the distance between the protons, the electron starts to feel the pull
of the free proton.

• When the molecule finally formed ϕ must reflect the symmetry of the molecule.
Because the molecule is symmetric to the midpoint between the two protons the
electron wave function must be either symmetric or antisymmetric. We can ap-
proximate the wave function as the linear combination of two atomic orbitals, one
centered on proton P1 ϕa(r1) and the other one centered on P2 ϕa(r2):

ϕ±(r) = C
[
ϕa(r1)± ϕa(r2)

]
, (8.1.3)

where the C complex number is the normalization constant. The wave functions
and the corresponding probability distributions are schematically shown in Fig. 8.3.

Figure 8.3: Possible wave functions and probability distributions in a H+
2 ion.
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The ϕ± are called molecular orbitals
Looking at the probability distributions we can guess that the even ϕ+ molecular

orbital will have the lower energy, because according to the |ϕ+|2 probability distribution
the electron can be found between the two protons with a high probability shielding the
protons from the Coulomb repulsion of the other, thereby decreasing the total energy. For
the odd combination this probability is much smaller, almost no shielding occurs and the
repulsion of the protons is higher. Knowing the wave function is a linear combination
of well known hydrogen atomic wave functions the total energy can be calculated by
evaluating the integral

E =

∫
(ϕ±)∗Ĥϕ± dV = |C|2

∫ [
ϕa(r1)± ϕa(r2)

]∗
Ĥ
[
ϕa(r1)± ϕa(r2)

]
dV

Here, and in the following dV ≡ d3 r1. The result will have the following form:

E = Ea +
e2

4π εo

1

R
− A±B

1± S
, (8.1.4)

where Ea is the atomic energy for either ϕa(r1) or ϕa(r2), the second term is the Coulomb
repulsion between the two protons. The symbols in the third term are:

A ≡ e2

4π εo

∫
|ϕa(r1)|2|

r2

dV =
e2

4 π εo

∫
|ϕa(r2)|2|

r1

dV

is the Coulomb attraction of the electron to the other proton.

B ≡ e2

4 π εo

∫
ϕ∗a(r1)ϕa(r2)

r1

dV =
e2

4π εo

∫
ϕ∗a(r2)ϕa(r1)

r2

dV

is a quantum mechanical term called the resonance integral, and

S ≡
∫
ϕa(r1)ϕa(r2)dV

is the quantum mechanical overlap integral.
By either calculating the energy minimum for ϕa = ϕb = ϕ1s the corresponding energy

- proton distance curve is shown in Fig 8.4 we can see that the green curve corresponding
to the positive sign in (8.1.4)has a minimum, while the red curve for the negative sign
does not. The first one is an attractive energy curve and leads to a formation of the
molecule therefore the corresponding ϕ+ molecular orbital is called bonding molecular
orbital. The other one is a repulsive energy curve, which has no minimum, therefore no
bonding is possible for the ϕ− wave function. It is therefore called anti-bonding molecular
orbital3

3Usually the symmetries of a given molecule are also denoted with the wave function. The ground
state of the H+

2 ion for instance is denoted with σg 1 s, while the first excited state with σu 2 p. The
suffixes g and u are from the German words gerade and ungerade (meaning even and odd) which denote
the symmetry under space inversion. Their use is standard practice for the designation of electronic
states of diatomic molecules.
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Figure 8.4: Energy of bonding (+) and anti-bonding (-) molecular orbitals as a function
of the proton-proton distance for the ground state of the H+

2 ion.

8.2 Diatomic homonuclear molecules. Molecular or-

bitals. Chemical bond.

After discussing the H+
2 ion let us examine the H2 molecule! Because both atoms in the

molecule are of the same element their bonding is called homonuclear. And because the
two nuclea determine a line in space the potential felt by the electrons is not centrally
symmetric, it only has one symmetry axis. As a result the orbital angular momentum L
is not conserved. Usually the line connecting the two nuclei is selected as the z axis with
an origin halfway between the protons. The cylindrical symmetry then means only the
Lz = ml ~ (ml = 0,±1,±2...) component is preserved. The energy of the state depends
only on the absolute value of ml denoted by λ. The first few values of λ = 0, 1, 2, 3... are

called σ, π, δ and φ states. Taking the s = ±1

2
spin quantum number into account the

possible number of electrons on these states are 2,4,4 and 4. respectively.
There are other homonuclear molecules such as N2 or O2. The potential in all of them

has cylindrical symmetry, which leads to wave functions, which also have cylindrical
symmetry. Their symmetries are distinguished by their u -odd and g -even indices:
σg, σu, πg, πu etc. To understand how the chemical bond forms in this case we use an
argument similar to the one followed for the H+

2 ion: we imagine the two atoms far
apart with wave functions ψ1 and ψ2 (orbitals) for the two electrons, and try to write up
the wave function when the atoms get very close. The angular distribution of molecular
orbitals formed from atomic orbitals are shown in Fig. 8.7, while the corresponding energy
levels are in Fig. 8.5.

The electronic configuration of the H2 molecule is still simple enough to analyze
without actually solving the Schrödinger equation. The total electric potential of the
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Figure 8.5: Energy levels before and after a diatomic molecule is formed. As before ∗
denotes the anti-bonding states, g the even and u the odd spatial wave function.

Figure 8.6: Electronic structure of the H2 atom.
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system is

V (r) =
e2

4ϕ εo

(
− 1

r1

− 1

r1′
− 1

r2

− 1

r2′
+

1

r12

+
1

R

)
, (8.2.1)

where the meaning of the indices can be read from Fig. 8.6. Although in this formula and
in the figures we have indices for the electrons, this is just to signal that one set of the
vectors belong to one of the electrons, while the other one to the other electron, but as
electrons are indistinguishable we cannot say to which one. The electrons in the molecule
has loose their identities and now belong to both of the atoms, i.e. to the molecule.

Instead of solving the Schrödinger equation, however we will base our discussion to
the results of the previous section.

According to the exclusion principle if the two electrons have opposite spins they
can be accommodated in the bonding level σg 1 s giving the configuration (σg 1 s)2. This
bonding state has an energy diagram like the one with the minimum in Fig. 8.4, just the
equilibrium distance in this case is 0.074nm and the bonding energy is −4.476 eV . If
both electrons have the same spin one of them can be in the bonding state σg 1 s, while the
other one must occupy the anti-bonding4 σ∗u 1 s state, so the resulting configuration will
be (σg 1 s) (σ∗u 1 s). In this case the anti-bonding effect dominates and the corresponding
energy diagram has no minimum (like the red curve in Fig. 8.4).

A similar train of thought can be followed for the He+
2 molecule ion. It has three

electrons two of which are in the bonding state σg 1 s and the third in the anti-bonding
state σ∗u 1 s, so the configuration is (σg 1 s)2 (σ∗u 1 s). This results in a stable molecule
with a dissociation energy equal to 2.5 eV 5

The He2 molecule has four electrons, two in the bonding and two in the anti-bonding
state. The electronic configuration is (σg 1 s)2 (σ∗u 1 s)2, This configuration is not stable,
which explains why helium is a monatomic gas. However an excited He2 molecule, in
which one of the anti-bonding electrons is excited up to the bonding state σg 2 s, may
exist with the electronic configuration (σg 1 s)2 (σ∗u 1 s)(σg 2 s).

Fig. 8.8 shows the electronic configuration of homonuclear diatomic molecules up to
Ne2. As you can see in the table in Fig. 8.8 molecular binding generally occurs when
two electrons occupy bonding molecular orbitals, i.e. they concentrate in the region of
between the two combining atoms. Their bonds are called covalent bonds.

However this is not a strict rule with no exceptions. Not only because the He+
2

molecular ion contains only 3 electrons, as in both Be2 and O2 the last pair of electrons
are in π orbitals with parallel spins. This behavior is due to the fact that both of
these molecules have only two electrons in that energy level although the π orbitals may
accommodate four. In the atomic case we found that the repulsion between the electrons

4The asterisk denotes ant-bonding
5The metastable He−2 molecule ion has a very small dissociation energy, because of the relatively

small nuclear charge, therefore its lifetime is very short (≈ 18.2µs) too.
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favor the most antisymmetric spatial wave function, for which the exclusion principle
requires the most symmetric spin function which results in the parallel spin state.

But having parallel spins means the molecule always has a fix angular momentum of
~, which gives rise to a permanent magnetic moment. Therefore O2 is a paramagnetic
gas, while most other diatomic molecules have no permanent magnetic moment, so they
are diamagnetic6.

The stability of a molecule (expressed by the dissociation energy) depends on the
relative number of bonding and anti-bonding pairs of electrons. This explains why He2

and Be2 are not stable and why the stability of molecules N2, O2, F2 and Ne2 decreases,
because the difference between bonding and anti-bonding pairs for these molecules is
3, 2, 1 and 0 respectively.

The component of the total angular momentum of the electron along the molecular
axis is given by

ML =
∑
i

m
(i)
`

and the energy of a given state depends on its absolute value Λ. In this case the states
are labeled by capital letters Σ,Π,∆,Φ, .... Given that the resultant spin is S the symbol
of a state (or term) is

2S+1 Λ

which is in the last column in Fig. 8.8.

8.3 Heteronuclear molecules.

When different atoms form molecules, e.g. HCl, CO and NaCl, we are talking of het-
eronuclear molecules. There is no center of symmetry, not even in diatomic heteronuclear
molecules, thus although the electronic states are still called σ, π, δ, etc, they are not clas-
sified as g or u. Only electrons in the outermost, unfilled shells must be considered when
talking about chemical bond.

Take NaCl as an example. Na has 11, Cl 17 electrons. The electrons in closed
(filled) shells are so tightly bound to their respective nuclei that they are hardly affected
by the presence of a second nucleus. Similarly electrons on unfilled shells with coupled
opposite spin pairs are not expected to participate strongly in the binding of the atoms.
This leaves us with only one electron of each atoms to consider: the one 3 s electron of
Na and the 3 p electron in Cl.

The same logic we used for homonuclear diatomic molecules tells us that when a
stable structure is produced these two electrons will be concentrated between the two

6See Section 19.2 for details on para- and diamagnetic behavior.
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atoms. However since the nuclear charges differ the electronic configuration will not
be symmetric, but it will be displaced toward the Cl nucleus, which produces a larger
attractive field. The uneven charge distribution leads to an electric dipole moment
measured 3.0 10−29C m. Were the 3 s electron of Na completely transferred to the Cl
atom, the dipole moment would be 4.0 10−29C m. We conclude that about 75% of the
valence electron of Na is displaced toward the Cl atom, i.e. the probability distribution
of the electrons is higher nearer to the Cl nucleus. Still, we may consider the NaCl
molecule as being composed of two ions held together by Coulomb attraction, so we may
write it as Na+Cl−. This type of bond is called an ionic bond. However Fig. 8.9 shows
that a molecule composed of Na+ and Cl− ions would have a different energy vs distance
curve. The reason the potential energy rises to infinity as the distance of the atoms (or
ions) decreases is that it would require the wave functions (orbitals) of the closed shells
of the two atoms overlap, which would violate the exclusion principle. Consequently very
large electrostatic fields will arise that prevent this overlap.

The bonding in the majority of the heteronuclear molecules is neither purely covalent,
nor purely ionic. E.g. the bond in CO is mostly covalent with an electric dipole moment
of 4.0 10−31C m.

8.4 Polyatomic molecules.

When a molecule contains more than two atoms the geometrical arrangement of the
nuclei and the electrons, i.e. the molecular symmetry becomes important. The shape
of polyatomic molecules is determined by this symmetry, which is reflected in the shape
of the molecular orbitals. We build the molecular orbital from superposition of atomic
wave functions. Our guideline can be stated as:

Important 8.4.1. A bond between two atoms occurs in the direction in which the rep-
resentative atomic wave functions making up the molecular orbital are concentrated or
overlap. The strength of the bond depends on the degree of overlap.

Let us take the example of the water molecule (H2O): it contains 10 electrons and 3
nuclei. (see Fig. 7.3 )

In the first approximation we disregard all but the unpaired electrons, which, for the
O atom leaves only the two unpaired p electrons on the L shell to consider. The spin
part of these atomic wave functions is parallel, according to Hund’s rule, which requires
different spatial wave functions for the two unpaired electrons, according to the Pauli
principle. Select these to be px and py (see Fig. 6.6). Then the other two paired electrons
must occupy the state pz. The two unpaired electrons are on two orbitals perpendicular
to each other. The unpaired electrons of the hydrogen atoms will pair with them and the
largest overlap will be in the direction of the px and py orbitals. So in first approximation
the H2O molecule should have a right angle state as in Fig 8.10.
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The measured angle between the bonds in a water molecule is however larger, namely
104.5o. This is because we neglected the repulsion of the H atoms. Detailed calculations
shows that the 1 s electrons of hydrogen are pulled toward the oxygen atom, which
produces a polarized molecule with a resultant electric dipole momentum of 6.2 10−30C m
along the line bisecting the bond angle.

The next example is the ammonia (NH3) molecule. Its electronic structure is in
Fig. 7.3 and Fig. 8.11. The N atom has three unpaired 2 p electrons concentrated along
the x-, y- and z-axes occupying all three p states forming a pyramidal structure with the
N atom at one vertex and the three H atoms in the other vertices. The resulting dipole
moment is 5.0 10−30C m

8.5 Hydrocarbon molecules. Hybridization.

As everyone knows carbon is the most important atom for the life on Earth. This is
a result of the wonderful quantum mechanical behavior of the C atom. In its ground
state (see Fig. 7.3) it has only two unpaired 2 p electrons which is not enough to explain
many carbon compounds. However its first excited state has one 2 s and three unpaired
2 p electrons and it can be used to explain its role in molecules like C H4, where the 4
electrons are identically bound to the C atom. In this state the 3 unpaired 2 p electrons
act like to those in ammonia, but the 2 s electron has spherical symmetry therefore
cannot produce a bond of the same strength! The energy of the 2 s and the 2 p electrons
of carbon are slightly different, but from their linear combination we can create a set of
four hybridized directional wave functions which have the same energy. This technique
is called hybridization and it has dirrerent variations7.

In the case of ammonia it is called sp3 hybridization, and the four wave functions are

ψ1 =
1

2
(s+ px + py + pz) (8.5.1a)

ψ2 =
1

2
(s+ px − py − pz) (8.5.1b)

ψ3 =
1

2
(s− px + py − pz) (8.5.1c)

ψ4 =
1

2
(s− px − py + pz). (8.5.1d)

Because the s and p functions have different angular momenta these hybridized functions
do not describe states with well defined angular momentum. The four sp3 hybrid form
a tetrahedral structure. (Fig. 8.12 (a)). This means that ammonia is also tetrahedral
(Fig. 8.12 (b)). The ethane (H3C–C H3) molecule also contains sp3 hybrids, but in that

7Although we called hybridization a computational “technique” it is a measurable phenomena as well.
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case two of them overlap and this is what holds the two carbon atom together (Fig. 8.12
(c)). Because this resembles the σ orbitals in diatomic molecules it is called a σ bond.

Naturally carbon is not the only element and hydrocarbons are not the only molecules
that show hybridization. neither sp3 is the only hybrid molecular orbital possible. For
instance N+ has the same electronic structure as carbon and the N+H4 molecule ion
is similar in geometry to that of methane. Two other possible hybrids (sp2 and sp) are
discussed in Appendix 22.11, while Appendix 22.12 is about conjugated molecules.

8.6 Rotation and vibration of molecules.

Up till now we considered molecules as rigid structures with fixed position nuclei. But
the nuclei may rotate as a whole rigid structure or their relative positions in the molecule
may change, for instance when the molecule vibrates.

8.6.1 Rotation of diatomic molecules

For diatomic molecules, one of the principal axes of inertia goes through the two nuclei,
which we select as our z axis, while the other two are perpendicular to this and to each
other and all three go through the center of mass of the molecule. In this coordinate
system the three principal values of the moment of inertia are Θx,Θy and Θz. Because
of the small size and mass of the nuclei the Θz component can be taken to be zero.
And because of symmetry the two components of the moment of inertia for any axis
perpendicular to the z axis will be the same, which we will denote simply by Θ. If the
distance of the nuclei is ro

Θ =
m1m2

m1 +m2

r2
o (8.6.1)

The kinetic energy, which in our case equals to the rotational energy of the molecule,
then can be written as

Erot =
1

2
Θω2

x

and introducing the angular momentum with L = Θω

Erot =
L2

2 Θ
(8.6.2)

But according to quantum mechanics the angular momentum of the molecule is quan-
tized:

L =
√
` (`+ 1) ~, ` = 0, 1, 2, . . . (8.6.3)
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therefore

Erot =
~2

2 Θ
` (`+ 1) (8.6.4)

where
~2

2 Θ
≈ 10−4 eV , which is much smaller than the thermal energy at room tempera-

ture, which at 300 K is 0.0258 eV. Consequently many molecules are excited to rotational
levels even at room temperature. The distance of two consecutive levels

∆ Erot =
~2

Θ
(`+ 1) (8.6.5)

is of the same magnitude. Because the selection rule in this case is ∆ ` = ±1 the corre-
sponding frequency spectrum (h ν = ∆ Erot) contains equidistant lines with a frequency
difference of ∆ ν = ~/2 πΘ as shown in Fig. 8.13. Each dip in the spectrum corresponds
to a resonance absorption. Purely rotational spectra lie in the microwave or far infrared
range of the electromagnetic spectrum. For a molecule to have purely rotational spec-
trum a constant electrical dipole moment is required. During absorption this interacts
with the electromagnetic field. Therefore homonuclear molecules do not have rotational
spectra.

As the rotational energy increases the shape of the molecule will be affected by this
rotation and correct calculations require corrections to our formulas.

8.6.2 Vibration of molecules

If you have a look at the potential energy curve of e.g. the NaCl molecule in Fig. 8.9 you
can easily realize that the two nuclei in the molecule will vibrate around the equilibrium
distance r0. The ground state, which will not be the minimum of the potential but the
zero point energy of the molecular oscillator. Near the equilibrium distance the potential
is approximately parabolic, therefore the vibrational levels can be approximated by the
formula, which is strictly valid for harmonic oscillators:

Ev = (v +
1

2
) ~ωo where v = 0, 1, 2, ... (8.6.6)

In reality the potential is anharmonic so this is just an approximation. Because of the
zero point energy, the dissociation energy is not the energy difference denoted by D,
but D − Eo. The selection rule is the same ∆ v = ±1 as it was for the linear harmonic
oscillator8.

The value of ~ωo is about 0.1 - 0.5 eV, so the vibrational transitions are in the
infra-red region. But it is also possible that higher harmonics of the base vibrational

8In reality this selection rule is not so strict as the potential is not harmonic, but higher ∆n values
are still improbable.
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modes can be observed. These harmonics may fall into the visible range. For instance
the intrinsic blue color of clear water is the result of an absorption at the harmonic
ω̃ = ω̃1 +3 ω̃3 = 14 318cm−1, which corresponds to a wavelength of 698 nm and looks red
for us. When red light is absorbed the remaining light becomes turquoise blue. However
the absorption of the third overtone is very weak, so a larger body of water is needed to
make this color visible. This is what makes glaciers and icebergs blue and adds to the
color of big bodies (lakes, seas, oceans) of water9.

The total energy of a system is the sum of the electron energies plus the vibrational
and rotational energies:

E = Ee + Er + Ev = Ee + (v +
1

2
) ~ωo +

~2

2 Θ
` (`+ 1) (8.6.7)

When a molecule vibrates its shape and moment of inertia change, changing the rotational
frequencies. This is the vibration-rotation interaction effect.

8.6.3 Vibration of polyatomic molecules

For polyatomic molecules the situation is even more complicated. The behavior of such
systems can be described using so called normal (vibrational) modes. In normal modes
all nuclei vibrate and the relative phases of the vibrations are constant. Consequently
discreet frequencies can be associated with the normal modes. These are determined
by the geometry of the molecule and because of molecular symmetries some of these
frequencies may be degenerate, i.e. may belong to more than one normal mode. In
Fig. 8.15 some normal vibrational modes of the CO2 and water molecules can be seen.

The corresponding vibrational wave numbers are10: ω̃1 = 1337 cm−1, ω̃2 = 667 cm−1,
ω̃3 = 2349 cm−1 for CO2 and ω̃1 = 3657 cm−1, ω̃2 = 1595 cm−1, ω̃3 = 3756 cm−1 for H2O.

8.6.4 Franck-Condon principle, absorbtion and emission for molecules

Fig. 8.16 combines the properties of molecular rotational and vibrational energy levels.
The equilibrium distances in different states differ. Typical separation between two
electron states E ′′−E ′ is about 1 - 10 eV, which means that the frequency of the radiation
emitted or absorbed by the molecule is in the visible or ultraviolet range. Each electronic
state contains many vibrational states, while to each of these there correspond several
rotational states. The total energy in any state is given by (8.6.7). So the energy change

9The color of water also depends on the materials solved in it. This can make water greener or bluer
in some areas.

10ω̃ ≡ 2π ν
c = 2π

λ is the wave number used in spectroscopy, which is called there “angular frequency”.
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in a transition is

∆ E = E ′′ − E ′ = ∆ Ee + ∆ Ev + ∆ Er = (8.6.8)

= ∆ Ee + (v′′ +
1

2
) ~ω′′o − (v′ +

1

2
) ~ω′o+ (8.6.9)

+
~2

2 Θ′′
`′′ (`′ + 1)− ~2

2 Θ′
`′ (`′ + 1) (8.6.10)

But this means that the frequency ν = E/h can be written as a sum of three terms:

ν =
E
h

= νe + νv(v
′′, v′) + νr(`

′′, `) (8.6.11)

As a result the observable spectrum consists of a series of bands, where each band cor-
responds to the possible values of v′,v′′ and `′, `′′. The selection rules in this case can be
stated for all types of transitions. For rotation

∆ ` = 0,±`, except (`′′ = 0)↔ (`′ = 0) (8.6.12)

Note that now even ∆ ` = 0 is allowed, because there can be a change in configuration
of the molecule during the transition, except when both `′′, `′ are 0s. The spin of the
photons is 1 and in this case it would be impossible to satisfy the conservation law of
the angular momentum.

Because spin dependent forces involved in the electronic transition are not strong
enough to change the spin of the electrons, therefore for νe, generally ∆S = 0.

When a molecule absorbs or emits a photon the vibrational and electronic state of
the molecule changes simultaneously. These transitions ore sometimes called vibronic.
Because the characteristic times of electronic transitions (≈ 10−16 s) are much shorter
than those of vibrational transitions (≈ 10−13), during an electronic transition the actual
nuclear separation is essentially constant. Consequently:

Important 8.6.1. If the molecule is to move to a new vibrational level during the elec-
tronic transition, this new vibrational level must be instantaneously compatible with the
nuclear positions and momenta of the vibrational level of the molecule in the original
electronic state. This is the Franck-Condon principle.

Fig. 8.17 shows a Franck-Condon energy diagram where the transition occurs between
states v′ = 0 and v′′ = 2. As you see transitions do not conform to the usual selection
rules of ∆ v = ±1.

8.6.5 Scattering of light by molecules. Rayleigh and Raman
scattering

Imagine a gas sample illuminated with a monochromatic electromagnetic radiation of
frequency ν. When h ν is not equal to any of the E ′′ − E ′ energy level difference the
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radiation can not be absorbed but it will be scattered by the gas molecules. There are
two kinds of scattering.

The part scattered elastically has the same ν frequency as the illuminating radiation.
This called Reyleigh scattering or coherent scattering.

Important 8.6.2. Reyleigh scattering occurs every time when light or other electromag-
netic radiation is scattered by particles much smaller than their wavelength. The particles
may be individual atoms or molecules. It can occur when light travels through transparent
solids and liquids and in gases.

Rayleigh scattering causes the blue hue of the sky and the reddening of the Sun at sunset.
The other part of the scattered radiation has a frequency of ν ′ = ν ± νv, where νv is

a frequency of the vibrational spectrum of the molecule. This is an inelastic scattering
of the radiation and called Raman scattering

Important 8.6.3. Raman scattering occurs when a molecule is excited by the non-
resonant incoming radiation to some vibrational level which is above or below of the
level corresponding to ν because of the selection rule ∆ ν = ±1. When the molecules
absorb energy, the energy of the scattered photons will be lower than that of the incoming
photons. This is called Stokes Raman scattering. When the molecules lose energy in the
emission the emitted photons will have larger energy than the incoming ones. This is
called anti-Stokes Raman scattering.

Raman scatterings allows e.g. measurement of rotation of homonuclear diatomic
molecules.
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Figure 8.7: Angular distribution of molecular orbitals formed from atomic orbitals in
diatomic molecules.
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Figure 8.8: Electronic configuration of some homonuclear diatomic molecules
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Figure 8.9: Potential energy curves vs distance for a NaCl molecule and Na+ + Cl−

ions.
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Figure 8.10: Angular part of the wave function in a water molecule in first approximation.
The shape of the p orbitals is distorted by the presence of the H atom. The H-H repulsion
is neglected.

Figure 8.11: Angular part of the wave function in an NH3 molecule.
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Figure 8.12: sp3 hybridization. a) the 4 identical sp3 electron orbitals in carbon, b) in
methane, c) in ethane.

Figure 8.13: Rotational absorption spectrum of HCl in the gaseous phase.
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Figure 8.14: Schematic potential in a diatomic molecule.

Figure 8.15: Normal vibrational modes in CO2 and H2O
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Figure 8.16: Vibrational and rotational energy levels associated with two electronic
states.

Figure 8.17: Franck-Condon energy diagram.
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Chapter 9

Statistical physics.

9.1 Statistical equilibrium.

At standard temperature (0oC) and pressure (1atm) 1 liter of any ideal gas contains
n = 6.022 · 1023/22.41 l = 2.7 · 1022 molecules. It is completely impossible to solve
even the equations of motion of classical physics for so many molecules, let alone their
Schrödinger equation. This is the area where statistical physics is used. We will use it
to determine the possible states and their probabilities for N particle systems.

Let us suppose we have N identical (distinguishable or indistinguishable) particles
with discreet or continuous energy levels E1, E2, .... If the number of particles on level Ei
is ni, then N =

∑
i

ni and the total energy U ≡ Etot =
∑
i

ni Ei. The particles may or may

not interact with each other. If they interact this interaction will modify the possible
energies. To simplify things let us suppose that the interaction of the particles can be
described by an average V aver

i potential, i.e. Ei will be replaced by Ei + V aver
i .

The actual state of the system then can be characterized by the set {ni} of ni numbers:
{ni} ≡ {n1, n2, ...}. This particle distribution or partition determines macroscopically
observable physical properties of the system.

If there is an energy exchange between the particles (this may be in the form of
collisions or caused by electromagnetic forces) the state of even closed systems (where
U = const) may change in time because the interaction may modify the {ni} distribution.

For example in an equilibrium classical ideal gas the energy (or velocity) distribution
of the particles is constant, therefore the pressure of the gas does not change macro-
scopically, but there are small fluctuations in the momentary pressure, which become
observable only at very low gas densities.

Important 9.1.1. If the change of the particle distribution {ni} is random and cause
no macroscopically relevant changes, the system is in equilibrium. The corresponding
macroscopically observable states are called macrostates. The possible configurations
that result the same macrostate are called microstates.
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In many-particle systems equilibrium is statistical. In equilibrium the small fluctua-
tions in the ni values average out.

Usually every possible microstate is considered equally probable. The number of mi-
crostates for a given macrostate, called the statistical weight, however may differ, there-
fore the probability of different macrostates may be different. Non-equilibrium macrostates
have a much smaller probability than states near the equilibrium. More than one macrostates
may have the same or very nearly the same probability. The equilibrium distributions will
be the most probable ones.

The {ni} distribution does not determine the configuration of the particles completely,
because it just requires that ni particles are on the Ei level, but does not say which
particles are among those. E.g. if the particles are distinguishable then the following
two configurations are equivalent in {ni}:

• particle “A” is at level “i” while particle “B” is at level “j” and

• “B” is at level “i” while particle “A” is at level “j”

In contrast with this there will be only one possibility for indistinguishable particles:
one of it in the i-th, an other one in the j-th state.

9.2 Maxwell-Boltzmann distribution.

To describe the behavior of a classical gas we can use the following assumptions:

• the particles are distinguishable1 (i.e. these are classical particles)

• the probability of the occupation of every energy level Ei is equal

• one level may be occupied by any number of particles (no exclusion principle)

• the probability of a distribution (or partition) {ni} is proportional to the number
of particle configurations that can realize it.

• thermal equilibrium corresponds to the maximum probability distribution

E1 is occupied by n1 particles. This may happen in
(
N
n1

)
different ways2. For each of

these there are
(
N−n1

n2

)
possibilities to fill E2. For every possible configuration on E1

1See section 6.7 for a short introduction between distinguishable and indistinguishable particles.
2
(
N
m

)
≡ N !

m! (N−m)! . Also observe that if a level is unoccupied then ni = 0, and 0! = 1.
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and E2 there are
(
N−n1−n2

n3

)
possibilities to fill E3, etc. The total number of possible

configurations therefore3

w =

(
N

n1

)(
N − n1

n2

)(
N − n1 − n2

n3

)
... =

N !

n1!n2!n3! ...
(9.2.1)

When the probabilities of occupation are different for different Eis, i.g. an energy level
may be compatible with more different angular momentum states then the others, then
it is more likely to be occupied, this formula should be modified to become4

w =

(
N

n1

)
gn1

1

(
N − n1

n2

)
gn2

2

(
N − n1 − n2

n3

)
gn3

3 ... =
N ! gn1

1 gn2
2 gn3

3

n1!n2!n3! ...
= N !

∏
i

gnii
ni!

(9.2.2)

where the gi(≥ 1) numbers give the degeneracy of each energy level.
We calculated so far the number of possible ways the given partition can occur. If

we are interested in the probability of this partition5 then we must divide it with the
number of all possible particle permutations, i.e. with N !. So the probability of a given
partition in the general case:

P({ni}) =
∏
i

gnii
ni!

(9.2.3)

The next step is to calculate the maximum of this probability. However we are looking
for a maximum with the following additional conditions: the total number of particles
Ntot =

∑
i

ni is constant and the total energy Etot =
∑
i

Ei ni is also constant. This is

called a conditional maximum problem. The result6:

3If we write the product of binomial coefficients using factorials we can observe that the denominator
of a factor in this product is the same as the numerator of the next factor, so these cancels each other
out. This leads to (9.2.1).

We should have arrived to the same formula noting N particles may be ordered N ! times (permuta-
tions), and because we are not interested in the order of the particles on a given level this number must
be divided by the product of all ni!.

4If level Ei has gi possible sub-states and we have ni particles on this level then each particle may be
put into any of these gi sub-states with the same probability, therefore the number of possible sub-states
is gni

i .
5probability of an event (e.g. of a partition) ≈ number of ways it can happen divided by the total

number of possible outcomes.
6Mathematical details are in an appendix: Appendix 22.13.
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Important 9.2.1.

Pmax,i =
1

Z
gi e
−β Ei , where (9.2.4)

β =
1

kB T
(9.2.5)

Z(T ) =
∑
i

gi e
−β Ei (9.2.6)

and kB = 1.38 10−23 J/K is the Boltzmann constant, T is the absolute temperature (in
K) and Z is called the partition function.

The factor e−β Ei = e
− Ei
kB T that gives the (unnormalised) relative probability of a state

(i.e. the statistical weight) is called the Boltzmann factor.

Knowing the probability of a given macrostate we can easily calculate the expectation
value of ni ; i.e. the value we expect as the average of the results of many successive
measurements of ni at a given Ei

〈ni〉 = N · Pmax,i =
N

Z
gi e
−β Ei (9.2.7)

This is the Maxwell-Boltzmann statistics.

Important 9.2.2. For any energy dependent physical quantity F(E) the average value
is the ni weighted average of possible F(Ei) values :

〈F〉 ≡ Faver =
1

N

∑
i

niF(Ei) =
1

Z

∑
i

giF(Ei) e−β Ei (9.2.8)

To calculate the total (internal) energy U of a system we can set F(Ei) = Ei:

U =
N

Z

∑
i

gi Ei e−β Ei (9.2.9)

Note that in this case the sum is the negative derivative of the (9.2.6) partition function
with respect to β: ∑

i

gi Ei e−β Ei = − d

d β

∑
i

gi e
−β Ei = −dZ

d β
,

therefore

U =
N

Z

dZ

dβ
= −N d

dβ
lnZ (9.2.10)
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Furthermore
d

d β
=

d

d T

d T

d β
= −kB T 2 d

d T
, so

U = N kB T
2 d

d T
lnZ (9.2.11)

The average energy of a particle is

Eaver = kB T
2 d

d T
lnZ (9.2.12)

therefore the temperature of a system is determined by the average energy per particle
and the structure of the energy levels of the system described in Z.

Example 9.1. In a system with equidistant energy levels how many ways can you dis-
tribute 9 units of energy among 6 identical. distinguishable particles? The energy of the
ground state (i=0) is 0, and the levels are one unit of energy distant from each other.
Solution In this case the observable different macrostates give the number
of particles on every level, while the microstates are the possible ways to
achieve a given macrostate.

Because we must distribute 9 units of energy among the particles and the
energy of the ground state is 0, we have to use 10 energy levels.

The number of the macrostates are few so they can easily be counted
in this case and the result is 26. The figure shows all macrostates with a
total energy of 9 units, together with the number of the microstates that
correspond to the same macrostate. The first macrostate in the first row

have
6!

6!
= 6 microstates, the second one

6!

4! 1! 1!
= 30, while the first one in the

second row have
6!

2! 2! 1! 1!
= 180, etc. The total number of microstates is 2002.
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Example 9.2. Graph the distribution for Problem 9.1 and compare it with the Maxwell-
Boltzmann distribution function!
Solution We have to graph the ni vs E discreet function of Problem 9.1. The
average occupation numbers for the levels are

〈ni〉 =

26∑
n=1

wi(n)ni(n)

26∑
n

wi

where the summation goes from 1 to the number of all possible macrostates,
and wi(n) is the number of the microstates that results in the n-th macrostate.
The denominator is the total number of microstates, which is 2002 as we have
shown previously in Problem 9.1. So for instance for i = 0

n0 =
6 · 5 + 4 · 30 · 4 + (3 · 120 + 3 · 60 + 20) · 3 + (2 · 60 + 4 · 180) · 2

2002
+

(30 + 120 + 60 + 180 + 30) · 1 + (30 + 6 + 30 + 20) · 0
2002

= 2.143

The average occupation numbers or average population of the levels:

Energy level 0 1 2 3 4 5
〈ni〉 2.143 1.484 0.989 0.629 0.378 0.210

Energy level 6 7 8 9
〈ni〉 0.104 0.045 0.015 0.003
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while in the figure you can see the results compared to that of the continuous
Maxwell-Boltzmann distribution function.

As you can see the distribution for even as few as 6 particles closely ap-
proximates the Maxwell-Boltzmann distribution function.

9.2.1 Application of the Maxwell-Boltzmann statistics to the
ideal gas

Even though we are talking about a classical ideal gas molecular excitations are quantum
mechanical processes with transitions between discreet energy levels. The “classical”
nature here refers to the molecules themselves, which at not extremely large pressures
and at not extremely low temperatures are distinguishable particles.

According to (9.2.4) the equilibrium ratio of the (average) number of particles on
energy levels Ei and Ej is

ni
nj

=
Pi
Pj

=
gi
gj
e
−
Ej−Ei
kB T (9.2.13)

which depends exponentially on ∆ E ≡ Ej − Ei. Table 9.1 summarizes this:

The kinetic energy levels of gas molecules in a container, whose size is very large
compared to the size of the molecules are so very close to each other at normal temper-
atures and pressures, that we cannot observe the discreetness of the levels and consider
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∆ E [eV] 100 K 300 K 1000 K
rotational 10−4 0.989 0.996 0.999
vibrational 5 · 10−2 3 · 10−3 0.150 0.560
electronic 3 13 · 10−164 8 · 10−49 8 · 10−16

Table 9.1: Excitation energies (∆E) and excitation probabilities of rotational, vibrational
and electronic transitions in molecules of an ideal gas at different temperatures.

the kinetic energy as a continuous quantity.

For this case let us introduce a continuous fMB(E) function, which gives the proba-
bility of occupation, so that the number ∆n of particles in a ∆ E energy interval around
E is N · fMB(E) g(E) ∆E = ∆n, or equivalently: fMB(E) = 1

N g(E)
dn(E)
dE

.

Important 9.2.3.

fMB(E) =
1

Z
e
− E
kB T (9.2.14)

Z =

∞∫
0

g(E) e
− E
kB T dE (9.2.15)

is the Maxwell-Boltzmann distribution function.

where g(E) d E is the number of possible states in the energy interval d E around E.
The average value of any energy dependent physical quantity F(E) for one particle is:

〈F〉 =
1

Z

∞∫
0

F(E) · g(E) · fMB(E) dE (9.2.16)

Again using F = E we find that (9.2.12) is still valid:

Eaver ≡ 〈E〉 = kB T
2 d

d T
lnZ

For a classical ideal gas enclosed in a large container of volume V the degeneracy of
the energy states according to (3.5.20) (where we called it the density of states):

g(E) =
4π V

√
2m3

h3

√
E
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The partition function in (9.2.15):

Z =
4 π V

√
2m3

h3

∞∫
0

√
E e−

E
kB T dE =

V (2 πmkB T )
3
2

~3
(9.2.17)

Therefore the internal energy of the gas is

U = N Eaver = N kB T
2 d

d T
ln

[
V (2 πmkB T )

3
2

~3

]
=

3

2
N kB T (9.2.18)

d n

d E
=

2 π N

(π kB T )3/2

√
E e
− E
kB T (9.2.19)

For classical monatomic ideal gases the energy is only kinetic, that is independent of
the mass of the molecule, can be expressed with the velocity of the molecules E =
1

2
mv2. Substituting into the Maxwell-Boltzmann distribution formula gives the number

of particles in a unit energy interval as a function of the magnitude of the velocity:

dN(E) = g(E) fMB(E) d E = dN(v) = g(E(v)) fMB(v) d v

fMB(v) = fMB(E(v))
d E
d v

fMB(v) =
2π N

(π kB T )3/2

√
1

2
mv2 e

−
mv2

2 kB T (mv)

fMB(v) = N

√
2π (m)3/2

(π kB T )3/2
v2 e

−
mv2

2 kB T (9.2.20)

This Maxwell-Boltzmann velocity distribution function is shown in Fig. 9.1.

9.3 Quantum statistics.

If the particles are microscopic, i.e. the uncertainty principle is not negligible, their wave
functions spread out and may overlap. In this case they cannot be distinguished even in
principle. i.e. they are indistinguishable and classical statistics, therefore the Maxwell-
Boltzmann distribution cannot be used. There are two types of indistinguishable particles
bosons (e.g. photons) and fermions7:

7The names boson and fermion were coined by the English theoretical physicists Paul Adrian Maurice
Dirac (e.g. electrons). The first one to commemorate the contribution of Indian physicist Satyendra
Nath Bose to the statistical theory of these particles, while the second one came from the surname of
the Italian theoretical physicist Enrico Fermi.

159



Figure 9.1: Velocity distribution of an ideal gas of 106 oxygen molecules at temperatures
−100oC, 0oC and 600oC. The area below the curves are equal.

Important 9.3.1. • For fermions the exclusion principle holds. Only a single fermion
can occupy a non degenerate state. All half-integer spin particles (e.g. the electron)
are fermions. The wave function of a system of fermions is anti-symmetric for the
exchange of the coordinates of any two of the fermions:
ψ(r1, r2, ..., rk, ...) = −ψ(r1, rk, ..., r2, ...)

• Bosons are particles for which the exclusion principle is invalid. Any number of
bosons can occupy the same non degenerate quantum state (described with the same
quantum numbers). Bosons are integer spin particles. The wave function of a
system of bosons is symmetric for the exchange of the coordinates of any two of the
constituent bosons:
ψ(r1, r2, ..., rk, ...) = ψ(r1, rk, ..., r2, ...)

Fermions and bosons show widely different behavior. This is most readily seen at T =
0K, where with no thermal excitations a system will be in its lowest possible energy
state.

Because of the exclusion principle every fermion will be in the lowest lying energy
level not already occupied by an other fermion, therefore fermions will occupy all possible
energy states (or energy levels) up to a certain energy called the Fermi-energy and
denoted by EF and all states above EF will be empty.
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Because there is no exclusion principle for bosons in the ground state at absolute zero
all of them will be in the same lowest energy state. As the temperature goes above zero
any or all of them can be excited to any level with E ≥ kB T . The spread of the bosons
to the energy levels will naturally depend on the temperature8.

9.4 Fermi-Dirac distribution.

Because of the exclusion principle if the degeneracy of the i-th energy level Ei is gi, then
only ni < gi fermions can occupy it. The number of microstates for distinguishable ni
particles on this level would be therefore

wdisti = gi (gi − 1) (gi − 2) ... (gi − (ni − 1)) =
gi!

(gi − ni)!

Because the particles are on the same level Ei indistinguishable this should be divided
by the number of possible permutations of the ni particles ni!:

wi =
gi!

ni!(gi − ni)!

The total number of the different configurations is

w =
∏
i

wi =
∏
i

gi!

ni!(gi − ni)!
(9.4.1)

This is proportional to the probability of a given configuration of the system as it was in
the case of the Maxwell-Boltzmann statistics, therefore the observable equilibrium state
can be determined by calculating the conditional maximum9 of w. The result is the
Fermi-Dirac distribution:

ni =
gi

eα+β Ei + 1
with (9.4.2)

β =
1

kB T

α = − EF
kB T

8According to particle physics elementary particles of corpuscular matter are fermions, while bosons
are quanta of the interactions (forces) that act between fermions. (This is of course not true for non-
elementary particles, where bosons and fermions may be formed from a combinations of elementary
fermions.) For instance photons are bosons with a spin of 1 and they are responsible for the electro-
magnetic interaction between fermions.

9In Appendix 22.13 we have shown the method of the solution for the Maxwell-Boltzmann distribu-
tion. It follows similar steps for fermions.
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ni =
gi

e
Ei−EF
kB T + 1

(9.4.3)

The corresponding ΘF =
EF
kB

temperature is the Fermi-temperature.

As with the Maxwell-Boltzmann statistics for a system with very many close energy
levels we can use a continuous function, the Fermi-Dirac distribution function instead:

Important 9.4.1. The Fermi-Dirac distribution function gives the probability that the
states in a ∆ E interval around E are occupied.

fFD(E) :=
1

e
E−EF
kB T + 1

(9.4.4)

The number of fermions then

N =

∞∫
0

g(E) fFD(E) d E (9.4.5)

and the average value of any energy dependent physical quantity F(E) for one particle
is:

〈F〉 =

∞∫
0

F(E) · g(E) · fFD(E) dE
∞∫
0

g(E) · fFD(E) dE
(9.4.6)

Fig. 9.2 shows the Fermi-Dirac distribution function at different temperatures. At
T = 0K the function is a step function. We explained this in the previous section by a
physical argument. Now we determine this mathematically by taking the limit of (9.4.3)
at T = 0K:

lim
T→0

e(Ei−EF )/kB T =

{
0 Ei < EF
∞ Ei > EF

(9.4.7)

Consequently at T = 0K

ni
gi

∣∣∣∣
T=0K

=

{
1 Ei < EF
0 Ei > EF

(9.4.8)

At non zero temperatures if E/kB T � 1, then both EF in the exponent and the 1 in the
denominator can be neglected and the distribution function becomes

fFD(E) ≈ e−E/kB T

which is approximately the same as the Maxwell-Boltzmann distribution function.
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Figure 9.2: The Fermi-Dirac distribution function at different temperatures. Notice even
the room temperature curve is almost a step function.

Example 9.3. In a system with equidistant energy levels how many ways can you dis-
tribute 9 units of energy among 6 fermions? The energy of the ground state (i=0) is
0, and the levels are one unit of energy distant from each other. Calculate and graph
the distribution and compare it both with the Fermi-Dirac distribution function and with
the Maxwell-Boltzmann distribution and distribution function! Solution Like in Prob-
lem 9.1 the observable different macrostates give the number of particles on
every level, while the microstates are the possible ways to achieve a given
macrostate.

Because we must distribute 9 units of energy among the particles and the
energy of the ground state is 0, we have to use 10 energy levels.

Because fermions are indistinguishable, obey the Pauli exclusion principle
and have a half-integer spin there may be maximum 2 particles of opposite
spins in each state:
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Whereas there were 26 possible configurations for distinguishable particles
(see Problem 9.1), these are reduced to the 5 states which have no more
than two particles in each state. The average occupation numbers or average
population of the levels are easier to calculate in this case. In the table we
compared these numbers with the ones we got for the Maxwell-Boltzmann
distribution.

Energy level 〈nFDi 〉 〈nMB
i 〉

0 1.8 2.143
1 1.6 1.484
2 1.2 0.989
3 0.8 0.629
4 0.4 0.378
5 0.2 0.210
6 0.0 0.105
7 0.0 0.045
8 0.0 0.015
9 0.0 0.003

In the figure we used A for the factor eα we got from our conditional max-
imum calculation. For the Maxwell-Boltzmann distribution A ≡ Z, for the
Fermi-Dirac distribution A ≡ e−EF /kBT .

Low energy states are less probable with Fermi-Dirac statistics than with
the Maxwell-Boltzmann statistics while mid-range energies are more prob-
able. This difference is dramatic for large number of particles and for low
temperatures as you will see later.

We can calculate the internal energy of a system of fermions using (9.4.6) and (9.4.5):

U = N 〈E〉 =

∞∫
0

E g(E) fFD(E) d E =

∞∫
0

g(E) E
e(E−EF )/kBT + 1

d E (9.4.9)

At 0K this integral is simple as fFD is 1 below EF and 0 above it.
The density of states from (3.5.20)

g(E) = 2 · 4π V
√

2m3

h3

√
E , (9.4.10)
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where we used that fermions are half-integer spin particles, so any state can be occupied
by 2 electrons; so g(E) of (3.5.20) must be multiplied by 2. Therefore

U =
8 π V

√
2m3

h3

EF∫
0

E3/2 d E =
16 π V

√
2m3

5h3
E5/2
F (9.4.11)

Compare this with the (9.2.18) internal energy of an ideal gas, which is 0 at T = 0K.

Example 9.4. As an example we will use the Fermi-Dirac distribution for the problem
of the conduction electrons in metals, the so called electron gas model. In this model we
assume that electrons can move freely inside a metal and behave like an ideal gas, i.e. all
interaction between the electrons occurs only in collisions, and the Coulomb repulsion is
considered zero10.

The number of electrons between E and E + ∆ E is

dn(E ,∆ E) = g(E) fFD(E) ∆ E =
8 π V

√
2m3

h3

√
E

e(E−EF )/kBT+1

The total number of electrons N =
∫
dn =

∫ d n
d E

d E. Which is easy to compute at

T = 0K:

N =
8π V

√
2m3

h3

EF∫
0

√
E dE =

8π V
√

2m3

h3
E3/2
F

from which the EF Fermi-energy at T = 0K

EF =
h2

8m

(
3N

π V

)2/3

, (9.4.12)

is a function of the density of electrons
N

V
. Combining this with (9.4.11) yields:

U =
3

5
N EF (9.4.13)

The shape of the d n/d E = g(E) fFD(E) curve can be seen on Fig. 9.3 at different
temperatures.

10Although this seems an invalid assumption we will see in Chapter 15 why this model is good for
conduction electrons.
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Figure 9.3: dn
d E curve for a free electron gas.

9.5 Bose-Einstein distribution.

Bosons may be elementary particles like photons11 or composite particles, e.g 4He atoms.
For bosons the exclusion principle does not hold. Common feature is that the spin of
bosons is integer.

At 0K all of them are in the same (lowest lying) quantum state. Interestingly, at
low but not zero temperatures still an unlimited number of bosons will ”condense” into
the lowest energy state, therefore quantum effects may become apparent on a macro-
scopic scale. This gives rise to the special state of matter, the so called Bose Einstein
Condensate (see Appendix 22.14 for an example) .

Bosons have their own statistics called Bose-Einstein statistics
Let the degeneracy of state E be gi and let there be ni bosons in this state. Then the

number of microstates on this level will be equal to all of the possible ways ni identical
particles can be divided into gi identical “boxes”. We can visualize it by representing
particles with a dot and“boxes”with two vertical lines. The next figure shows a partition
of an energy level with 6 particles and 4 “boxes”, the 4th of which is empty:

The number of lines needed to represent the boxes is 1 less than the number of boxes
as seen on the figure. Therefore the number of possible partitions for this level is all

11 Or the famous Higgs boson the Large Hadronic Collider (LHC) were constructed to detect.
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possible permutations of ni + gi − 1 objects, from which ni and gi − 1 are identical:

wi =
(ni + gi − 1)!

ni! (gi − 1)!
=

(
n+gi − 1

ni

)
(9.5.1)

This is called the number of combinations with repetition in mathematics. The total
number of all different configurations therefore is

w =
∏
i

wi =
∏
i

(ni + gi − 1)!

ni! (gi − 1)!
(9.5.2)

With the method of analogous to that in Appendix 22.13 we find that in the maximum
probability (i.e. in the equilibrium) state:

ni =
gi

eα+β Ei − 1
(9.5.3)

β =
1

kB T
(9.5.4)

and α is again determined from the condition

N =
∑
i

ni (9.5.5)

In contrast with the Fermi-Dirac distribution we must assume that α > 0, because
ni ≥ 0 and there is a (-1) in the denominator. In the limit of very dense energy levels,
i.e. continuous energies we can use the Bose-Einstein probability distribution function:

Important 9.5.1. The Bose-Einstein distribution function.

fBE(E) :=
1

AeE/kB T − 1
, where (9.5.6)

A = eα (9.5.7)

gives the probability that the states in a ∆ E interval around E are occupied. The total
number of bosons then

N =

∞∫
0

g(E) fFD(E) d E (9.5.8)

and the average value of any energy dependent physical quantity F(E) for one particle
is:

〈F〉 =

∞∫
0

F(E) · g(E) · fBE(E) dE
∞∫
0

g(E) · fBE(E) dE
(9.5.9)
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It may help to memorize all three distribution functions if we write them in similar
forms12:

fMB(E) =
1

eα+β E , α =
1

Z
(9.5.10a)

fFD(E) =
1

eα+β E + 1
, α = − EF

kB T
(9.5.10b)

fBE(E) =
1

eα+β E − 1
α = lnA (9.5.10c)

These are compared in Fig. 9.4.

Figure 9.4: Comparison of the three distribution functions for a system with very large
number of particles.

Example 9.5. In a system with equidistant energy levels how many ways can you dis-
tribute 9 units of energy among 6 bosons? The energy of the ground state (i=0) is 0,
and the levels are one unit of energy distant from each other. Calculate and graph the
distribution and compare it both with the Maxwell-Boltzmann and Fermi-Dirac distribu-
tion! Solution Like in Problem 9.1 the observable different macrostates give
the number of particles on every level, while the microstates are the possible
ways to achieve a given macrostate.

We must distribute 9 units of energy among the particles and the energy
of the ground state is 0, we have to use 10 energy levels.

Because any number of bosons can be in the same state, similar to the
classical distinguishable particles of the Maxwell-Boltzmann distribution, the

12For photons α = 0, due to the fact that even in thermal equilibrium the number of photons is not
constant, but fluctuate.
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total number of macrostates is again 26. (See the corresponding figure at
Problem 9.1.) But in this case it is the same as the number of microstates,
because bosons are indistinguishable, and the exchange of two particles does
not lead to a different microstate. In the next table we compared the av-
erage occupation numbers or average population of the levels with the ones
we got for the other two distributions, but only graph the Bose-Einstein and
Maxwell-Boltzmann curves.

Energy level 〈nBEi 〉 〈nFDi 〉 〈nMB
i 〉

0 2.269 1.8 2.143
1 1.538 1.6 1.484
2 0.885 1.2 0.989
3 0.538 0.8 0.629
4 0.269 0.4 0.378
5 0.192 0.2 0.210
6 0.115 0.0 0.105
7 0.077 0.0 0.045
8 0.038 0.0 0.015
9 0.038 0.0 0.003
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Chapter 10

Interaction of light and matter.

10.1 Photon gas

One of the basic phenomena that led to the development of quantum mechanics was the
black-body radiation. (See Chapter 2). The electromagnetic waves inside a cavity are in
a dynamic equilibrium with the walls of the cavity: the rate of absorption and emission
are equal.

The photons in the cavity are elementary particles with h ν energy, h ν/c = h/λ
momentum and spin 1. These do not interact with each other, and any number of them
can be present with the same energy at any time. Therefore photons are bosons and we
may say that the cavity is filled with a “gas” of photons.

However the number of the photons in the cavity is not constant, photons are con-
tinuously absorbed and emitted by the walls. So the value of α in (9.5.10c) must be set
to 0 (in this case A = 1). If the cavity is large, the spectrum of the possible Ei energies
(i.e. the possible frequencies) can be considered continuous. So for photons in a thermal
equilibrium we can use the continuous Bose-Einstein distribution function.

fBE(E) :=
1

eE/kB T − 1
and (10.1.1)

d n(E , d E) =
g(E)

eE/kB T − 1
d E (10.1.2)

We can easily get the density of states per unit frequency for photons from (3.5.19) using
the k = 2π/λ = 2π ν/c relation1:

g(ν) = g(k(ν))
d k

d ν
=

V

2 π2

(2 π)3

c3
ν2 =

4π V

c3
ν2 (10.1.3)

1As we promised near Equation 3.5.19
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We must find the density of states for photons. We start from (3.5.20),

g(E) =
4π V

√
2m3

e

h3

√
E ,

we calculated based on the wave-like nature of the electrons in a potential box. We look
for the density of states by frequency of the photons. For the photon E = h ν = c p →
p =
E
c

=
h ν

c
Ee = p2

e/2me. With Eph = h ν = c pph using pph = hnu/c :

Background 10.1.1. • We replace the density of states for the energy g(Ee) with

the density of states for the momentum g(pe). Using Ee =
p2
e

2me

introduce :

dN(E , d E) = g(Ee) dE = g(pe) d pe

g(pe) = g(Ee(pe))
d Ee
d pe

= g(Ee(pe))
pe
me

=

=
4π V

h3
me

√
2me

√
Ee

pe
me

=
4π V

h3
p
√

2me

√
Ee

• and substitute pe into Ee:

g(pe) =
4 π V

h3
pe
√

2me

√
p2
e

2me

=

=
4 π V

h3
p2
e

• then replace pe with p ≡ pph and introduce the frequency dependent density of state

for the photon using the relation p =
h

λ
=
h ν

c
by

g(ν) d d ν = g(p) d p

g(ν) = g(p(ν))
d p

d ν
= g(p(ν))

h

c

• finally substitute ν into p

g(ν) =
4π V

h3

h2 ν2

c2

h

c
=

=
4π V

c3
ν2
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Electromagnetic waves are transverse waves with two independent polarizations, which
means that for every ν frequency there are 2 photon states available. The photon density
of states therefore is

g(ν) =
8 π V

c3
ν2 (10.1.4)

With (10.1.4) (10.1.2) becomes

d n(ν, d ν) =
8π V

c3
ν2 1

eh ν/kB T − 1
d ν (10.1.5)

The average photon energy at ν in a cavity with volume V is h ν · d n(ν, d ν) and the
average energy density u(ν) at frequency ν is

u(ν) =
h ν

V

d n(E , d E)

d ν
=

8 π h

c3

ν3

eh ν/kB T − 1
(10.1.6)

The connection between the energy density and the spectral radiance2 ε(ν, T ) is

u =
4 π

c
ε

which leads to the famous formula of the black-body radiation:

ε(ν, T ) =
c

4π
u =

2hν3

c2

1

ehν/(kBT ) − 1
(10.1.7)

10.2 Interaction of light and matter

In the previous section we dealt with the electromagnetic radiation only and arrived
to the Planck formula by using the Bose-Einstein distribution function. But to really
explain the black-body radiation we have to examine how the equilibrium between the
radiation and the atoms in the wall of the black-body cavity interact. The model we
discuss was first developed by Einstein.

Suppose for simplicity that the walls of the cavity consist of the atoms that have only
two discreet energy levels E1 and E2 > E1. The frequency of the emitted or absorbed
photon is ν = ∆E/h = (E2−E1)/h. Let u(ν) denote the electromagnetic energy density,
and W (A→ B) the probability of the transition per unit time (called probability coeffi-
cients) and per unit energy density from level A to level B! The possible processes, and
their probabilities then are (c.f. Section 4.3.1)

2C.f. Section 2.1
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Transition probability per unit time
Process probability coefficients total
absorption B12 ≡ W (1→ 2) B12 u(ν)
induced emission B21 ≡ W (2→ 1) B21 u(ν)
spontaneous emission A12 A12 - independent of u(ν)

The number of transitions per unit time N1→2 and N2→1 will be proportional to the
number of atoms in the corresponding states (N1 and N2):

N1→2 = N2 [A21 +B21 u(ν)] emission

N2→1 = N1B12 u(ν) absorption

The rate of change of the number of excited atoms then

dN2

d t
= N1B12 u(ν)︸ ︷︷ ︸

absorption

−N2 [A21 +B21 u(ν)]︸ ︷︷ ︸
emission

In equilibrium the number of excited atoms is constant:

(
dN2

d t
= 0

)
, therefore

N2

N1

=
B12 u(ν)

[A21 +B21 u(ν)]
(10.2.1)

On the other hand atoms are (in principle) distinguishable particles therefore the Maxwell-
Boltzmann statistics can be used in thermal equilibrium, i.e.

N2

N1

= e
− (E2−E1)

kB T = e−h ν/kB T (10.2.2)

From (10.2.1) and (10.2.2)

B12 u(ν) eh ν/kB T = [A21 +B21 u(ν)], (10.2.3)

from which we can express the electromagnetic energy density:

u(ν) =
A21

B12 eh ν/kB T −B21

=
A21

B12

eh ν/kB T − B21

B12

(10.2.4)

The common name for the A12, B12 and B21 probability coefficients is Einstein coeffi-
cients. Comparing this with (10.1.6) we find3 that

B21 = B12 and

A21 =
8π ν

c3
B21

3The Planck formula is valid for all frequencies, while these are only valid for the given two energy
levels. If an atom has multiple levels, then similar formulas are valid for any two of them, but still
the possible frequency spectrum would not be continuous. But, as we will see in solid state physics,
the possible energy levels in a solid made of a large number of atoms are contained in quasi-continuous
energy bands, therefore the frequency spectrum will also be quasi-continuous.
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The probability of the absorption is equal to the probability of the induced emission,
and the ratio of the probabilities of the spontaneous and induced emissions per unit time
is

A21

B21

= e
h ν
kB T − 1

As a consequence

Important 10.2.1. • For light and higher frequency electromagnetic radiation
h ν

kB T
�

1 the induced emission is negligible in thermal equilibrium.

• In the region of microwaves and below
h ν

kB T
� 1 and the induced emission is

dominant.
Photons emitted in the induced emission process will have the same frequency and

phase as the absorbed photons, therefore the induced emission creates coherent elec-
tromagnetic radiation. While photons emitted in the spontaneous emission process are
incoherent.

10.3 Laser operation.

10.3.1 Optical amplification

The fact that electromagnetic radiation (including visible light)from induced (stimu-
lated) emission is coherent with the absorbed radiation it can be used to create coherent
radiation sources. Depending on the frequency range such a device is called either a
laser (Light Amplification by Stimulated Emission of Radiation) or a maser (Microwave
Amplification by Stimulated Emission of Radiation4).

As we saw for frequencies in the visible range and above the induced emission is
usually negligible. The ratio of the number of transitions per unit time with reordering
(10.2.1) and using that B12 = B21:

N2→1

N1→2

=
N2

N1

[A21 +B21 u(ν)]

B12 u(ν)
=
N2

N1

(
1 +

A21

B21 u(ν)

)
(10.3.1)

In thermal equilibrium N2 < N1, but in an open medium (the gain medium) that is
not thermal equilibrium using special non-thermal external excitation it is possible to

4In modern usage ”light” broadly denotes electromagnetic radiation of any frequency, not only visible
light, hence we can talk about infrared laser, ultraviolet laser, X-ray laser, and so on. Because the
microwave predecessor of the laser, the maser, was developed first, devices of this sort operating at
microwave and radio frequencies are referred to as ”masers” rather than ”microwave lasers” or ”radio
lasers”.
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artificially reverse this so that the population of the higher level will be the larger one,
i.e. N2 > N1. Such excitation is called “pumping”. This is called population inversion.
A small perturbation of such a metastable system can start the de-excitation process
(spontaneous emission) whose end result will be the equilibrium state. This perturba-
tion can be caused by a light of suitable frequency. Because of the population inversion
the probability of induced emission (proportional to N2→1) is much larger than the prob-
ability of absorption and as we saw the emission will be coherent with the perturbation.
This process is an optical amplification: a small intensity light enters the gain medium
and a higher intensity coherent light leaves it. The gain medium therefore is itself an
optical amplifier.

10.3.2 Laser operation

A laser which produces light by itself is technically an optical oscillator rather than an
optical amplifier as suggested by the acronym. When an optical amplifier is placed inside
an optical resonator5, one obtains a laser oscillator. This optical resonator (see Fig. 10.1)
usually consist of two parallel mirrors and the coherent light beam of the optical amplifier
travels to and fro between these in both direction. This way a if the amplification (gain)
is larger than the resonator losses (caused by absorption and diffraction) the power of the
light bouncing between the two mirrors increases exponentially. As more and more atoms
will go back to the lower energy state the gain will decrease, until the losses overcome
the gain. The level of gain equal to the losses is the laser treshold.

Simple 2 level systems cannot be used in lasers, because the pumping source not only
provides energy for excitations, but at the same type it creates the induced emission
itself, effectively negating the pumping effect. At least 3 levels are required as seen in
Fig. 10.2 a. The pumping creates a popular inversion on level E3 with short occupation
life time, from which the electrons almost immediately decay onto the metastable level
E2. In a 3 level system a perturbation of frequency (E2 − E1)/h starts the laser process.
3 level lasers work only in pulsed operation mode, because pumping is a linear process,
therefore it cannot compensate for the exponential process of the laser emission6.

In a 4 level system (Fig. 10.2 b) the laser process occurs between the metastable level
E3 and the short lifetime level E2. This is the model of a continuous operation mode laser,
because in this case the ground level may have a linear filling up rate from electrons that
participated in the laser process therefore the linear pumping process can maintain a
steady (dynamic equilibrium) state.

5The optical resonator is sometimes referred to as an ”optical cavity”, but this is a misnomer: lasers
use open resonators as opposed to the literal cavity that would be employed at microwave frequencies
in a maser.

6Naturally any laser can be used in pulse operation mode by either switching it on and off or by
using pulsed pumping, but 3 level lasers cannot work in continuous operation mode.
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Figure 10.1: Components of a typical laser. The ”high mirror” is a perfect mirror, while
the ”output coupler” (OC) is only partially reflecting, the reflectivity required depends
on the gain medium. E.g. for He-Ne lasers the reflectivity must be at least 99%, while
nitrogen lasers have extremely high gain and do not require any OC at all.

Figure 10.2: Simplest laser level structures. a) 3 level laser, b) 4 level laser
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10.3.3 Types of lasers

There are very different types of lasers, possessing properties like parallelism, monochro-
matic radiation, high average or peak power, very short pulse length. In size they vary
from microscopic semiconductor lasers to the building sizes ystem used for laser research.

Gas lasers
the gain medium is a gas (e.g. C O2) or gas mixture (e.g. He-Ne). He-Ne lasers are
able to operate at a number of different wavelengths, however the vast majority
of gas lasers are engineered to lase at 633 nm; these relatively low cost but highly
coherent lasers are extremely common in optical research and educational labora-
tories. Commercial carbon dioxide (CO2) lasers can emit many hundreds of watts
in a single spatial mode which can be concentrated into a tiny spot. This emission
is in the thermal infrared at 10.6µm; such lasers are regularly used in industry for
cutting and welding. The efficiency of a CO2 laser is unusually high: over 10%.

Chemical lasers
these lasers are powered by a chemical reaction permitting a large amount of energy
to be released quickly. Such very high power lasers are especially of interest to the
military, however continuous wave chemical lasers at very high power levels, fed by
streams of gasses, have been developed and have some industrial applications.

Solid-state lasers
the gain medium is a crystalline or glass rod containing impurity ions (the accepted
terminology is that they are doped with this impurities, usually called dopants) that
provide the required energy states. In fact the first working laser was a ruby laser,
made from ruby (chromium-doped corundum). The population inversion is actu-
ally maintained in the ”dopant”, such as chromium or neodymium. These materials
are pumped optically using a shorter wavelength than the lasing wavelength, often
from a flashtube or from another laser. These lasers are also commonly frequency
doubled, tripled or quadrupled, in so-called ”diode pumped solid state” or DPSS
lasers. Under second, third, or fourth harmonic generation these produce 532 nm
(green, visible), 355 nm and 266 nm (UV) beams. This is the technology behind
the bright laser pointers particularly at green (532 nm) and other short visible
wavelengths. Some dped crystal (e.g. Ti:GaS) have very broad amplification spec-
tral range that allows generation of very short pulses ub the range of femtoseconds
(1015sec).

Semiconductor lasers
are diodes which are electrically pumped. Recombination of electrons and holes
created by the applied current introduces optical gain. Reflection from the ends
of the crystal form an optical resonator, although the resonator can be external to
the semiconductor in some designs. Commercial laser diodes emit at wavelengths
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from 375 nm to 3500 nm. Low to medium power laser diodes are used in laser
pointers, laser printers and CD/DVD players. Laser diodes are also frequently used
to optically pump other lasers with high efficiency. The highest power industrial
laser diodes, with power up to 10 kW (70dBm) are used in industry for cutting and
welding. They serve also as light sources for fiber optic communication systems
that are the technical foundation of the internet.

Fiber lasers
These are olid-state lasers or laser amplifiers where the light is guided due to the
total internal reflection in a single mode optical fiber. Pump light can be used more
efficiently by creating a fiber disk laser, or a stack of such lasers. Fiber lasers have
a fundamental limit in that the intensity of the light in the fiber cannot be so high
that optical nonlinearities induced by the local electric field strength can become
dominant and prevent laser operation and /or lead to the material destruction of
the fiber. This effect is called photodarkening.

Free electron lasers’
or FELs, generate coherent, high power radiation, that is widely tunable, currently
ranging in wavelength from microwaves, through terahertz radiation and infrared,
to the visible spectrum, to soft X-rays. They have the widest frequency range of
any laser type. While FEL beams share the same optical traits as other lasers,
such as coherent radiation, FEL operation is quite different. Unlike gas, liquid,
or solid-state lasers, which rely on bound atomic or molecular states, FELs use a
modulated relativistic electron beam as the lasing medium, hence the term free
electron.
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Chapter 11

Fundamentals

11.1 Categorization of Solids

Solids are composed of atoms or molecules at fixed relative positions. Bonding between
atoms ensures that the form and volume of solids remain the same in a large temperature
and pressure range for a long period of time. (There are exceptions: glass behaves like a
fluid over a long period – hundreds of years – of time.)

Important 11.1.1. The number of atoms in 1cm3 of a solid is about 1024.

There are two kinds of atomic ordering in solids:

Short Range ordering:

First- or second-nearest neighbors of an atom are arranged in the same structure. At
distances that are many atoms away, however, the positions of the atoms are uncorrelated.

Long Range Ordering:

Once the positions of an atom and its neighbors are known at one point, the place of
each atom is known precisely throughout the material.

Solids that have short-range order but lack long-range order are called amorphous,
while a solid is crystalline if it has long-range order.
Many solids are crystalline in nature, that is, the atoms are arranged in a regular three-
dimensional periodic pattern. There is a wide variety of crystal structures formed by
different elements and by different combinations of elements.

In the following we will concentrate on crystalline solids.
Another possible categorization is by electric conductivity:
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Conductors (metals) and insulators

Materials are conductors if the atomic orbitals significantly overlap, otherwise they are
insulators. As we will see later on the available electronic energies form energy bands in

Figure 11.1: Atomic orbitals in an insulator (Ne) and a metal (Na)

every material. These are possibly separated by a band gap in which there are no energy
levels available for electrons.

11.2 Bonding in crystals

Although the forces that hold a solid together are electrostatic in nature, the bonding
can only be explained using quantum mechanics. In solids the bonding strength is about
the same as in molecules.
There are several categories of solids depending on the bond type.
We will discuss the following bond types:

Bond type Examples
covalent bond H2, CO2, diamond
molecular bond P4, Cl2, hydrocarbons (HnCm), fullerenes
ionic bond NaCl, MgO,CaCo3

hydrogen bond ethanol (C2H6O), diethyl ether (C4H10O), water
metallic bond Al, Fe
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11.2.1 Covalent Crystals

Some electrons are not sharply localized around the nuclei and their spatial distribution
is not uniform, there are preferred directions with high electron density (these are called
in chemistry as bonds)
Properties of covalent bonded crystals:

• they have a rigid electronic structure

• they are hard materials

• they are bad heat and electric conductors (there are no free electrons
available)

• they have high frequency lattice vibrations (with excitation energies in
the infrared (IR) range)

• they have a large electronic band gap therefore they are transparent for
visible light

Example: diamond. the C atoms have 4 valence electrons per atom in sp3 hybrid orbitals
which form localized bonding electron pairs. The band gap is 5.5. eV

Figure 11.2: a) Electronic charge distribution by line density in diamond (numbers:
electrons per cubic angstrom) on the plane displayed in b). Electron density is very high
where the plane intersects a bond.
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11.2.2 Ionic Crystals

The positively and negatively charged ions are held together by electrostatic forces. The
ions themselves are almost impenetrable as a consequence of the Pauli principle. The
attraction between the oppositely charged ions tries to pull them together. When the
electronic charge distributions (i.e. the wave functions of the valence electrons) would
start to overlap, which would violate the exclusion principle, the electron configuration
must change to prohibit it. This can be described as an appearance of an excess charge
on the next free energy level. Because the ions have stable closed shells this requires
much energy.
Properties of ionic crystals:

• there are no free electrons therefore they are bad heat and electric conductors

• they are rigid and brittle

• the bonds are strong ⇒ high melting point

• the lattice vibration frequencies lies in IR (ionic bonds are weaker than covalent
bonds)

• they have closed shells ⇒ they are diamagnetic (C.f. Section 19.1)

Purely ionic bonds cannot exist, as the proximity of the entities involved in the bond
allows some degree of sharing electron density between them. Therefore, all ionic bonds
have some covalent character. Thus, an ionic bond is considered a bond where the ionic
character is greater than the covalent character. Ionic crystals may be categorized into
sub-groups:

Example 11.1. Alkali Halides (I-VII ionic crystals1)

+ ion - Li+, Na+, K+, Rb+orCs+

- ion - F−, Cl−, Br−orI−

They usually crystallize in sodium chloride structure, except CsCl, CsBr and CsI which
are most stable in the cesium chloride structure.

1When discussing periodic table groups, semiconductor physicists always use the older notation,
instead of the current IUPAC group notation. For example, the carbon group is called ”Group IV”, not
”Group 14”
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Figure 11.3: a) sodium chloride, b) cesium chloride, c) zincblende structure. a side of
conventional cubic cell, d nearest neighbor distance (sodium chloride d = a/2, cesium
chloride d =

√
3a/2, zincblende d =

√
3a/4)

II-VI ionic crystals

Double ionized elements from columns II and VI. + ion - Be, Mg, Ca, Sr, Ba
- ion - O, S, Se, Te
Usually sodium chloride structure, except BeS, BeSe and BeTe which are most stable in
the zincblende structure.

III-V mixed ionic and covalent crystals

+ ion - Al, Ga, In
- ion - P, As, Sb
Usually zincblende structure.
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Figure 11.4: Schematic representation of the continuity from perfect covalent to perfect
ionic crystals. a) perfectly covalent germanium, b) covalent gallium arsenide, c) ionic
calcium selenide, d) perfectly ionic potassium chloride

11.2.3 Hydrogen bond crystals

Hydrogen is unique in 3 important ways:

• The H+ ion (proton) is small (diam. 10−13 cm) about 10−5 times smaller
than any other ion core. ⇒ it may sit on any other ion

• H is but 1 electron shy from stable helium configuration, which is the
only one that has just 2 electrons on the outer shell ⇒ it cannot form
covalent bonds

• The first ionization potential is high (-13.6 eV C.f. Li:5.39 eV, Na: 5.14
eV, K: 4.34 eV) ⇒ does not behave as an alkali metal ion

Example: water ice
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Figure 11.5: Crystal structure of a selected ice phase. The large circles are oxygen, the
small one are the bonding protons.

11.2.4 Molecular crystals

This type of crystals form of atoms with no electric dipole moment⇒ no electrons of
uncompensated spin.
Properties:

• extreme week bonding

• bad heat conductors

• bad electric conductors

• low melting point

• low boiling point

• easily compressible and deformable
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Best examples are the elements in column VIII of the periodic table. Noble gases (except
He) crystallize in this system. The solid is held together by very weak forces called van
der Waals forces whose origin is explained qualitatively in Appendix 23.1.

Examples: elements in group V,VI and VII has both covalent and molecular character
(exceptions: metallic polonium, semi-metals antinomy and bismuth)

11.2.5 Metals

For metals (conductors) the covalent bonds between atoms expand to cover the whole
crystal: electron density is appreciable throughout the interstitial regions2 forming the
so called electron gas. The atoms have relatively low ionization energies and lose their
valence electrons because of the perturbation of other atoms as the crystal is formed.
Properties of metals:

• ionic cores are small and are surrounded by almost free electrons

• good heat and electric conductors

• excitation of electrons is easy in every frequency range ⇒ they are opaque and
have high reflectivity

Visualization of the bond types

11.3 Crystal structures, unit cells and lattices.

Crystals are materials with long range ordering, i.e. there are periodic equivalence points
in the material from which the surroundings of any atom look like the same.

The periodicity of crystals have important consequences concerning mechanical, elec-
tromagnetic and thermal properties of solids.

There are many ordinary solids we encounter in everyday life in which there exists a
surprising degree of crystallinity. For example, a bar of soap, a chocolate bar, candles,
sugar or salt grains, even bones in the human body, are an aggregate of crystallites of
sizes between 0.5 and 50µm.

In these examples, what determines the properties of the material is not so much
the structure of individual crystallites but their relative orientation and the structure of
boundaries between them. Even in this case, however, the nature of a boundary between
two crystallites is ultimately dictated by the structure of the crystal grains on either side
of it.

2Regions between the nuclei
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Figure 11.6: Highly schematic 2D comparison of different bond types: The small circles
represent the positively charged nuclei, the shaded parts where electron density is appre-
ciable (but not uniform) a) molecular bond - e.g. argon, b) ionic bond - e.g. potassium
chloride, c) covalent bond - e.g. carbon, d) metallic bond- e.g. potassium

Important 11.3.1. Because of the long range ordering every crystal must have trans-
lational symmetry.

Let r1 and r2 two equivalent points separated by the vector R

r2 = r1 + R

then if we select a 3rd point r3 so, that

r3 = r2 + R

then point r3 will be equivalent with both r2 and r1. This definition however requires
mathematically the crystal to be perfect and infinite.

In real crystals this symmetry is broken at the surface and by any imperfections
present in the solid. Because the interstitial (interatomic) distances for macroscopic
crystals are much smaller than the size of the crystal relatively very few atoms are at
or near the surface3. Inside the solid in first approximation we disregard these surface
atoms and consider the crystal as an infinite one.

3Bulk atom concentration is about 1024 atoms/cm3 , while at the surface the atom concentration is
about 1015 atoms/cm2
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A crystal may contain just a single kind of atom (monatomic crystal), but it may
contain groups of atoms or even molecules from any number of any kind of atoms.

Important 11.3.2. To simplify the description we may separate the physical structure
of the crystal to a system of geometrical points, the so called point lattice and the basis
containing atoms or molecules, which are located at every one of these geometrical points.

Because of the translational symmetry there exist regions (volumes of space) of the
crystal called cells containing one or more atoms from which the whole infinite crystal
may be built using only the translational symmetry. These volumes may be represented
by 1 point in space (ro)and by 3 non-coplanar vectors a1, a2, a3 so that the origin rR of
any other such cell may be represented by

rR = r + R, where (11.3.1)

R = n1 a1 + n2 a2 + n3 a3 (11.3.2)

The set of points determined by (11.3.2) using all positive and negative numbers for
n1, n2, n3 forms the point lattice, and the vectors a1, a2, a3 are the primitive vectors.

Important 11.3.3. A point lattice that satisfies condition (11.3.2) is called a Bravais
lattice (Auguste Bravais - 1845).

The primitive vectors are said to generate or span the lattice.

Important 11.3.4. The volume of space that when translated through all of the point
lattice vectors just fills the complete space without overlap or without leaving voids is
called a primitive cell or a primitive unit cell.

These are not unique as can be seen in Fig. 11.7.
The selection of the primitive vectors is also not unique (Fig. 11.8).

Important 11.3.5. The coordination number is the number of nearest neighbors (the
number of lattice points which are closest to a selected point) in a lattice. The lattice
constant (or lattice parameter is the distance between the origin of the neighboring unit
cells.

Putting the basis into each lattice points we arrive to the complete crystal structure4.

4As seen in Fig. 11.9 the whole plane (space) may be filled with any shape.
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Figure 11.7: Various selections of primitive cells for a 2D Bravais lattice

Figure 11.8: Various selections of primitive vectors for a 2D Bravais lattice

Example 11.2. An infinite number of points are aligned along a line so that the distance
between the n-th and (n+1)-th points is dn = 7.8 [(n mod 2)·0.21+(1−n mod 2)·0.17] nm,
where a mod b is the remainder of the integer divison a/b. May these points describe
a one dimensional linear “crystal” and if they do then what do the neighboring points
correspond to or if they not why not? Solution If n is an even number then n mod 2
is 0, if it is an odd number then it is 1. From the definition above the
distances between consecutive points are d1 = 7, 8 · 1.7 = 1.33nm for even n/s
and d2 = 7.8 · 2.1 = 1.64nm for odd n. These distances are repeated, which
means this structure has a translational symmetry, i.e. it may correspont to
a crystal. These points may refer to atoms in a diatomic crystal with a two
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Figure 11.9: A lattice with a basis. (picture by Escher, Maurits). Imagine that the
atoms of the basis are the dots on the butterflies’s wings, and the point lattice is the one
determined by the vectors a1 and a2.(Can you find a smaller basis for this “crystal”?)

atom basis and a base vector of d1 + d2 = 2.97nm

The same crystal may be described with several different selection of point lattice
and basis (Fig. 11.10). A cell of a point lattice may contain any number of points.

Important 11.3.6. Primitive cells contain either a single point inside the cell’s volume,
or – if the cell shares several points on its surface with neighboring cells – the sum of the
points divided by the number of cells that share them must be 1 (see Problem 11.4).
All cells containing more than one point are called unit cells.

Conventional unit cells are cells that have all of the symmetries of the crystal.

11.4 Symmetries. Bravais lattices.

In order to describe 3 dimensional periodic structures it is useful to consider the sym-
metries of these arrangements.

Important 11.4.1. All crystals must have translational symmetry.
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Figure 11.10: Two possible primitive cells for a 2D Bravais lattice

But translational symmetry is not the only symmetry possible. There are many other
type of symmetries that can coexist with translational symmetry5. These include:

• rotation around an axis by degrees 60, 90, 120, 180.
–These are called: 6-fold, 4-fold, 3-fold, 2-fold rotations respectively.
Other (e.g. 5-fold) rotations are not compatible with translational sym-
metry therefore canont be present in a crystal6, because the crystallo-
graphic plane may not be covered with polygons corresponding to those
symmetries (e.g. pentagons) without leaving voids or without overlap7.

• mirror symmetry
– reflection across a plane

• inversion through a point (center of symmetry)

• improper rotation or rotoinversion
– Combinations of a rotation with inversion through a point (may also
be described as a rotation about an axis and a reflection in a plane
perpendicular to the axis - or rotation and inversion in a point). Objects
that have rotoinversion symmetry have an element of symmetry called
a rotoinversion axis.

5There are 32 possible combinations of the symmetry elements which are consistent with the transla-
tional symmetry. These 32 combinations define the 32 crystal classes. Each crystal must belong to one
of these. These classes may be grouped into 7 crystal systems, which are used for Bravais lattices (see
below). Combining the 32 crystal classes with the 14 Bravais lattices all of the 230 possible symmetry
groups (space groups) may be generated. As an example: Si is in group 225.

6Although we may talk about the trivial case of 1-fold rotation (rotation by 360o) too.
7It is still an unsolved mathematical problem whether it is possible to find a set of shapes with

five-fold symmetry that together will tile the plane. This is the five-fold tiling problem.
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Example 11.3. Enumerate the symmetries the following “crystal” has.

Solution

This “crystal” has the following symmetry elements:

• 1 - 4-fold rotation axis (A4)

• 4 - 2-fold rotation axes (A2), 2 cutting the faces and 2 cutting
the edges

• 5 mirror planes (m), 2 cutting across the faces, 2 cutting
through the edges, and one cutting horizontally through the
center.

• There is a center of symmetry (i).

Some of these symmetries may be found in architecture (e.g. on many mosaics of Al-
hambra, Spain) and in the work of the Dutch graphics artist Maurits Cornelis Escher.

The name Bravais lattice may mean:

• The infinite set of discrete points with an arrangement and orientation
that appears exactly the same, from whichever of the points the array
is viewed8.

• The set of position vectors in (11.3.2)

• The set of translations determined by the position vectors

There exist 14 Bravais lattices corresponding to the possible combinations of symmetries.
These are depicted in Fig.11.11.
But not all lattices are Bravais lattices, see Fig.11.13.

In Appendix 23.2 we present some example Bravais lattices.

8For this reason the vertices of a 2D honeycomb structure seen in Fig.11.13 do not form a 2D Bravais
lattice. But the same structure with a diatomic basis does.
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Figure 11.11: The 14 Bravais lattices
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Figure 11.12: The hexagons do not form a Bravais lattice, because the orientation of the
points is not the same when viewed from P or Q. An alternative description with a 2
point basis (heavy solid lines) however is a Bravais lattice.

Figure 11.13: Two different primitive vector sets for the bcc lattice. a) a1 = aex, a2 =

aey, a3 = aez b) a1 =
a

2
(ey + ez − ex), a2 =

a

2
(ez + ex − ey), a3 =

a

2
(ex + ey − ez)

Example 11.4. Calculate the surface density of atoms in a bcc crystal if the lattice
constant is a = 0.5nm (= 5 ) and the surface plane cuts the cells diagonally and it is
perpendicular to the plane of the a1 and a2 vectors9. Solution

9i.e. it is a (110) plane - see Miller indices below
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The plane in question goes through 4 corner atoms and the middle atom of
the cell. Only 1/4th of each of the cross sections of the corner atoms belong
to our cell, while the cross section of the middle atom is completely inside it.
Therefore the number of atoms on this plane is 2. The area of the plane is
a · a
√

2, so the density of atoms is

2

a2
√

2
=

√
2

(0.5 10−9)2
= 5.66 1018 atoms

m2

11.5 The Wigner-Seitz cell

An important kind of unit cell is the Wigner-Seitz (WS) primitive cell, which is the
region around any lattice point that is closer to that point than to any other lattice
point. For 3D lattices the shape of Wigner-Seitz cell is much more complicated. The

Figure 11.14: Wigner-Seitz cell for a 2D Bravais lattice

Wigner-Seitz cell will be very important in the study of the band structure of solids (see
refBrillouin-zone) where it will be called the Brillouin zone.
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Figure 11.15: Wigner-Seitz cell for a fcc (left) and bcc (right) Bravais lattices. The
Wigner-Seitz cell for the fcc lattice is not the conventional cubic cell but one in which
lattice points are at the center of the cube and at the center of the 12 edges. Each of
the faces is perpendicular to the line joining the central point on the center of an edge.
The WS cell for the bcc lattice is the conventional cell with hexagonal and square faces.
The hexagons are regular.

11.6 Non-ideal crystals. Crystal defects

In real crystals the crystal structure may deviate from the ideal periodic one because of

• lattice vibrations

• point defects

• line defects

• planar defects

• bulk defects

• finite crystals

These may change the mechanical, electrical and optical properties of solids.

11.6.1 Point Defects

Point defects are defects that occur only at or around a single lattice point. They are
not extended in space in any dimension. Strict limits for how small a point defect is, are
generally not defined explicitly, but typically these defects involve at most a few extra
or missing atoms.

Kinds of point defects:
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Figure 11.16: Point defects in a GaAs crystal. VAs and VGa denotes As and Ga vacancies,
index i refer to interstitial atoms, index s to foreign substitutional atoms of which In
atoms are larger and B atoms are smaller than Ga or As atoms, and AsGa and GaAs
denote substitutional Ga and As atoms respectively.

• Vacancy or Schottky defects are lattice sites which would be occupied in a perfect
crystal, but are vacant. Statistical physics and thermodynamics requires that in
equilibrium all crystals have them10. At T = 300K the ratio of the number of
vacancies to the total number of atoms is about 10−17, at T = 1000K about 10−5)

• Interstitial defects are atoms that occupy a site in the crystal structure at which
there is usually not an atom. They are generally high energy configurations. Small
atoms in some crystals can occupy interstices without high energy, such as hydrogen
in palladium (used in storage cells).

• Frenkel pair or Frenkel defect. A nearby pair of a vacancy and an interstitial caused
when an ion moves into an interstitial site and creates a vacancy.

10The equilibrium concentrations can be calculated by either minimizing the Gibbs free energy or
maximizing the entropy.
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• Substitutional atoms when a foreign (impurity) atom occupies a lattice position.

• Antisite defects. Occur in an ordered alloy or compound when atoms of different
type exchange positions.

• Topological defects Regions in a crystal where the normal chemical bonding envi-
ronment is topologically different from the surroundings.

11.6.2 Line defects (Dislocations)

Kinds of line defects are the different dislocations. The magnitude and direction of
the lattice distortion in a dislocation can be described by the so called Burgers vector.
Imagine a perfect crystal and a closed path in it, then introduce a dislocation in the
area surrounded by this path. The dislocation will break this path. The vector between
connecting the two ends of this severed path is the Burgers vector.

• Edge dislocation: a plane of atoms terminate in the crystal. For edge dis-
locations the Burgers vector and the dislocation line are at right angles
to each other.

Figure 11.17: Edge dislocation. The blue line denotes the dislocation line. b is the
Burgers vector.

• Screw dislocations : the Burgers vector is parallel to the dislocation line

• Mixed dislocations : dislocations with the characteristics of both edge
and screw dislocations, in this case the line direction and Burgers vector
are neither perpendicular nor parallel

Dislocation can be created by plastic deformations. They cause mechanical stress
and may move in the crystal until they interact with other dislocations. When many
dislocations meet the crystal becomes brittle. 11 Dislocations need not be pure line or

11That is the reason why a copper wire can be broken by bending it this way and that at the same
point. Bending creates dislocations. After a time the number of dislocation of the point of bending
becomes so large that the wire will break.
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Figure 11.18: Screw dislocation. Left: ideal crystal, right: screw dislocation.

pure screw dislocations, they may also be mixed dislocations exhibiting the properties of
both of these.

Dislocations can be observed using transmission electron microscopy, field ion mi-
croscopy and atom probe techniques.

Figure 11.19: Transmission Electron Micrograph of dislocations

11.6.3 Planar defects

Kinds of planar defects are:

• Grain boundaries usually occurs when two crystals begin growing sepa-
rately and then meet.

• Antiphase boundaries occur in ordered alloys: in this case, the crystal-
lographic direction remains the same, but each side of the boundary has
an opposite phase: For example, if the ordering is usually ABABABAB,
an antiphase boundary takes the form of ABABBABA.
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• Stacking faults are one or two layer interruption in the stacking se-
quence, for example, if the sequence ABCABABCAB were found in an
fcc structure.

11.6.4 Bulk defects

Defects in the volume of the crystal. They may be:

• Voids small regions where there are no atoms, and can be thought of as
clusters of vacancies.

• Precipitates Impurities can cluster together to form small regions of a
different phase.

11.6.5 Effect of defects on the properties of crystals

Crystal defects affect many properties of solids. They may modify the mechanical, elec-
trical, thermal, magnetic and chemical properties. This can be used to our advantage,
but may also create problems. Whether the advantages or disadvantages dominate is
usually determined by the type and concentration of these defects. The best examples
when they work at our advantage are found in semiconductor devices (see Section 16.2.1),
where the introduction of very few foreign atoms in otherwise very pure crystals hugely
modifies their electrical properties.

Wrought iron12 has special properties not found in other ferrous metals, mostly be-
cause of the slag inclusions it contains. A freshly fractured metal contains these in a
surface concentration of about 40 000 per cm2. The slags contain most of the impurities
present in the material, therefore wrought iron is purer than plain carbon steel.

12Wrought iron are no longer produced commercially. The last forge which produced it was closed in
1973.
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Figure 11.20: Optical Micrograph of wrought iron showing dark slag inclusions in ferrite.
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Chapter 12

Determination of crystal structures
by X-ray diffraction

12.1 Reciprocal lattice. Miller indices.

The structure of crystals can be studied using electromagnetic waves (X-rays) with wave-
lengths in the nanometer range comparable with the lattice constants. Diffraction and
interference restricts the wavelengths and wave vectors of electromagnetic waves that can
propagate through the periodic structure. The possible discreet wave vectors determine
another periodic structure called the reciprocal lattice. Let us consider a plane wave
ei(ωt+kr) with wave vector k in any direction that propagates through a Bravais lattice
with lattice constant R. We can select a set of those K vectors that correspond to plane
waves with the periodicity of the lattice, i.e. for which

eiK·(r+R) = eiK·r ∀r (12.1.1)

from which the equation of the possible K vectors is

eiK·R = 1 ∀K (12.1.2)

or equivalently:

K ·R = 2π (12.1.3)

The fact that reciprocal vectors and wave vectors are equivalent is very important for
crystallography as well as for the theory of conductivity.

12.1.1 The reciprocal lattice.

The possible values of K can be considered as points of a
”

k-space” with axes k1, k2, k3,
where they determine another Bravais lattice, the so called reciprocal lattice of the given

203



Bravais lattice. The original Bravais lattice is called the direct lattice. That the set of K
vectors is itself a Bravais lattice can be seen from (12.1.2) or (12.1.3) because the letters
K and R may be interchanged in the formula. This also proves that the reciprocal lattice
of the reciprocal lattice is the direct lattice.

Let us denote the three primitive lattice vectors of the reciprocal lattice with b1,
b2 and b3 respectively. As these are vectors of the reciprocal lattice (12.1.3) must be
fulfilled. If each of these is related to the base vectors a1, a2, a3 of the direct lattice by

bi · aj = 2πδij (12.1.4)

then they can be expressed with the following algebraic formulas1 :

b1 = 2π
a2 × a3

a1 · (a2 × a3)

b2 = 2π
a3 × a1

a2 · (a3 × a1)

b3 = 2π
a1 × a2

a3 · (a1 × a2)

(12.1.5)

It is easy to show2 that the inverse of these formulas are

a1 = 2π
b2 × b3

b1 · (b2 × b3)

a2 = 2π
b3 × b1

b2 · (b3 × b1)

a3 = 2π
b1 × b2

b3 · (b1 × b2)

(12.1.6)

From definition (12.1.5) it follows that the length of the l-th reciprocal base vector is

bl = |bl| =
2 π

al
(12.1.7)

Important 12.1.1. It is generally true that the same relation holds between correspond-
ing lengths of the direct and reciprocal lattice:

|ghkl| =
2 π

|rijm|
or |rijm| =

2 π

|ghkl|
(12.1.8)

where rijm = i a1 + j a1 +m a3 and ghkl = hb1 + k b1 + l b3 are vectors in the direct and
the reciprocal lattice respectively related by using formulas (12.1.5).

1To use symmetric formulas we used the property of the triple scalar product that a1 · (a2 × a3) =
a2 · (a3 × a1) = a3 · (a1 × a2). For this reason the triple scalar product sometimes written as a1a2a3.

2For this we need the rule of the vector triple product: A× (B×C) = (A ·C)B− (A ·B)C
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Example 12.1. Prove that the reciprocal lattice of an fcc lattice is a bcc lattice!
Solution Start with the following selection of primitive fcc lattice vectors:

Then the 3 primitive vectors in (12.1.5) are

a1 =
a

2
(i + k)

a2 =
a

2
(i + j)

a3 =
a

2
(j + k)

(12.1.9)

Determine first the denominator in (12.1.5), which is the volume of the prim-
itive cell:

a1 · (a2 × a3) =
a

2
(i + k) ·

(a
2

(i + j)× a

2
(j + k)

)
=
a3

8
(i + k) · ((i + j)× (j + k))

=
a3

8
[i · (i× j) + i · (i× k)

+ i · (j× k) + k · (i× j)

+ k · (i× k) + k · (j× k)]

=
a3

8
(i · (j× k) + k · (i× j))

here we used that i, j and k are perpendicular to each other. Furthermore

i× j = k, j× k = i and k× i = j

Therefore

a1 · (a2 × a3) =
a3

4
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Now work with the numerators using the same formulas for i, j and k:

a2 × a3 =
a2

4
(k− j + i)a3 × a1 =

a2

4
(i− k + j)a1 × a2 =

a2

4
(j− i + k)

Which gives us the reciprocal base vectors:

b1 =
2π

a
(
a2

4
(k− j + i)

b2 =
2π

a
(i− k + j)

b3 =
2π

a
(j− i + k)

(12.1.10)

Compare (12.1.10) with vectors in Fig. 11.13 to see that we, in fact got the
primitive vectors of a bcc lattice. The only difference is that the length is
now. 2π

a
.

The volume of the primitive cell in a reciprocal lattice is (2π)3

V
, where V is the volume

of the primitive cell of the original lattice. Because the reciprocal lattice of a reciprocal
lattice is the original (direct) lattice, we also proved that the reciprocal lattice of a bcc
lattice is an fcc lattice.

Brillouin zone

Because the reciprocal lattice is an ordinary (point) lattice itself all of the different kind
of unit cells can be construed with the reciprocal lattice. There is a single difference
though:

Important 12.1.2. The Wigner-Seitz cell of a reciprocal lattice is called the first Bril-
louin zone.

12.1.2 Miller indices

Important 12.1.3. Lattice planes are imaginary planes in the crystal that contain at
least 3 non co-linear points. All such planes contain an infinite number of lattice points.

To characterize planes and directions in crystal (Bravais) lattices we use a notation
system called Miller indices.

Let a1, a2 and a3 be the base vectors in the direct lattice, while b1, b2 and b3 denote
the corresponding base vectors of the reciprocal lattice. Any direction or lattice plane
can be described by these vectors. Because crystals are not continuous media meaningful
vectors and lattice planes require the use of only integer numbers as coefficients. These
integer numbers are usually denoted by the letters h, k, l.

The following notations are used in crystallography:
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For lattice planes:

(hkl) - is called the Miller index of the family of parallel lattice planes per-
pendicular to the direction given by the reciprocal vector3

ghkl = hb1 + k b2 + l b3.
By convention, negative integers are written with a bar above them, e.g.
(123̄) for h = 1, k = 2 and l = −3, unless they are larger than 9, but
such indices are rare.
The integers are usually written in lowest terms, i.e. their greatest com-
mon divisor should be 1. This means that the corresponding reciprocal
vector is the shortest one between neighboring planes. From (12.1.8)
the distance dhkl between adjacent lattice planes is

dhkl =
2π

|ghkl|
=

1√
h2

a2
1

+ k2

a2
2

+ l2

a2
3

(12.1.11)

Examples:
Miller index (100) represents planes orthogonal to direction b1; index
(010) represents planes orthogonal to direction b2, and index (001) rep-
resents planes orthogonal to b3.

{hkl} - denotes all planes which are equivalent in the crystal due to its sym-
metries. E.g. in simple cubic crystals planes (100), (010) and (001) are
equivalent and {100} means all and any of these.

For directions:

[hkl ] - is the Miller index of a direction in the direct lattice
Examples:
[100] is a direction parallel to a1, [111] is parallel to a1 + a2 + a3.

〈hkl〉 - denotes all equivalent directions in the direct lattice. E.g. in cu-
bic crystals 〈hkl〉 denotes either of the equivalent [100], [100] and [100]
directions.

There are two ways to calculate the Miller indices of a plane for a given crystal:

• via a point (vector) of the reciprocal lattice, or

• as the inverse intercepts along the lattice vectors in the direct lattice

Let us denote the three lattice vectors of the direct lattice that define the unit cell
with (a1, a2, and a3), and the 3 primitive lattice vectors of the reciprocal lattice with
(b1,b2, and b3).

3In this case h, k, l are the coordinates of the wave vector of a wave with the same periodicity as the
selected lattice planes.
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Method 1

The 3 integers h, k, l determine a direction (vector) in the reciprocal lattice:

ghkl = hb1 + kb2 + lb3

which is the direction a plane wave with the same periodicity as the lattice planes that
lie perpendicular to this direction travels. ghkl is a vector of k-space. The requirement of
lowest terms means that it is the shortest reciprocal lattice vector in the given direction.
The planes of indices (hkl) are perpendicular to this vector, and their distance is the
length of ghkl.

Method 2

The planes of constant phase of a plane wave traveling in the direction given by ghkl
intersects the three (a1, a2, a3) direct lattice vectors at the three points (a1/h, a2/k, a3/l)
or some multiple thereof.

Derivation 12.1.1. 1cm The equation of the lattice planes is:

K · r = 2π A = const

where r is any vector to a point in the plane and the factor 2 π is selected to simplify the
final formulas. Let us take the plane that intersects the axes of the coordinate system of
the three primitive vectors at x1 · a1, x2 · a2 and x3 · a3 respectively, i.e. x1, x2 and x3 are
the coordinates of the intersections in the basis of the lattice vectors. From the equation

Figure 12.1: Intersection of a lattice plane with primitive vectors.

above:
K · (x1 · a1) = K · (x2 · a2) = K · (x3 · a3) = 2 π A
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But K · a1 = 2πh, K · a2 = 2π k and K · a3 = 2π l, therefore

x1 =
A

h
, x2 =

A

k
, x3 =

A

l

That is, the Miller indices are proportional to the inverses of the intercepts of the plane,
in the basis of the lattice vectors. Therefore the method of obtaining the Miller indices
is that first we determine the coordinates of the 3 intersections (x1, x2, x3) then find a
multiplier which when applied to them gives the smallest positive integer (h,k,l) numbers.

If one of the indices is zero, it means that the planes do not intersect that axis (the
intercept is ”at infinity”).

Example 12.2. Determine the Miller indices for the plane on the figure!

Solution The intersections with the three axes are at 4 a1, 3 a2 and 2 a3. Then
the inverse intercepts in lattice vector units are:

1

4
,
1

3
,
1

2

To get integer numbers we have to calculate the lowest common denominator
of this fraction, which is 12. Multiplying each fraction with 12 gives the three
Miller indices: (346)
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Example 12.3. In the previous example let the length of all the three base vectors of the
direct lattice a = 5nm. Determine the distance of the lattice planes (346). Solution

The three basis vectors are of the same length and they are perpendic-
ular to each other. Therefore the three reciprocal base vectors will also be
of the same length and perpendicular to each other. By substitution into

(12.1.5) this length is b =
2π

a
= 1.26nm−1. The length of the reciprocal vector

perpendicular to the (346) planes is

|b346| =
√

32 + 42 + 62 · 2 π

a
(=
√

61 · 1.26 = 9.81nm−1)

The distance of the planes (346) therefore is

d346 =
a√
61

= 0.64nm

Example 12.4. The 3 base vectors of a crystal are orthogonal and 2.3, 3.4 and 4.5 nm
long. What is the distance of the lattice planes (211)? Solution The distance can be
calculated from (12.1.11):

d211 =
1√

22/2.32 + 1/3.42 + 1/4.62
= 1.06nm (12.1.12)

Example 12.5. Draw all 9 lattice planes and determine the Miller indices in a simple
cubic Bravais lattice. Solution

(Where is the origin of the 3 lattice vectors in the cubes?)
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12.2 Determination of crystal lattices by X- ray diffrac-

tion. Bragg and Laue formulas

Atomic distances are in the range of ∼ 10−10m. To study them we need an electromag-

netic wave with the same wavelength. The corresponding photon energy is E =
hc

λ
∼

104 eV and this is the characteristic X-ray wavelength and the reason X-rays are used in
crystallography.

What will we see? Because X-rays are invisible (and harmful) for us the crystal
structures are either determined from some “image” of the crystal recorded on film or
on digital media, or from X-ray intensities collected by a detector. When a crystal is
irradiated by X-rays of suitable wavelengths it will diffract them. So our first task must
be the description of X-ray diffraction.

12.2.1 Bragg diffraction formula

or Bragg’s law

The Braggs4 proposed in 1913 that X-rays are reflected back from lattice planes.
Constructive interference occurs when :

2 d sinΘ = nλ (12.2.1)

6

Figure 12.2: A plane wave approaches a crystalline solid and is reflected back by the
lattice planes. This wave is represented by two rays on the figure. The lower ray traverses
an extra length of 2dsinΘ. Constructive interference occurs when this length is equal to
an integer multiple of the wavelength of the radiation: 2dsinΘ = nλ. The Bragg angle
Θ is half of the total angle the incident beam is deflected.

4William Lawrence Bragg and his father William Henry Bragg.
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The advantage of this approach is its simplicity but this is also the reason why it is
not enough: Bragg’s law only gives the directions of the diffracted waves and not their
amplitudes. Furthermore physical explanation is lacking as the lattice planes are not
“real” planes and the diffraction in fact is caused by the atoms of the crystal.

Example 12.6. Determine the possible diffraction angles for an X-ray of 10 keV from
the (111) planes of a simple cubic lattice, if the lattice constant is a = 5.3 . Solution
The wavelength of the X-ray:

E = h ν =
h c

λ
⇒ λ =

h c

E
= 1.24 10−10m

To apply Bragg’s law
2 d sinθ = nλ

we need to calculate the distance of the lattice planes of Miller indices (111),
which are planes going through 3 non adjacent corner of the cube. The
distance of two such planes that intersects a primitive cell (see the figure in
the previous example) is 3rd of the body diagonal:

d =
1

3

√
3 a = 0.305nm

The possible diffraction angles are determined by:

sinθ = n
λ

2 d
= 0.20325n

Here n = 1, 2, 3, 4, i.e. the angles are

11.72o, 23.99o, 3.57o, and 54.39o

A more exact derivation of the diffraction equation was given by Max von Laue.

12.2.2 Laue equations

When the X-ray of wave vector k interacts with the atoms in the crystal it excites them.
During the transition to their ground state atoms themselves emit waves with the same
frequency (and wave number of the same magnitude: k′ ≡ |k′|) as those of the incoming
X-ray’s ( k = |k|). The resulting diffracted wave will be the result of the interference
of the incoming and emitted X-rays. Now consider two atoms separated by the lattice
constant d. Both of the atoms will emit interfering waves.

For constructive interference the total path difference between the diffracted waves is
an integer multiple of the wavelength (see Fig. 12.3). Let us denote the normal vectors

212



of the incoming and diffracted waves with n := k/k and n′ := k′/k respectively. Then
the condition for constructive interference can be written as

d · (n− n′) = m · λ, m = 1, 2, ..

Using the definition of k ≡ |k| =
2 π

λ
and the fact that |k| = |k′| both the λ and the

normal vectors can be eliminated:

d · (k− k′) = 2πm

But d iteself must be a Bravais lattice vector R, because lattice sites are displaced from
one another by Bravais lattice vectors:

R · (k− k′) = 2πm ⇒ eiR·(k−k′) = 1

so K ≡ (k− k′) must be a vector of the reciprocal lattice.
Comparing Figs 12.2 and 12.3 we see that the two descriptions concerning the direc-

tion of the diffracted wave are equivalent. The condition that the wave vector difference
must be a vector of the reciprocal lattice combined with the relation between the recip-
rocal lattice vectors and the primitive vectors of the crystal leads to the Laue equations:

a1 ·∆k = 2π h

a2 ·∆k = 2π k

a3 ·∆k = 2π l

(12.2.2)

For example the first of these equations says that ∆k must lie on a cone around a1.
So to satisfy all of these conditions ∆k must lie on the intersection of 3 cones: one around
each base vectors.

The Geometrical Structure Factor

If we take into account that the primitive cell may contain not just a single atom but
also a basis then rays scattered from the atoms of the basis may modify the amplitude
of the scattered wave even when the Laue conditions are satisfied. Let us consider a
monatomic lattice with a basis (e.g. diamond). If the vectors of the atoms of the basis
are d1,d2, ...dn and there exists a Bragg peak associated with a change of the wave vector
K = k′ − k then the phase difference between the rays scattered at dj and dk will be
K · (dj−dk) and the amplitude of the two rays will differ by a factor of eiK·(dj−dk). Thus
the amplitudes of the rays scattered by any scattering center dm will be proportional to
eK·dm , and the net amplitude will be proportional to

Sk =
n∑

m=1

eiK·dm
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Sk is called the geometrical structure factor and expresses the extent to which in-
terference of the waves scattered from identical ions within the basis can diminish the
intensity of the Bragg peak associated with the reciprocal lattice vector K. The intensity
contains a factor of |Sk|2

Other factors5 also modify the intensity so the only case when the structure factor
can be used with assurance is when it vanishes. This is the case when the Bragg peak
disappears completely.

12.3 X-ray diffraction methods.

X-ray diffraction with constructive interference can only occur whenever Bragg’s law is
satisfied. With monochromatic (single wavelength) radiation, and an arbitrary orien-
tation of a single crystal to the X-ray beam will not generally produce any diffracted
beams. There would therefore be very little information in a single crystal diffraction
pattern from using monochromatic radiation unless special conditions are met.

This problem can be overcome by continuously varying either λ or Θ or both over a
range of values, to satisfy Bragg’s law. Practically this is done by:

• using a range of X-ray wavelengths (i.e. white radiation), or

• by rotating the crystal or,

• by using a powder or polycrystalline specimen.

The detailed description of the three basic methods corresponding to these possibilities
are in Appendix 23.3. Here we present the short summary of these only.

12.3.1 The Laue Method

The Laue method is mainly used to determine the orientation of large single crystals
whose structure is known. White radiation of wavelengths between λmin and λmax and
of a fixed direction is reflected from, or transmitted through, a single crystal of fixed
orientation. A sheet film perpendicular to the incident beam records the diffraction
points, which lie on curves. Each curve corresponds to a different wavelength.

12.3.2 The Rotating Crystal Method

In the rotating crystal method, a single crystal is mounted with an axis normal to a
monochromatic x-ray beam. A cylindrical film is placed around it and the crystal is

5X-rays are scattered by the electron cloud of the atom. An atomic form factor of this must also be
taken into account. E.g. X-rays are not very sensitive to light atoms, such as hydrogen and helium, and
there is very little contrast between elements adjacent to each other in the periodic table.
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rotated about the chosen axis. As the crystal rotates, sets of lattice planes will at some
point make the correct Bragg angle with the monochromatic incident beam, and at that
point a diffracted beam will be formed. The main application of the rotating crystal
method is the determination of unknown crystal structures.

12.3.3 The Debye-Scherrer Powder method

The powder method is used to determine the value of the lattice parameters accurately.
Lattice parameters are the magnitudes of the unit vectors a1, a2 and a3 which define
the unit cell for the crystal. The crystal is finely grounded and the resulting powder
containing thousands of crystallites are put into the monochromatic X-ray beam. A
circle of film is used to record the diffraction pattern.
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Figure 12.3: a) A plane electromagnetic wave approaches a crystalline solid and interacts
with the atoms. This wave is represented by two rays on the figures. b) When the Bragg
condition (2 d sinΘ = nλ) is fulfilled constructive interference occurs. c) When the
Bragg condition is not fulfilled the interference may be destructive. d) The path difference
between incoming and outgoing waves from neighboring atoms may be expressed through
the normal vectors (n = k/k, n′ = k′/k) and the displacement vector d of the two atoms.
The two angles between d and the two waves may differ. The total path difference is:
d(n− n′)
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Chapter 13

Theory of lattice vibrations

Classical theory of lattice vibrations

In a real crystal the atoms are not fixed into rigid lattice sites, but are vibrating around
the lattice points, their equilibrium positions. The understanding of lattice vibrations
are important because of many reasons. They determine sound propagation through the
crystal and the thermal properties of it too. They have an effect on electron propagation
and even affect the light absorption and emission of the crystals.

In a crystal the vibration of every atoms is coupled with the vibration of the neigh-
boring atoms. At the first sight this is an incredibly complicated problem, but we will
see how this problem can be reduced to a much more benign one by using a simple, but
powerful model. As a result the vibrations of the system may be described by harmonic
waves with k wave vectors and ω(k) frequencies.

In the study of the lattice vibrations we must answer the following questions:

1. Is it possible to use a classical physical model?

2. Which is the simplest solvable model that describes them?

3. What controls the ω(k) relation?

4. What is the amplitude of the vibrations and how does it depend upon the temper-
ature?

5. What is the specific heat of a crystal and how does it depend upon the temperature?

6. If a classical physical model is possible how does it relate to the quantum mechanical
model?

Luckily the answer to the first question is yes: a classical physical model exists that
explains some of the properties of the lattice vibrations.

Our classical physical model uses the following assumptions:
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• The equilibrium position of each ion is on a Bravais lattice site R

• The typical excursions of each ion from its equilibrium position are small, therefore
atomic forces are harmonic.1

The simplest model of a crystal lattice is a 1D, monatomic linear chain with harmonic
forces between the atoms.

13.1 Monatomic linear chain, phonons

Figure 13.1: Section of a Monatomic Linear Chain In equilibrium the crystal displays
translational symmetry. In a state of strain the n-th atom is displaced a distance un
from its equilibrium position. If the restoring forces are harmonic only nearest neighbor
interactions need to be considered

The equation of motion for the n-th atom inside an N atom linear chain:

M
d2un
dt2

= β(un+1 − un)− β(un − un−1) = β(un+1 − 2un + un−1) (13.1.1)

There is a problem with the atoms at the ends of the chain, which only have one neighbor.
In other words we need a well behaved boundary condition.

The simplest and most convenient one is the Born - von Karman periodic boundary
condition:

uN+1 = u1

This boundary condition may be achieved in two equivalent ways:

1This harmonic approximation is broken near the melting point.
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• connect the last atom on the chain with the first using a massless rigid rod

• create a ring from the chain

Figure 13.2: Born Karman periodic boundary condition for the monatomic linear chain
model

Let us try to use a test solution of the form

un = uoe
±i(ωt+kna) (13.1.2)

The result of the calculations (see Appendix 23.4.1)

ω(k) = 2

√
β

M
sin

1

2
k a (13.1.3)

The resulting ω(k) function is called the dispersion relation of the lattice vibrations,
depicted in Fig. 13.3. This dispersion relation has a maximum at k = ±π

a
.

Every possible ω represents a special vibrational mode for the system. ω(k) is a
periodic function of k.

The ansatz (or probe function) in (13.1.2) is a continuous function of k, but k can only
take the discrete values (see (23.4.3)) determined by the periodic boundary conditions.
Consequently the set of possible ω(k) values will also be discrete. A linear chain of N
atoms thus may only have N different discrete vibrational modes, although the number
of the possible k-s is infinite. (See Fig. 13.4.) Because for even a small solid the number
of atoms N are in the order of 1023, the difference between neighboring k values

∆ k =
2π

N a
(13.1.4)
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Figure 13.3: Dispersion relation for the monatomic linear chain

is too small to be measured or even observed. So we may treat k as a (quasi)continuous
quantity.

If |k| � π

a
then ω = c

√
β

M
k where c ≡ ω

k
the phase velocity of sound in the medium.

The group velocity of the “waves” describing the lattice vibrations from (13.1.3) is

vg =

(
dω(k)

dk

)
= a

√
β

M
cos

1

2
ka

At k = 0 vg = c. In many solids c ' 103 m/s and a ' 10−10 m, so the maximum of ω is
about 1012 Hz, which is in the IR range.

The dispersion is periodic in k: ω(k) = ω(k + 2π
a

), but we only sample the wave at
atomic positions, so we cannot tell waves with k and k + 2π

a
apart.

Conventionally, we only consider the wave vectors between −π
a

and π
a
. This region

corresponds to a primitive unit cell in reciprocal space whose boundaries are half way
between neighboring points, i.e. they lie in the Wigner-Seitz cell of the reciprocal space.
This is an important quantity and have its own name: we call it the (first) Brillouin
zone.

The total energy of the vibrating linear chain is the sum of the kinetic and potential
energies of all of the vibrating atoms, which depends on the difference un(t) − un+1(t)
and its derivative. We can calculate it using formula (23.4.6) from the Appendix 23.4.1,
which states that un(t) =

∑
k χk(t)e

ikna. The result of the calculation is:

Etot =
∑
k

(
1

2M
pkp
∗
k +

1

2
Mω2(k)qkq

∗
k

)
(13.1.5)
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Figure 13.4: The wave represented by the blue curve conveys no additional information
to that given by the purple one. Only wavelengths longer than 2a are needed to represent
the motion of the atoms and the waves only have meaning at the lattice points.

where we introduced the qk(t) and pk(t) normal coordinates with:

qk(t) :=
1√
N

∑
n

un(t)e−ikna (13.1.6)

pk(t) :=
1√
N

∑
n

pn(t)e−ikna (13.1.7)

i.e. the total energy may be written as the sum of energies of a system of independent
linear harmonic oscillators with frequencies ω(k)! We know from quantum mechanics
that the energy of a linear harmonic oscillator may only change in quanta of ~ω. So
from a quantum mechanical point of view the possible modes of lattice vibrations can
be characterized by their frequencies. The quanta of the lattice vibrations are called
phonons.

13.2 Diatomic linear chain. Optical and acoustical

branches of the dispersion relation

Let us consider a case where the linear lattice have a 2 atom basis of masses M1 and
M2 whose distance in equilibrium is b (i.e. the lattice constant a = 2b), and let the
interaction be the same between the different atoms! (13.5)
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Figure 13.5: Linear chain with 2 atoms in a unit cell. The equilibrium distance of any
two atoms are b, the lattice constant a = 2b.

In this case there are 2 sets of N coupled equations:

M1
d2un
dt2

= β ((vn − un)− (un − vn−1)) (13.2.1)

M2
d2vn
dt2

= β ((un+1 − vn)− (vn − un)) (13.2.2)

Try the solutions in the form

un = uke
i(ωt+kna) (13.2.3)

vn = vke
i(ωt+kna) (13.2.4)

The detailed derivation is in Appendix 23.4.2
The solution:

ω2
± =

β

M1M2

(
M1 +M2 ±

√
(M1 +M2)2 − 4M1M2sin2kb

)
(where a = 2b) (13.2.5)

The 2 solutions for ω are in Fig. 13.6. If k = 0 then sin2k b = 0 and

ω−(0) = 0

ω+(0) =

√
2β(M1 +M2)

M1M2

Let us suppose that M1 < M2! Then at k =
π

2b
where sin2k b = 1

ω−(
π

2a
) =

√
2β

M2

ω+(
π

2a
) =

√
2β

M1
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Figure 13.6: Dispersion relation of a linear chain with 2 atoms in a cell.

The curves on this dispersion relation could also been extended periodically outside the
first Brillouin zone, because again k and k + 2π

b
give the same ω.

The lower branch, which is similar to the one of the monatomic linear chain is called
the acoustic branch, the upper one the optical branch. To understand the origin of the
names let us visualize the phase of the motion of the two atoms in the unit cell of length
a = 2b!

The ratio of the displacement of the 2 kinds of atoms uk/vk at the long wavelength
(k ≈ 0) limit can be calculated e.g. by substituting ω(0) into e.g. (13.2.1) which results
in

uk
vk

> 0 acoustic branch

uk
vk

< 0 optical branch

This means that in the optical branch the different kind of atoms of the linear chain
vibrate with opposing phases, while in the acoustic branch the phases are the same. If
this linear chain contains positively charged M1 and negatively charged M2 ions then it is
easy to see that this kind of vibration can be caused by an incident electromagnetic wave
of optical frequencies, which acts on the + and - charged atoms in opposite directions.
This is why we call this branch the optical branch. On the other hand in the acoustic
branch the atoms move in the same phase like they would in a mechanical (sound) wave.

At the limits of the Brillouin zone in the acoustic branch ω2 = 2β/M1 and in the
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optical branch ω2 = 2β/M2 where M1 < M2. From here it follows that

uk
vk

=∞ at ± π

a
in the acoustic branch

vk
uk

=∞ at ± π

a
in the optical branch

i.e. the two sub-lattices of atoms M1 and M2 act as if decoupled: one lattice remains at
rest while the other lattice moves.

Figure 13.7: The long (k ' 0) and short (k ' π/a) wavelength limit acoustic (a) and
optical (b) modes in a diatomic linear chain

Notice that when M1 = M2 there is no gap between the two branches of the dispersion
relation. We expect that because in that case we have a monatomic chain. But the
dispersion relation of a monatomic chain only has a single branch and we seemingly
have two albeit touching ones. But wait! The diatomic chain (M1 6= M2) had a lattice
constant of a = 2b, while the lattice constant for the monatomic chain (M = M1 = M2)
is b. I.e. the Brillouin zone for the diatomic chain ([−2π

b
, 2π
b

]) is twice as large as that for
the monatomic chain ([−π/b, π/b]) and the part of the band that we called the optical
branch for the diatomic chain is equivalent to the part of the acoustic band between
[−2π

b
,−π

b
] and [π

b
, 2π
b

]

13.3 Three dimensional lattices

In 3D the equations are much more complicated. There are harmonic forces between
all of the atoms, so for instance if we have a Bravais lattice containing N points with
an n atom basis the potential energy of the lattice vibrations, will depend on every
displacement vectors of every atoms of the basis at every lattice site. Details are in
Appendix 23.4.3.

In 3D k will become a vector (k) and the dispersion relation will depend on the
direction of k as well. As a consequence there will be 3 independent acoustic branches:
1 longitudinal and 2 transverse ones, and if the crystal has a basis of n atoms then there
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will be 3n− 3 optical branches i.e. n− 1 longitudinal and 2n− 2 transverse branches. In
special high symmetry directions these branches become degenerate, i.e. some of them
will overlap.

The energy of a transverse acoustic (TA) branch is usually lower than that of the
longitudinal acoustic (LA) branches.

To display a 3D dispersion relation a special method is used, based on our experience
in 1D.

We know the branches with k > 0 and k < 0 are symmetrical so it is enough
information if we display one half of them only, and because they are periodic with the
period of the Brillouin zone it is enough to confine the display to the first Brillouin zone.
This makes it possible to display quite complicated 3D dispersion relations on a single
2D graphics. The method is the following:

Figure 13.8: High symmetry points and the corresponding dispersion relations in Si. Γ
is the origin (0,0,0), X = (1/2, 0, 1/2), L = (1/2, 1/2, 1/2), W = (1/2, 1/4, 3/4), etc are
high symmetry points (all coordinates are in units of π/a), ∆, Σ and Λ, etc are the lines
connecting them. K, R, U , etc are some special points along the lines

Select high symmetry points in k space (Fig. 13.8). Create a set of straight lines
connecting them2. Start from one of the high symmetry points, calculate and draw the
dispersion relation along these lines between the selected points in k space adjacent to
each other as in Fig. 13.8

2E.g. along the ∆ line k is parallel with the 3rd axis of k-space and X is its endpoint at the
Brillouin-zone boundary.
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Quantum theory of lattice vibrations

In the previous sections of this chapter we used a simple classical model of the lattice
vibrations of solids. We found collective vibrational modes (normal modes) that are linear
harmonic oscillations. According to quantum mechanics (Chapter 3.5.6) the energy of
such oscillations is quantized and the total energy is Etot = ~ωs(k)(n + 1/2), where s
is the branch index and n is the excitation number. As a convenience we can describe
these quanta in a corpuscular manner as in quantum mechanics. There we described the
electromagnetic radiation as a collection of radiation modes characterized by their wave
numbers k and polarization states and found their energy quantized with a total energy
of E = ~ω(n+ 1/2), where n is the number of quanta. These quanta are called photons.
Analogously the quantum of energy of lattice vibrations of type s having a wave vector
of k is called a phonon and the number nk,s gives the number of phonons present in the
crystal.

Although the language of phonons is more convenient than that of normal modes,
the two nomenclatures are completely equivalent.

13.4 Specific heat of lattice vibrations

Because the number of ions (atoms) in a crystal is very large the discreet spectrum of
the lattice vibrations may be considered continuous (see (13.1.4)). And because phonons
in a suitable frequency range describe sound waves in the solid they may represent either
longitudinal or transverse waves. The velocities of these can differ. But the lattice
vibrations may be described by phonons therefore we may ask how many phonons are
in a crystal in a given frequency range. In the continuous limit this can be calculated in
a 3D box of volume V (where the phonons represent standing waves) using the phonon
density of states. The number of phonon states of kind s with velocitiy vs(k) available
in the frequency range [ν, ν + dν] then3

dns(ν, ν + dν) = gs(ν)dν =
4π V ν2

v3
s(ν)

dν

We must use separate formulas for the 2 identical transverse (s ≡ t) and 1 longitudinal
(s ≡ l) phonon modes:

3Using (3.5.19)

dn(ν, ν + dν) = g(ν)dν = g(k(ν))
dk

dν
dν =

V

8π3
4π k2 dk

and the formula of k(ν) = 2π/λ = 2π · ν/vs(k) we can replace k with ν:

g(ν)dν =
V

8π3
4π

(
2π ν

v(ν)

)2
2π

v(ν)
dν =

4π V ν2

v3s(ν)
dν
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gt(ν) = 2
4π V ν2

v3
t (ν)

(13.4.1)

gl(ν) =
4π V ν2

v3
l (ν)

(13.4.2)

gtotal(ν) = 4πV ν2

(
1

v2
l (ν)

+
2

v2
t (ν)

)
(13.4.3)

The crystal contains N atoms which give 3N degree of freedom for atomic movement,
therefore the total number of independent modes is also 3N:∫ ∞

0

g(ν) dν = 3N

13.5 Debye model

Unfortunately the functional form of vs(ν) is quite complicated so this integral can only
be calculated numerically. But if we assume after Debye that the velocity is constant
(vs(ν) ≈ vs(0) ≡ vs) from 0 up to a cut-off frequency νD (Debye frequency) and 0 above
it the integral can easily be calculated, and we know that the result must be equal to
3N :

3N = 4π V

(
1

v2
l

+
2

v2
t

+

)∫ νD

0

ν2dν = 4π V

(
1

v2
l

+
2

v2
t

+

)
ν3
D

3

From this we can substitute back the unknown factor containing the velocities into g(ν)
and get a simpler expression: (

1

v2
l

+
2

v2
t

+

)
=

9N

4 π V ν3
D

(13.5.1)

g(ν) =
9N

ν3
D

ν2 (13.5.2)

The number of phonons of the same frequency ν is unlimited: phonons are bosons. The
number of phonons in the system with energies in range [E(ν), E(ν + dν)] is :

dn = g(ν)fBE(ν) dν =
9N

ν3
D

ν2

ehν/kBT − 1
dν

In 1D energy E(ν) = h ν(n+ 1/2). Then the average thermal energy of the system is:

U =

∫ νD

0

E(ν)dn+ const =

∫ νD

0

E(ν)g(ν)fBE(ν) dν + const
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U =
9N h

ν3
D

∫ νD

0

ν3

ehν/kBT − 1
dν + const (13.5.3)

The specific heat at constant volume then

cV =

(
∂U

∂T

)
V=const

=
9N h

ν3
D

∂

∂T

(∫ νD

0

ν3

ehν/kBT − 1
dν

)
V=const

(13.5.4)

The integration over ν and the derivation by T are interchangeable operations

cV =
9N h

ν3
D

∫ νD

0

∂

∂T

(
ν3

ehν/kBT − 1

)
V=const

dν = =
9N h2

ν3
D T

2

∫ νD

0

ν4ehν/kBT

(ehν/kBT − 1)2
dν

For 1 mol atoms4 (N = LA) cv becomes the molar heat capacity CV of lattice vibrations.
Using the universal gas constant5 R = kB NA, and introducing the Debye temperature
ΘD with the formula kB ·ΘD ≡ h νD, and a new variable y by

y =
h ν

kB T
⇒ ν =

kBT y

h
and d ν =

kBT

h
d y

the molar heat capacity becomes

CV = 9R

(
T

ΘD

)3 ∫ ΘD/T

0

y4 ey

(ey − 1)2
dy (13.5.5)

At low temperatures (T � ΘD) the upper limit of the integral is may be approximated
with ∞ which makes its value constant and

lim
T→0

CV ∝ T 3 T � ΘD (13.5.6)

The Debye temperature can be calculated from low temperature specific heat measure-
ments.

Material Ag Au diamond Cu Ge Na Ni Pt
ΘD (K) 225 165 1860 339 366 159 456 229

Table 13.1: Debye temperature of some materials

At high temperatures (T � ΘD) both ey and ey − 1 may be approximated by the
leading terms of their Taylor series with which the integrand

y4(1 + y + y2

2
+ ...)[(

1 + y + y2

2
+ y3

6
+ ...

)
− 1
]2 =

y4(1 + y + y2

2
+ ...)

y2
(
1 + y

2
+ y2

6
+ ...

)2 ≈
y4

y2
= y2

4 LA = 6.022 1023[1/mol] is the Avogadro constant
5R = 8.3144621 J

molK .
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And so

CV = 9R

(
T

ΘD

)3 ∫ ΘD/T

0

y2dy = 9R

(
T

ΘD

)3
1

3

(
ΘD

T

)3

CV = 3R T � ΘD (13.5.7)

Which is the well known Doulong-Petit law of classical physics6.

13.6 Specific heat of metals

In metals the conduction electrons also contribute to the internal energy. So the specific
heat capacity of metals contains terms from both the electrons and lattice vibrations.
Detailed discussion of the electron specific heat requires the quantum mechanical treat-
ment of the electron system and it is in Section 14.3.1. Here just a very simple train of
thought is given. The electrons excited by thermal vibration at T > 0K have energies
in the kBT vicinity of EF , shown shaded in Fig. 14.5, so both the number of the excited
electrons and their energy around EF is proportional to kBT . The total excitation energy
therefore is

U ∼ (kBT )2

which gives the electron heat capacity proportional to the temperature (c.f. (14.3.13)):

C
(el)
V =

∂u

∂T
∼ T =

π2R

2

kB
EF

T

and the ratio of the electronic and lattice specific heat capacities at T � ΘD is then

electron specific heat

lattice specific heat
∝ T

T 3
= T−2 (13.6.1)

It follows that the electron specific heat will become important only at very low
temperatures where the lattice specific heat decreases more rapidly.

6 According to the equipartition theorem of classical physics there is 1/2 kBT energy available for
every single degree of freedom. A single harmonic oscillator has a degree of freedom of 2 which results
in kB T energy per oscillator. N atomic oscillators have 2 · 3N degrees of freedom, so the total energy
is 3kB T N . For 1 mol this results in an internal energy of 3RT and molar heat of 3R, independent of
the kind of the material. This prediction of classical physics is clearly wrong.
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Chapter 14

Electrical properties

Important 14.0.1. Electrical conductivity of different materials has the largest range
among all physical quantities spanning about 25 orders of magnitude.

14.1 Conductors and insulators. Band theory of solids

The behavior of the electrons in a solid – just like in molecules – is different from what
they exhibit in an individual atom especially when the solid is a (periodic) crystal. Let us
build up a crystal from N individual atoms! When the atoms are so far from each other
that they may be considered independent electrons on the same orbit in every atom have
the same energies, making the energy levels for the whole system of independent atoms
degenerate. When the atoms are brought together to form a crystal they will interact
and as a result the degeneration will be broken. The interaction is stronger for higher
lying levels (greater extent of the wave functions).

It follows from the Pauli principle that a selected atomic state in all of the N atoms
(with quantum numbers n, l,m) may hold 2N electrons. Therefore 1 degenerate atomic
energy level will yield 2N possible non-degenerate levels in the crystal.

For a given n there may exist s, p, d, etc shells that create the bands s, p, d, etc. The
smaller are the inter-atomic distances the wider are the bands. This may lead to band
overlap.

The electric conductivity of a material is determined by its band structure at the
equilibrium distances of the atoms. Lower lying shells have smaller overlap (the elec-
trons are localized) and are usually completely filled therefore the corresponding bands
will have no overlap with partially or totally empty other bands, therefore do not take
part of electric conduction.

Bands formed from valence electrons are the important ones.
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Figure 14.1: a) Schematic representation of non degenerate electronic levels in an atomic
potential b) bands as a function of inter-atomic distance when N atoms are brought
together. Notice that there may be forbidden energy regions between some of the bands,
while other bands may overlap.

Metals

Metallic solids may form from elements having either an incompletely filled band or
overlapping bands. Some examples:

Na (Z=11) - Metal

Electronic structure: the 1s2 2s2 2p6 levels are filled with (2 + 2 + 6) = 10 of
the 11 electrons. The last one goes to level 3s which has space for 2 electrons.
Consequently a half filled electron band is created from 3s orbitals of the N
atoms, which is thus both valence and conduction band at the same time.

Even at room temperature (T=300K) a few electrons are excited above the
Fermi level. An external E field can add an additional energy (1/2mev

2
drift

where vdrift is the constant average velocity created by the field) because
there are empty levels in the neighborhood ⇒ good electric and thermal
conduction. Level 3p overlaps with 3s therefore there are even more available
levels (1 + 6)N for the last electrons.
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Mg (Z=12) - (Semi) Metal

Electronic structure: 1s2 2s2 2p6 3s2 levels are filled with (2 + 2 + 6 + 2) = 12
electrons: no free levels in highest valence band. But 3p overlaps with 3s
therefore there are 6N possible free levels for the electrons.

Fe (Z=26) - Transition metal

Electronic structure: 1s2 2s2 2p6 3s2 3p6 3d6 4s2 Levels 3s, 4d and 4p overlap.
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Figure 14.2: Schematic representation of band structures a) insulator (including semi-
conductors) b) and c) metals (conductors)

Insulators

In insulators there is an energy gap between the completely filled valence band and the
empty conduction band. The band width varies. Examples: Lead(II) selenide 0.27 eV,
germanium: 0.7 eV, silicon 1.1 eV diamond: 5.5 eV. Because 1 eV corresponds to about
104K the thermal energy at room temperatures kBT ≈ 0.0258 eV is too small to excite
a significant number of electrons into the conduction band.

Important 14.1.1. Semiconductors are insulators with an energy gap around 1 eV or
smaller.

When dealing with the electrical conductivity of crystals we find the idea of dispersion
relations introduced for lattice vibrations very useful. E(k) dispersion relations connect-
ing the energy and momentum of the electrons may be measured and calculated for the
electrons in crystals and these relations determine the band structure. On the schematic
pictures in Fig. 14.2 no direction dependencies of the energy levels are displayed, but
for the understanding of the electrical properties of crystals we must take them into
considerations. We discuss this later in Chapter 16.
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14.2 A classical physical model of conductivity in

metals. The Drude model

Metals contain moveable electrons that can carry electricity. Although it is impossible
to understand their behavior completely using only classical physics, the earliest theory
with partial success was the Drude model, proposed in 1900 by Paul Drude, which is
based on classical physics. The assumptions of this model are the following:

• In a metal the ion cores (including that of impurity ions) are at rest in
lattice points. Lattice defects may also be present though.

• The ion cores are surrounded by unbound conduction electrons. There is
no (electromagnetic) interaction between electrons (independent electron
approximation).

• The only interaction between ion cores, impurities or lattice defects and
electrons is collision.

• All collisions are instantaneous events that abruptly change the velocity
of the electrons.

• Electrons reach thermal equilibrium only by collisions.

• The probability of a collision during a period of dt is ∼ dt/τ , where τ is
called collision time, mean free time or relaxation time.

Conduction electrons satisfying these assumptions behave like particles of an ideal gas,
therefore they are often referred to as electron gas.

Figure 14.3: a) Schematic representation of an isolated atom (not to scale!) b) atoms in a
metal keep the core electrons but the valence electrons form an electron gas c) trajectory
of a single electron scattering off the ion cores
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Electric conductivity (σ) of the electron gas

Without an external electric field electrons move in random directions with random ve-
locities. The electrons collide with the ion cores after a random ∆ t time, but these
collisions do not change the randomness of the velocities. There is no non-random com-
ponent present, therefore the average (vectorial) velocity of electrons is 0.

In an external electric field E all electrons will accelerate in the opposite direction
of the field until they suffer a collision. Let us denote the average time between colli-
sions with τ . During this period electron velocities will have an increasing non-random
component. After time ∆ t elapsed electrons collide with (or scatter off) something and
their velocity is again randomized, i.e. they lose all of the directional velocity component
gained during acceleration. The time between collisions is still determined by the random
velocity component as it is much larger than the directional one. It can be calculated if
we know the velocity distribution. As the Maxwell-Boltzmann velocity distribution was
the one known at that time Drude used it to obtain the value of ∆ t.

The maximum of the directional velocity component parallel with E gained during
acceleration is vaccel = −eE∆ t/me.

The average velocity of a mass point, originally at rest, under a constant acceleration
during a time interval of ∆ t would be half of the maximum velocity vaver,∆ t = vaccel,∆ t/2
it reaches . This is the value Drude used in his calculations. Let us introduce the average
time τ between collisions with

τ = 〈∆ t〉

and express all quantities with it. Interestingly, when the exact classical statistical
physical calculations are performed the average velocity expressed with τ will be equal
to the maximum velocity vaccel,τ and not the half of it:

vdrift = −eE

me

τ (14.2.1)

The reason for this is that ∆ t may be different for different collisions, therefore aver-
age velocities (which are half of the maximum velocity) for individual collisions will also
differ from each other.

According to the differential Ohm’s law:

j = σE,

where E is the external electric field and σ is the conductivity. The current density j in
this formula can be expressed with the drift velocity vdrift which is the average ordered
(non-random) component of the velocity of the electrons:

j = −nevdrift.
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So

j =

(
ne2τ

me

)
E

from this

σ =
ne2τ

me

(14.2.2)

As a result of collisions the ordered part of the electron velocities will be constant
and proportional with the field strength:

vdrift = µE (14.2.3)

where the constant of proportionality is the mobility µ of the electrons

µ =

(
eτ

me

)
(14.2.4)

Example 14.1. Aluminum has three valence electrons per atom, an atomic weight of
0.02698 kg/mol, a density of 2700kg/m3, and a conductivity of 3.54 107 S/m. Calculate
the electron mobility in aluminum. Assume that all three valence electrons of each atoms
are free. Solution The number of aluminum atoms per m3 is

na = 6.021023 atoms/mol · 1/0.02698 mol/kg · 2700 kg/m3

= 6.024 1028 atoms/m3

Thus the electron density in aluminum is

n = 3 · 6.024 1028 atoms/m3 = 1.807 1029 electron/m3

From (14.2.4)

µ =
σ

ne
=

3.54 107

1.807 1029 · 1.6022 10−19
= 1.22 10−3m/s

Calculating τ theoretically is quite complex. For this reason just empirical approaches
are given in the following.

One way to determine the value of τ is from (14.2.2), where the density n of conduction
electrons is

n = LA
Zρm
A

(14.2.5)

Here LA = 6.022 · 10231/mol, Z is the number of conduction electrons of one atom, ρm
is the mass density (g/cm3), and A is the atomic mass (g/mol). In practice usually the
ρ resistance is measured instead of σ (ρ = 1/σ).
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Example 14.2. What is the value of τ in silver at t = 0 oC if the measured resistivity
is 1.51 · 10−8 Ωm? Solution From (14.2.2), (14.2.5) using the definition of ρ

τ =
me

ρ(T )n e2
=

meA

LA Z ρm e2 ρ

Silver has a single 5s1 electron so Z = 1 and the mass density is ρm = 10.49 g/cm3 =
1.049 · 104 kg/m3, A = 107.8682 g/mol = 0.1078682 kg/mol and ρ(273K) = 1.51 ·
10−8 Ωm. After substitution

τ = 4.013 · 10−14 s

Another way to determine τ is from the mean free path l̄ .

τ =
l̄

〈v〉

For 〈v〉 Drude used the vth average thermal velocity from the Maxwell-Boltzmann dis-
tribution:

〈v〉 = vth =

√
3kBT

me

However this will lead to an incorrect temperature dependence. From (16.1.1)

τ ∼ 1√
T

therefore σ ∼ 1√
T
⇒ ρ ∼

√
T

This is a major failure of the Drude model, because the resistivity of metals increases
linearly with increasing temperature.

At that time it was regarded the greatest success of the Drude model that it explained
the empirical Wiedemann-Franz law (1853), which states that

κ

σ
∼ T for all metals with about the same constant (14.2.6)

where κ is the thermal conductivity in Fourier’s law:

jQ = −κ∂T
∂x

(in 1D) (14.2.7)

jQ = −κ∇T (in 3D) (14.2.8)

Drude assumed the bulk of the thermal current is transferred by conduction electrons
and the classical ideal gas laws are applicable for the electron gas

κ

σ
=

3

2

(
kB
e

)2

T (14.2.9)
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Unfortunately the calculated result is about half of the measured ratio1.
The electronic specific heat may also be calculated from the Drude model but it also

gives the incorrect result

CV =
3

2
nl̄

Yet another failure of the model is that it cannot explain the Hall effect of divalent
metals2 Mg, Cd and Be, in which the electric charge carriers were found to be positively
and not negatively charged.

The three failures of the classical Drude model (the temperature dependence of ρ,
the erroneous result of the value in the Wiedemann-Franz law and the electronic specific
heat) show that quantum mechanical treatment of the conduction phenomena is required.

In spite of these failures the Drude model was remarkably successful for a first ap-
proximation. Some of its failures were corrected by Sommerfeld in his free-electron model
of metals.

14.3 Free electron model of metals, the Sommerfeld

model

The first step toward a quantum mechanical description of conduction by German physi-
cist Arnold Sommerfeld in 1933 was based on the Drude model supplemented with results
from quantum mechanics. These were Sommerfeld’s additions to the Drude model:

1. conduction electrons do not interact with the ion cores, so the metal may be rep-
resented by a potential box

2. electrons do not interact with each other (independent electron model)

3. even though there are no interactions between electrons still no 2 electrons can be
in the same quantum state when we include the spin as a quantum number (Pauli
principle)

Because of assumption 2. we can solve the Schrödinger equation for all electrons sepa-
rately, and according to the other assumptions (V is the volume of the box):

ψ =
1√
V

(sin kxx · sin kyy · sin kzz) (14.3.1)

Etot =
p2

2me

=
~2k2

2me

(14.3.2)

1But only if the calculation is correct. Drude erroneously calculated vavg as half of the correct value
and consequently got twice the result of (14.2.9) thus getting the correct result.

2See Section 15.5 in Section 15.5 for details.
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Consider a cube shaped potential box with sides L.
Recapping the quantum mechanical problem (See Section 3.5.3) using assumptions

(1) and (14.3.2) we find in 1D

ψ(x) =
1

L
sin k x

and

ψ(0) = ψ(L) = 0 ⇒
sin k L = 0 ⇒

kL = nπ n = 1, 2, ...

k =
π

L
n n = 1, 2, ...

I.e. possible values of k are discrete3.
If we imagine this box is a simple cubic crystal with primitive vectors of length a

containingN atoms in any direction i.e. L = Na, then the difference between neighboring
k-s is very small:

∆k =
π

N a
∼ 10−13 − 10−15 1/m

so we may consider k as a (quasi) continuous quantity4.
The energy of the electrons as a function of k (the analogue of the dispersion relation

for lattice vibrations) is

En(k) =
~2k2

2me

=
~2π2

2meN2a2
n2 where n = 1, 2, ... (14.3.3)

The number of possible k values is infinite in this model. However we will see later
(c.f. section 15.1.3. Bloch functions) that in periodic potentials the number of k states
are limited by N , the number of atoms. Any of these energy states can be occupied by
2 electrons with opposite spins. If each atom contribute s conduction electrons to the
crystal then at T = 0K all possible energy states below

EF (= Emax,occupied) =
~2π2

2mea2

s

2
(14.3.4)

3We only count positive n’s because sin(−nπ
L

) = −sin(
nπ

L
) and sin(nπ/L) are equivalent wave

functions as they only differ in a phase factor whose absolute value is 1
4The same calculation using the wavelength of the electron instead of its wave vector:

λelectron 3 n
λelectron

2
= L where n = 1, 2, ...

from here

k =
2π

λelectron
=
πn

L
=

π

Na
n where n = 1, 2, ...
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Figure 14.4: The energy of the electrons as a function of k (Energy dispersion relation) in
the Sommerfeld model, when all atoms contribute 2 conduction electrons with opposing
spins. Dashed line denotes levels unoccupied in the ground state.

will be occupied and all levels above it will be empty. EF is called the Fermi energy of
the system (see also section 9.3). We denote the corresponding k value with kF and call
it the Fermi wave vector.

Important 14.3.1. When one additional electron is added to the number electrons al-
ready in the metal the energy of the system will increase with EF . Therefore the Fermi
energy is the µe chemical potential of the electrons.

Every possible k point occupy the same ∆Vk = (2π/L)3 volume of 3 D k-space, therefore
a region of 3 dimensional k-space of a volume of Ω will contain

Ω

∆Vk
=

ΩV

(2π)3
(14.3.5)
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number of allowed k points, or equivalently the number of allowed k-values per unit
volume of k-space (a.k.a. density of levels) is

ρe,levels =
V

(2π)3
(14.3.6)

Since the energy of a one-electron level is directly proportional to the absolute square
of its wave vector the direction of k does not matter. Furthermore N is very large so the
Ω volume of k-space occupied may be considered a sphere (Fermi sphere). Therefore the
number of allowed k states in the system from (14.3.5) in 3D

Nstates = ρe,levels Ω =
4

3
πk3

F

(
V

8π3

)
=

k3
F

6π2
V (14.3.7)

And if every atom gives 2 electrons then the number of electrons (Ne = N · s) occupying
these states is twice this number:

Ne = 2
k3
F

6π2
V ⇒ n(≡ Ne

V
) =

k3
F

3π2
(14.3.8)

The length of the Fermi wave vector is 2π/a and the allowed k values will be in the
interval

k ∈
[
−π
a
,
π

a

]
The Fermi energy from (14.3.4)

EF =
~2k2

F

2me

(14.3.9)

Other definitions:

pF ≡ ~kF Fermi momentum

vF ≡ pF/me Fermi velocity

Using (14.3.8) we can estimate the values of these quantities and the results are
interesting:

• kF yields electronic wavelengths corresponding to the inter-atomic distances (∼
0.1nm)

• vF yields velocities at 0K of the order of 0.1 c! (In classical ideal gases the velocity
is 0 at 0K, and even at room temperatures classical particles with the electron mass
will only have velocities of about 105 m/s ∼ 0.001c)

• EF is about the same as the typical atomic binding energy.
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Metal Li Na K Rb Cs Cu Ag Au Mg Al
EF (eV ) 4.7 3.1 2.1 1.8 1.5 4.1 5.5 5.5 7.3 11.9

Table 14.1: Fermi energies of some metals

Example 14.3. What is the quasi-free electron density in copper? Calculate the Fermi
velocity and momentum too Solution From Table 14.1 and formulas (14.3.8) and
(14.3.4)

n =
(2me EF )3/2

2π2 ~3
= 5.655 1028 electron

m3

vF = 1.2 106m/s = 0.004 c kF = 1.0 10111/m

14.3.1 Specific heat of metals

We can express the number of electrons up to the Fermi level using the electron energy
instead of the wave vector. The number of possible states for electrons in the energy
range dE around E is

dnE,possible = g(E)dE
where g(E) is the density of states for a potential box (see (3.5.20)):

g(E) =
8π
√

2m3
e

h3

√
E (14.3.10)

The number of states available for electrons up to E is5

n =

∫ E
0

g(E)dE =
16π
√

2m3
e

3h3
E3/2

substituting E with EF and n with the total number of conduction electrons ntot in
(14.3.10) we get the value of the density of state function at EF :

g(EF ) =
3ntot
2 EF

(14.3.11)

The number of electrons on these possible states depends on the probability that a
state is occupied. This probability is determined by the fFD(E) Fermi-Dirac distribution
function:

fFD(E) =
1

e(E−EF )/kBT + 1
(14.3.12)

5See how summation of quantities depending on the quasi continuous k vectors can be turned to
integration in Appendix 23.5.
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So the number of electrons in the energy range dE around E is given by

dn = fFD(E)g(E)dE

As a consequence of the Pauli principle only electrons with energies near the Fermi
energy EF can be excited. The electronic part of the internal energy is calculated the usual
way, which includes the electronic density of states and the Fermi–Dirac distribution
function:

Ue =

∫
E · g(E) · fFD(E)dE =

∫
E · g(E) · 1

e(E−EF )/kBT + 1
dE

The total integral may be written as a sum of 3 integrals: an integral from 0 to (EF−kB T ),
an integral between (EF − kB T ) and (EF + kB T ) and an integral from (EF + kB T ) to
∞. The first one is approximately constant (kB T � EF ), the second one may be
approximated6 by using the value of g(E) at EF and the last one is negligible (≈ 0):

Ue ≈ U0 +
π2

6
(kbT )2 g(EF ) + 0

From this:

C
(el)
V =

(
∂U

∂T

)
V

=
π2

3
k2
B g(EF )T =

π2R

2

kBT

EF
(14.3.13)

Figure 14.5: Energy distribution of electrons in the Sommerfeld model

6This integral can be approximated because fFD only changes in a range of magnitude 2 kBT around
EF and in a smooth way.
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14.3.2 Conductivity

The number of one electron levels in the velocity interval d3v around velocity v is

dnlevels(v) = f(v)d3v

where f(v) is the velocity distribution function calculated by using v = k~/me.
On the other hand dnlevels(v) is equal to the number of levels in an interval d3k

around k(v)

dnlevels(k) = 2

(
V

8π3
d3k

)
The number of electrons in these states then is given by7

dn = fFD(E)dnlevels

Substituting d3k = (me/~)3 d3v dn

dn(v) = dn(k) where v = ~k

dn(k) = fFD(E) · 2
(
V

8π3

)
d3k =

=
1

e(E−EF )/kBT + 1

(
V

4π3

)
d3v =

=

(
V m3

e

4~3π3

)
1

e( 1
2
mv2−EF )/kBT + 1

d3v

i.e.

f(k) =

(
V m3

e

4~3π3

)
1

e( 1
2
mv2−EF )/kBT + 1

(14.3.14)

Without an external electric field the electron distribution in k-space has spherical sym-
metry and the average velocity is 0. When an external E = −grad ϕ(r) electric field
is turned on it modifies this distribution by modifying the potential with −eϕ(r). This
causes the displacement of the Fermi sphere in the (opposite) direction of the E field.
The velocity would increase indefinitely unless some mechanism prohibits it. Sommerfeld
thought that the scattering mechanism of the Drude model is responsible for this.

Because of the exclusion principle only electrons with energies near to EF can be
scattered in collisions (because there are no free levels for electrons with energies lower
than about EF − kB T ), therefore their thermal (average) velocities will be equal to the
vF Fermi velocity. The relaxation time - mean free path relation becomes:

τ =
¯̀

vF
(14.3.15)

7For brevity we will omit the explicit use of k dependence, unless it is important to display.
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Figure 14.6: Conceptual drawing of conduction in metals according to the Sommerfeld
model in 1 D. a) w.o. external field b) with an external E field.

Substituting this into the conductivity formula (14.2.2) of the Drude model:

σ =
ne2τ

me

=
ne2

me

¯̀

vF
(14.3.16)

In contrast with the Drude model the vF thermal velocity is independent of the temper-
ature and ¯̀ is inversely proportional with it, therefore

σ ∼ ¯̀∼ T−1 ⇒ ρ ∼ T (14.3.17)

i.e. the resistivity is proportional to the temperature which conforms to the experimen-
tally observed behavior. Unfortunately vF is about 10-20 times larger than vth in the
Drude model which leads to mean free paths in the order of 10−7m, much larger then the
expected ones which are in the order of magnitude of interatomic distances (∼ 10−9m).

The Sommerfeld free-electron model successfully explained other phenomena too for
which the Drude-model either failed or did not accounted for. To name a few: the specific
heat of metals, the work function, the termionic emission and the contact potential. But
it has its own failures. Some of them are:

• It did not explain why some materials are insulators? (e.g. carbon is an insulator
in the form of diamond, while a conductor in the form of graphite.)

• It did not explain the temperature, relaxation time and magnetic field dependence
of the Hall effect8 as it predicts a constant RH = −1/n e c value.

8Section 15.5
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• It did not explain the magnetoresistance, according to which the resistivity of a
wire perpendicular to a homogeneous magnetic field depends on the field strength.

14.4 Work function, thermionic emission and con-

tact potential

14.4.1 Work function

The work function is the minimum energy that must be given to an electron to leave
the crystal. The method of energy transfer may be supplied by photons (photoelectric
effect) or thermal vibrations (thermionic emission).

The real crystal potential near the surface can be approximated with the one in
Fig. 14.7. Inside the crystal the potential is periodic (a sum of the Coulomb potentials
of the periodically arranged ion cores) and the superposition of the potential of the
neighboring atoms creates a potential lower than that in the vacuum. At the surface the
atoms do not have neighbors at one side so the Coulomb potential of the surface atoms
in the vacuum will not diminish.

Similarly while inside the crystal the electron density is periodic, at the surface this
periodicity is broken. A few cells near the surface will have an electron deficiency (which
gives rise to a positive surface charge), while some of the electrons will be outside, near
the surface (as a negative surface charge) which will produce a double layer at the surface.
Only electrons at or near to the Fermi energy can leave the crystal. For an electron to
become free an external source must supply an energy to move it from the Fermi energy
(measured from the vacuum level so it is now negative) to the vacuum level plus the
work needed to overcome the Ws potential of the double layer. That is the formula for
the work function is :

W = Ws − EF
The work functions on different faces of a crystal may be different, in which case there
will be a potential difference between the different faces. The whole crystal still remain
neutral, because the sum of the microscopic surface charges over all the faces will cancel.

14.4.2 Thermionic emission

At very high temperatures electrons may get enough energy to leave the metal. The
current density of these electrons can be calculated by generalizing the well known dif-
ferential formula for the current density:

j = −en < v >
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For cases where v = v(k)

〈v(k)〉 =
1

n

1

V

∑
k

f(k)v(k)

j = −e 1

V

∑
k

f(k)v(k)

This formula may be re-written as an integral using (23.5.1) and taking into account the
2 spin orientations of electrons:

j = −
( e

4π3

)∫
k

f(k)v(k)d3k

Now suppose the metal surface is perpendicular to the x -axis and there is vacuum outside
the crystal (if x ≥ 0)

jx = −e
(

1

4π3

)∫
k

f(k)vx(k)d3k

If the work function is W then electrons in the vacuum have a total energy of

Etot = EF +W +
1

2
mev

2
x(k) = EF +W +

~2k2

2me

substituting this into the formula of f(k)

f(k) =
1

e(~2k2/2me+W )/kBT + 1

W typically is a few eV, W/kBT ∼ 104, therefore

f(k) ' e−(~2k2/2me+W )/kBT

jx = −e
(

1

4π3

)∫
kx>0

vxe
−(~2k2/2m+W )/kBTd3k

jx = −e
(

1

4π3

)
e−W/kBT

∫
kx>0

~kx
me

e−~
2k2/2mkBTd3k)

The current per unit area emitted by the surface is given by:

jx = − eme

2π2~3
(kBT )2e−W/kBT = −4πmee

h3
(kBT )2e−W/kBT (14.4.1)

This is the Richardson-Dushman equation that gives the temperature dependence of
thermionic emission.

247



14.4.3 Contact potential

Suppose two metals with different Fermi energies are contacted. Where the metals touch
electrons may move freely from one metal to the other and they will, because the Fermi
energy (chemical potential) of the electrons at the two sides differ. When equilibrium
is reached EF will be the same for both metals. As a consequence there will be a net
flow of charge from one metal to the other until both metals becomes charged with a net
negative and positive charge respectively.

The potential difference that arise from this process is called the contact potential
and can be calculated as the difference of the Work functions of the two metals:

−e(ϕ− ϕ′) = W −W ′
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Measurement of the Contact Potentials

The contact potential cannot be measured by simple closed electronic circuit of the two
metals and a galvanometer, because in the circuit the sum of the contact potentials
(between metal A and B, between metal A and the galvanometer, between metal B and
the galvanometer) must be 0 otherwise a perpetuum mobile could be created.

However there exists a simple method invented by Kelvin to measure contact poten-
tials. Suppose we prepare a plane surface on both metals then contact them together in
a closed circuit with an electrometer and a variable potential bias. As the Fermi levels in
all metals will become the same contact potentials will form at every contacts. Now move
the two metals apart so that the plane faces form a parallel capacitor. The potential
between the two faces will remain the contact potential but the capacitance will vary
depending on the distance of the faces. Therefore the contact potential can be calculated
by either keeping the bias constant and measuring the current that flows while the faces
are being moved, or by adjusting the bias so that no current flows, in which case the
contact potential will be equal to the bias which just cancels it.
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Figure 14.7: a) density of electrons in the crystal (∼ |ψ|2)
The electron distribution is distorted near the surface relative to the bulk. b) crystal

potential, Fermi energy and work function (W ). The crystal potential is distorted near
the surface. Closed circles are the equilibrium ion sites. Ws is the potential energy of

the double layer.
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Figure 14.8: a) and b) two metals with different EF c) in equilibrium EF is the same but
the surface potentials differ, i.e. a contact potential is created.
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Chapter 15

Electrons in conductors

15.1 Quantum mechanics of electrons in periodic lat-

tices. Adiabatic principle. Brillouin-zone. Bloch

functions

We concluded in Section 14.3 that to correctly describe the conductivity we must use
correct quantum mechanical calculations. This means the solution of the Scrödinger
equation of the whole crystal. The Hamiltonian of the system can be written as a sum
of the Hamiltonians for the electrons, the ions and the interaction between electron and
ions:

H = Hion cores +Helectrons +Hion−electron

For a system of N ions and K electrons these are

Hion cores =
N∑
j=1

p2
J

2Mion

+ Vion(R1,R2, ...,RN)

Helectrons =
K∑
j=1

p2
j

2me

+ Velectron(r1, r2, ..., rK)

Hion−electron = Vi−e(R1, ...,RN , r1, ..., rK)

Here R1, ...,RN are not lattice vectors, just the positions of the ions and r1, ..., rK
are the positions of the electrons.

This will give us an unsolvable system of roughly 1024 coupled coordinates. So we
must simplify it a bit.

Because the crystal is neutral its electrostatic potential energy is 0. We can select
the potential between the ions to be so that when ions are at their equilibrium positions
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R
(0)
j (j = 1, 2, ...N) the total potential energy will be 0.

Vion(R
(0)
1 , ...,R

(0)
N ) = 0

15.1.1 The Adiabatic Principle

The mass of the ion cores is about 2000-20000 times larger than the electron mass,
therefore the velocities of the electrons will be much higher than the velocity of any ion.
At every given moment the ions will only feel an average field due to the electrons, while
for the electrons the lattice will be almost at rest at all times. The lattice vibrations
being much slower than the motion of the electrons will manifest themselves in that ions
are not in their equilibrium position. The electrons will follow the movement of the ions
adiabatically.

Therefore we may be able to study the motion of ions and electrons separately. This
is called the adiabatic principle.

Each and every electron feels the slowly varying potential of the ion cores and the
(almost) instantaneous field of other electrons. Taking the positions of the ions fixed
in their equilibrium position1 the equation for the system of electrons will only contain
Helectrons and Hion−electron.

Hion−electron only depends on the interaction of an electron with all of the ions, so each
electron feels this interaction separately, i.e. Vi−e is a sum of one-electron potentials:

Vi−e(R1, ...,RN , r1, ..., rK) =
K∑
j=1

V (rj)

As the consequence of the translational symmetry of the crystal the potential will be the
same at equivalent positions in all primitive cells, so

V (rj + R) = V (rj)

where R is a lattice vector.
We should like to write Velectron as a sum of one-particle potentials, because then we

would need only to solve independent Schrödinger equations for each electrons. If this is
possible then our previous use of the picture of independent, non interacting electrons,
i.e. the existence of an electron gas is justified.

15.1.2 Hartree-Fock method

This problem -at least in principle - can be solved with the Hartree-Fock (
”
self-consistent”)

method:
1A more exact calculation would be unnecessarily complicated and will not give us any advantage so

we omit it. We will only consider the movement of the ion cores when discussing lattice vibrations.
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1. solve the one-electron Schrödinger equations when the electron moves in the peri-
odic potential field of the ion cores, then

2. calculate the charge density using the square of the absolute value of these one-
electron wave functions

3. calculate the electrostatic potential from this charge density at the position of every
electron to obtain an approximation of the potential from the other electrons

4. add this potential to the periodic potential of the ions

5. solve the one-electron Schrödinger equation for every electron using this potential

6. compare this wave function with the one obtained in the previous iteration

7. if these differ significantly then continue from step (2) otherwise you are done

Important 15.1.1. Because the Hartree-Fock wave function contains all of the interac-
tions between the electrons, the particles this wave function represent are not the same
electrons we started with. Figuratively speaking these electrons differ from the

”
bare” elec-

trons we started with because they are “dressed up” with the interaction of the lattice and
of the other electrons, therefore these are non-interacting particles of charge −e moving
in a periodic potential created by the lattice ions and by the other (bare) electrons.

15.1.3 Bloch electrons

The Hamiltonian of this system can be written in the form:

H =
K∑
j=1

Ho(pj, rj) where Ho =
p2

2me

+ V (r)

The V potential is periodic:
V (r + R) = V (r)

and the periodicity is given by the lattice vector R = n1a1+n2a2+n3a3. In Appendix 23.6
we determined the form of the wave function of an electron in a (weak) periodic potential.
The result:

ψ(x) = u(x)eikx where u(x+ na) = u(x) (15.1.1)

i.e u(x) is a lattice periodic function. It also depends on k so we will sometimes denote
it by uk(x)

A wave function of this functional form is called Bloch function and the corresponding
particle is the Bloch electron. The Bloch function is a crystal orbital, as it is delocalized
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Figure 15.1: The Bloch function (solid line) is a free electron wave function (dashed line)
modulated by a lattice periodic function

throughout the solid, and not localized around any particular atom. Thus the electron
is shared by the whole crystal2.

15.2 Crystal momentum of Bloch electrons. Disper-

sion relations

The momentum of the Bloch electron is calculated the usual way

p =

∫
ψ∗p̂ψdx =

~
i

∫
ψ∗

d

dx
ψdx =

=
~
i

∫
u∗(x)e−ikx

d

dx
u(x)eikxdx =

=
~
i

∫
u∗(x)e−ikx

(
u′(x) + u(x)(ik)

)
eikxdx =

=
~
i

∫
iku∗(x)u(x)dx+

~
i

∫
u∗(x)u′(x)dx =

= ~k
∫
u∗(x)u(x)dx︸ ︷︷ ︸

=1

+
~
i

∫
u∗(x)u′(x)dx

where the value of the first integral for normalized ψ-s is 1. The total momentum can
be written as the sum of the momentum of a free electron of wave vector k and a pu
momentum that describes the interaction with the crystal.

p = ~k + pu (15.2.1)

Here ~k is called the crystal momentum or quasi momentum of the Bloch electron. As
you can see the crystal momentum is not the same as the momentum of a free electron,

2In Section 15.4 we will see that such delocalized wave functions can be constructed even from wave
functions of localized valence electrons.
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because p 6= ~k. The corresponding kinetic energy according to Appendix 23.7 is

Ekin(k) =
~2k2

2me

+ Ecryst(k) (15.2.2)

Therefore the kinetic energy of a Bloch electron is not
p2

2me

with p from (15.2.1) but the

sum of the kinetic energy corresponding to the quasi- momentum k and an interaction
energy with the crystal. This means that although Bloch-electrons look like free electrons
with a modified amplitude they energy is not completely kinetic.

The total energy vs k (the Bloch electron dispersion relation) can be determined by
solving the Schrödinger equation for the unknown uk(x) function:

Hψ = Eψ(
− ~2

2m

d2

dx2
+ V (x)

)
uk(x)eikx = Ekuk(x)eikx(

− ~2

2m

(
d2uk
dx2

+ 2ik
duk
dx
− k2uk

)
+ V (x)uk(x)

)
eikx = Ekuk(x)eikx

(
−~2

2m

(
d

dx
+ i k

)2

+ V (x)

)
uk(x) = Ekuk(x) (15.2.3)

H ′uk(x) = Ek(x)uk(x)

where there is a periodic boundary condition for uk(x) with the periodicity of the V (x)
crystal potential:

uk(x+R) = uk(x).

Those k crystal momenta that differ from each other only by some integer multiple of
2π/a correspond to the same k quasi-momentum. As a consequence k can be confined
to the first Brillouin zone (or to any convenient primitive cell of the reciprocal lattice).
Let k′ is a value outside the first Brillouin zone, then it can be written as

k′ = k +K

where K is a reciprocal lattice vector and k is inside the first Brillouin zone. Then in
(15.1.1) (now explicitly denoting the k dependence of ψ and u)

ψk′(x) = uk′(x)eik
′x = uk′(x)eikxeiKx = uk′(x)eikx

Notice that the k′ index of uk does not become k, which means that the exact form of u
depends not on k only but on K as well.
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Equation (15.2.3) then can be regarded as an eigenvalue problem restricted to a single
cell of the crystal. As in the case of the Born-Karman periodic boundary condition this
restriction of the wave function into a finite volume of space gives rise to an infinite
number of discreet eigenvalues at every possible k. These eigenvalues will differ for
different K values. It follows that the E = E(k) dispersion relation will have more
than one branches. As all K which corresponds to values of k′ in the n-th Brillouin zone
belongs to the same branch we may use the index of the branch instead of K:

E(k′) = E(k +K) = En(k) (15.2.4)

uk′(x) = un,k(x) (15.2.5)

Figure 15.2: Dispersion relation of Bloch electrons. Extended (a) and reduced (b) zone
pictures. On the extended zone picture the blue curve is the branch of the dispersion
relation in the first, the red ones are the branches in the second Brillouin zone. Bands
are shown as gray areas. The reduced zone picture (blue and green curves) is constructed
from the extended one by moving all branches of the dispersion relation that lie in the
n-th Brillouin zone (red for zone #2) back into the first Brillouin zone with a reciprocal

lattice vector of length K =
2 π

a
· n as denoted by the gray arrows. The green curve is

the result.

In an ideal crystal the branches of the dispersion relation have a horizontal tangent
at the edges of the Brillouin zone with gaps between them. The energy ranges these
branches represent are called energy bands. Therefore the index of the branch n in
(15.2.4) is called the band index.
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No electron may have an energy between the top of a lower lying band and the bottom
of the next (upper lying) band: there appears a forbidden gap between the bands.

Although for every k in the first Brillouin zone we can find an infinite number of
energy levels (reduced zone picture) we may also display an extended view of the bands,
when all branches are drawn in their own (2nd, 3rd, etc) Brillouin zone as on the left
side of Fig. 15.2.

A comparison of the free electron and Bloch electron dispersion relation near the zone
boundary is shown in Fig. 15.3.

Figure 15.3: Dispersion relation of Bloch electrons near the zone boundary in the ex-

tended zone picture. In this figure we selected the region between
π

2 a
and

3π

2 a
as the

first Brillouin zone and projected the curves into this region.

The smaller the magnitude of the crystal potential the smaller is this forbidden gap.
In the V → 0 limit (which from a quantum mechanical point of view corresponds to the
Sommerfeld model: (almost) free electron in a box) the gap vanishes and in the reduced
zone picture the free electron dispersion relation is folded back into the first Brillouin
zone (see Fig. 15.4).

How can we explain the formation of the forbidden gap in a “plausible way”?
Bloch electrons are waves in the crystal. The wavelength of Bloch electrons is in

the range of the lattice constant3, therefore the interaction of the wave function with

3Like for X-rays.
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Figure 15.4: Dispersion relation of Bloch electrons in the limit of V → 0 (quasi free
electron model). The numbers refer to the line sections of the extended dispersion rela-
tion, which are projected back to the first Brillouin zone. (Line sections are numbered
consecutively in every Brillouin zone. E.g. ’2’ denotes the line section from the 2nd
Brillouin zone above π/a, while ’3’ is the line section from the same zone below −π/a.)

the lattice can be described as a reflection by the lattice planes. The condition of a
constructive interference is given by the Bragg condition:

2asinθ = nλ where n = 1, 2, ...

For an angle of incidence perpendicular to the zone boundary (θ = 90o) the path
difference becomes

2a = nλ

which corresponds to a phase difference of

∆ϕ =
2π

λ
2a

Constructive interference for perpendicular incidence occurs, when

∆ϕ = 2nπ
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k =
2π

λ
= n

π

a
(15.2.6)

i.e. the lattice reflects back electrons with this momentum (i.e. k′ = −k). This means
that the momentum of an electron accelerated by e.g. an electrical field is reversed when
it reaches the border of the first Brillouin zone (see next section for details), therefore
electrons can not leave the first Brillouin zone when their energy changes continuously,
neither can they move from one branch to an other one this way.

Important 15.2.1. When the crystal momentum of an electron is increased by a con-
stant or slowly varying external field reaches the zone boundary it will be reflected back
to the opposite zone boundary, therefore

• in the extended zone picture no such field can make the electron leave the Brillouin
zone it occupies and move it to any other Brillouin zone, or

• in the reduced zone picture no such field can make the electron leave the actual
branch of the dispersion relation.

Every branch of the dispersion relation corresponds to an energy band, so this state-
ment is equivalent to the following:

Important 15.2.2. No constant or slowly varying external field can move an electron
from one band to another band.

Constant or slowly varying external fields change the electron energy as a function of
its crystal momentum as described by the dispersion relation. Any process that excites an
electron from one band to an other one must change the electron energy abruptly. Such
processes are collisions with photons, because the momentum of a photon is negligible
compared to the momentum of a Bloch electron4.

The change in momentum at the boundary of the B-zone is k′ − k = 2π
a

which is a
reciprocal lattice vector.

Bloch electrons are particles traveling with a constant velocity. They have a wave
function of non diminishing amplitude. Therefore in perfect crystals at T=0K (when
there are no lattice vibrations with which they can interact5) they can travel freely with-
out any resistance. This is in striking contrast with the Drude- or Sommerfeld models,
where the ion cores are the scattering centers independent of the temperature. There-
fore the appearance of the resistivity requires that either lattice imperfections or lattice
vibrations are to be present.

4When the material in question has an indirect gap – see near Figure 15.6 and Figure 15.3 – both the
energy and the momentum may change in the excitation process. This requires a simultaneous collision
with a photon and a phonon (the quantum of lattice vibrations).

5No interaction is possible with the zero-point vibrations.
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Dispersion relations in 3D

In 3D the Bloch electron energy dispersion relation depends on the direction in which
the electron travels. This can be visualized the same way as for the lattice vibrations:
by selecting special high symmetry points in k-space and drawing the branches of the
dispersion relation along directions connecting two high symmetry points in k-space.
The dispersion relation is then called the band structure of the solid. The schematic

Figure 15.5: Dispersion relation in 3D for an FCC Bravais lattice. The horizontal lines
give Fermi-energies for the indicated number of electrons per primitive cell. The number
of dots on a curve specifies the number of degenerate free electron levels represented by
the curve.

band pictures in Fig. 14.2 show just the allowed and forbidden regions of the energy
axis marked by the branches of the dispersion relations and do not give the correct band
structure. For instance the maximum of a lower lying band and the minimum of the
upper lying band may be found at different k values. A more detailed representation
than in Fig. 14.2 is in Fig. 15.6. The band overlap if present need not occur in the
same directions or at the same k values in the Brillouin zone. Materials with overlapping
bands are metals or semi-metals. The alkali metals and the noble metals have only one
valence electron per primitive cell, so they have to be metals. The alkaline earth metals
however have two electrons per primitive unit cell, so they could have been insulators,
but because their bands overlap in energy an electron can move into an empty band with
only a small amount of energy readily provided by thermal excitations.
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Figure 15.6: Band structure of insulators and metals. a) insulator, b) metal with over-
lapping bands and c) metal with non-overlapping partially filled conduction bands

15.3 Kinematics of electrons. Effective mass

A localized electron is characterized by a localized wave function, called a wave packet.
There exist two different velocities for such a wave: the phase velocity vph = ω/k and
the group velocity vg = dω/dk6. In one dimension

vg(k) :=
dω

dk
⇒ vg(k) =

1

~
dE
dk

vg(0) = 0 and vg(±π/a) = 0

In regions far both from 0 and (±π/a) vg is almost the same as for a free electron:

vg(k) ≈ ~k
m

(15.3.1)

If a constant F force is acting on the electron

F = ~
dk

dt
(15.3.2)

and

F =
dmvg(k)

dt
=

1

~
d

dt

(
m
dE
dk

)
6 It is worth mentioning that for electrons the phase velocity is k dependent even in vacuum. That

is the reason why an electron wave packet changes shape in vacuum too as time progresses.
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i.e.

~
dk

dt
=
dmvg(k)

dt
=

1

~
d

dt

(
m
dE
dk

)
(15.3.3)

but as we saw before when the k crystal momentum reaches the edge of the Brillouin
zone it will be reflected back (k′ = −k), i.e. it will reappear at the other end of the
Brillouin zone.

This behavior may be further examined in the following way: According to (15.3.3)
far from from 0 and the zone boundaries (±π/a) :

1

~
d

dt

(
m
dE
dk

)
= ~

dk

dt
(15.3.4)

We may make this formula valid for all k values by replacing m(= me) with an meff

effective mass, defined a suitable way. Because

d

dt

(
m
dE
dk

)
= m

d

dk

dk

dt

(
dE
dk

)
= m

d2E
dk2

dk

dt

m

(
1

~2

d2E
dk2

)
~
dk

dt
= ~

dk

dt
(15.3.5)

After canceling the common factors we find that if the effective mass is defined the
following way:

1

meff

=
1

~2

d2E
dk2

(15.3.6)

then we can use

vg(k) =
~k
meff

(15.3.7)

instead of formula (15.3.1) everywhere in the Brillouin zone. In 3D the effective mass
depends on the direction the electron travels, i.e. on the components of k. The 3D
formula equivalent to (15.3.6) is:(

1

meff

)
i,j

=
1

~2

∂2E
∂ki∂kj

i, j = 1, 2, 3 (15.3.8)

The effective mass incorporates the effects of the crystal structure on the dynamics
of the electron. This underlines our previous statement that Bloch-electrons are not
“ordinary” electrons, but particles “dressed up” with the interaction of the lattice.
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The magnitude and even the sign of the second derivative of E changes and corre-
spondingly the magnitude and sign of the effective mass also changes as k is varied:

condition meff remark
E(k) has minimum at k meff > 0 e.g. on the lowest branch when k = 0
E(k) has maximum at k meff < 0 e.g. on the lowest branch when k = ±π

a

E(k) has inflection point at k meff =∞
The effective mass is positive at the bottom of a band and negative at the top of a band.
When the curvature of the lower lying band is not the same as the curvature of the upper
lying band the absolute values of the effective masses at the same k in these two bands
differ. The wider is the band near its extremum the smaller is the magnitude (absolute
value) of the effective mass there.

Example 15.1. The dispersion relation of electrons in the valence and conduction bands
near the band edges is approximated by the following functions:

Ev(k) = −3.024 10−20(k − 2.45108)2 + 13 [eV ]

Ec(k) = 4.65 10−20k2 + 11.9 [eV ]

Express the effective masses of electrons in units of the free electron mass me = 9.1 ·
10−31kg. Solution In 1D

1

meff

=
1

~2

d2E(k)

dk2

The energies (in eV) converted to Joule are:

Ev(k) = −4.845 10−39(k − 2.45108)2 + 2.08 · 10−18 [J ]

Ec(k) = +7.450 10−39k2 + 1.91 · 10−18 [J ]

The second derivative of both functions gives twice the coefficient of the
2nd order terms, and so the electron effective masses in the conduction and
valence bands are:

m
(c)
eff = − ~2

1.490 · 10−38
= −7.46 · 10−31[kg] = −0.819me

m
(v)
eff =

~2

9.690 · 10−39
= 1.14 · 10−30[kg] = 1.260me

Substituting the effective mass into formulas (14.2.2) and (14.2.4):

σ =
ne2τ

meff

(15.3.9)

µ =

(
eτ

meff

)
(15.3.10)

264



Because the effective mass depends on k and even at the same k value it may be different
in different bands the mobility of charge carriers depends on k and the band index.

Bloch oscillations

While examining the behavior of the electrons in periodic lattices Bloch and Zener pre-
dicted that the motion of electrons in a perfect crystal under the influence of a constant
electric field would be oscillatory instead of uniform

Background 15.3.1. Let us describe the behavior of the electron in the lowest band in
Fig. 15.2 ), under the influence of a constant E electric field!

When k = 0 the momentum and the velocity are 0 and the acceleration is E/meff .
When k is near to 0 the wave function is a Bloch function with uk(x) ≈ 1 (almost a

free electron wave function) and meff is positive. Near the origin the E(k) function may
be approximated by a parabola. Until this approximation becomes invalid the effective
mass is constant.

As the p(k) = ~(k +G) momentum7 (see (15.2.1)) increases k also increases with it

but meff remains constant. The vg(k) =
1

~
dE
dk

velocity of the electron increases linearly

and the acceleration is constant.
After the parabolic approximation fails more and more of the increase in p is trans-

ferred from the electron to the lattice. This corresponds to the increase in meff , (as the
curvature of E(k) changes) which becomes ∞ at the inflection point. The acceleration
decreases. The acceleration becomes 0 at the inflection point. Above the inflection point
meff is negative. This means that as the momentum changes from k to k + ∆k the mo-
mentum transfer to the lattice from the electron is larger than the momentum transfer
from the applied force to the electron. Although k still increases the acceleration is neg-
ative (deceleration), the velocity decreases, as the approach to the Bragg reflection (see
previous section) results in an overall decrease of the forward momentum of the electron.

At the zone boundary k =
π

a
(top of the band) the electron wave function which until

now was a running wave becomes a standing wave instead. This standing wave may be
written as the sum of two running waves that run in opposite directions. The velocity will
be 0 and the acceleration remains negative. This is the turning point for the electron’s
movement. Up till now the electron traveled in the direction of the force.

A further increase of the total momentum p does not move k out of the first Brillouin

zone, because the Bragg reflection changes k from
π

a
to −π

a
that is the electron enters

the Brillouin zone from the other side. The acceleration is still negative. The velocity
becomes negative, the electron starts to move in a direction opposite to the force.

This means the electron turns back, and no longer travels in the original direction .

7G is a vector of the reciprocal space.
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Figure 15.7: Bloch oscillations. a) The dispersion relation, b) meff in the first Brillouin
zone, c) velocity and and d) acceleration throughout the first Brillouin zone

As k grows the magnitude of the velocity increases. When nearing the left inflection
point the effective mass decreases toward minus infinity and the absolute value of the
acceleration decreases. In the left inflection point the effective mass is infinite again
(and negative) the acceleration becomes 0 .

A further increase of k changes the sign of mEff back to positive again and this is
accompanied by the increase of the velocity (its magnitude decreases). Again the parabolic
approximation becomes more and more valid and the acceleration will be constant.

When k reaches 0 the state of the electron will be the same as it was at the beginning
and the process continues. This is the second turning point for the electron.

At first sight this oscillatory movement precludes an electric current but this is incorrect.
We only discussed the motion of a single Bloch electron originally at rest. But the velocity
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(wave vector) distribution without the external field is random while if an electric field is
applied this distribution will have a non-random (drift) component. That is the average
momentum will not be zero.

Interband transitions

As stated earlier interband transitions may occur as a result of photon absorption. These
can be direct or indirect transitions for direct gap and indirect gap materials respectively
(see Fig. 15.8)

Figure 15.8: a) direct transition. The bottom of the conduction band is at the same k
as the top of the valence band b) indirect transition. This involves both a photon and
a phonon, because the bottom of the conduction band and the top of the valence band
are at different k.

Transition may occur between any levels in the two bands for which both the momen-
tum and the energy conservation is fulfilled. On the figure only the threshold transitions
are shown. The threshold frequency ωg for absorption by the direct transition determines
the energy gap Eg = ~ωg. The momentum of the electron remains almost the same in the
transition because the wave vector k of the absorbed photon is very small. The absorption
threshold for indirect transition is greater than the width of the gap: ~ωg = Eg + ~ωph,
where ωph is the frequency of an emitted phonon of wave vector G ' −k. At higher
temperatures where more phonons are already present in the system it is also possible
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to absorb a photon and a phonon at the same time, in this case the required threshold
energy is smaller: ~ωg = Eg − ~ωph.

Direct and indirect transitions may be distinguished by optical absorption experi-
ments. Fig. 15.9 shows the threshold frequency in insulators at 0K.

Figure 15.9: a) direct gap optical absorption b) indirect gap optical absorption

15.4 Width of the energy bands. Tight binding model.

The calculations of the band structure of a material are very complex. But some general
features, like the width of the bands can be determined more easily. The width of a
band can be calculated if we know the exact ψ(r) Bloch function for the band. In one
dimension e.g.

E =

∫
ψ∗ Ĥ ψ dx∫
ψ∗ ψ dx

(15.4.1)

If Bloch function ψ depends on some parameters, then E will also depend on the same
parameters and the band width can be determined using this. So how can we obtain a
usable Bloch function?

Surprisingly Bloch functions can be created from slightly overlapping localized (atomic)
wave functions of valence electrons:

ψ(x) =
N−1∑
n=0

eiknaϕ(x− na) =
N−1∑
n=0

e−ik(x−na)ϕ(x− na)︸ ︷︷ ︸
u(x)

· ei kx = u(x)ei kx (15.4.2)
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Figure 15.10: Results of a tight-binding calculation. The overlap of the wavefunctions is
larger for the upper band, than for the lower one.

Because the constituent ϕ wave functions describe electrons are localized to the cor-
responding ion cores this is called the tight binding model. This is a good model for
insulators and transition metals.

Details of the calculation can be found in Appendix 23.8. The result:

E = Eatomic − α− 2 β cos ka (15.4.3)

where α and β are integrals depending on the selected atomic wave functions and their
overlaps. The possible energy values lie in a band determined by the term 2βcoska. The
cosine may change between -1 and +1, so the width of this band is 4β.

Parameter β is determined by the overlap of pairs of atomic wave functions:

β ∝
∑
n,l

∫
ϕ∗(x− la)∆Vp(x)ϕ(x− na)dx

Usually the overlap of atomic orbitals from atoms that are not nearest neighbors can
be neglected and we need to calculate only terms for l = n± 1. This leads to narrow d
bands and wide s bands.
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Important 15.4.1. Integrals∫
ϕ∗
(
x− (n± 1) a

)
∆Vp(x)ϕ(x− n a)dx (15.4.4)

are called bond energy or two center integrals and they are the most important elements
of the tight-binding model.

Higher lying states corresponds to larger overlap, i.e. a larger β parameter.

15.5 Conduction of metals. Electrons and Holes

In a completely full band, which does not overlap with any other band, electrons cannot
change their momentum as a response to an external electric field, because there are no
free electronic states available. No electric current can flow in these materials i.e.

jfull band = 0.

unless one or more electrons are excited to the next band either by thermal excitations
or by any other mechanisms.

However in metals either there are unoccupied levels in a band or a completely filled
band and an other empty or partially filled band overlap. In both cases current may
flow.

Important 15.5.1. Bands that are empty or partially filled at T = 0K are called con-
duction bands, while bands completely filled at T = 0K are called valence bands.

The current from a single electron moving with v(k) velocity in the conduction band is

j = −ev(k)

The total current from all electrons then8:

je = −e
∑

occupied levels
in band

v(k) = −e 1

8π3

∫
occupied levels

in band

v(k) d3k

We can add to and subtract from je the current of imaginary electrons occupying the
empty levels without changing the current:

je = joccupied levels
in band

+ (jempty levels
in band

− jempty levels
in band

)︸ ︷︷ ︸
=0

8See (23.5.1)
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Reordering the terms gives:

je = joccupied levels
in band

+ jempty levels
in band︸ ︷︷ ︸

jfull band=0

−jempty levels
in band

i.e.

joccupied levels
in band

= −jempty levels
in band

or

− e

8 π3

∫
occupied levels

in band

v(k) d3k = +
e

8π3

∫
empty levels
in band

v(k) d3k

Important 15.5.2. The current usually attributed to the negatively charged electrons
present in the band can also be expressed as a current of positively charged particles,
called holes that occupy levels not filled with electrons.

Because je = jh the electrical current of a partially full band may be described either as a
current of electrons or as a current of holes, but we can use only one of these descriptions
at any time in the same band.

The electron and hole current densities are:

je ≡ −
e

8 π3

∫
occupied levels

in band

v(k) d3kjh ≡ +
e

8π3

∫
empty levels
in band

v(k) d3k (15.5.1)

Instead of saying that we have electrons in the conduction band we may also say that
we have holes in the conduction band.

When a single electron with wave vector ke is excited by a photon of negligible wave
vector (kp ≈ 0) i.e. negligible momentum from the valence band to the conduction band
then the total momentum of the valence band becomes −~ ke. Wave vector −ke may be
ascribed to a hole in the valence band. In this way one hole is an alternative description
of a band with one missing electron.

When we excite electrons out of the valence band into the conduction band then the
total electric current will be:

je = jconduction band + jvalence band (15.5.2)

The current in the conduction band is described as a current of electrons. However
it makes more sense to describe the current in the valence band not as current of all the
remaining electrons in the band but as current of a single movable hole in a band which
otherwise contains no holes. The conduction in this band will be hole conduction. Holes
will behave exactly as positively charged particles, which have the same effective mass
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than the electrons in the same band at the same k would have. In the valence band holes
will be the majority carriers.

The effective mass of electrons in the conduction band and of holes in the valence
band may differ, therefore according to equations (15.3.9) and (15.3.10) the conductivity
and mobility of holes and electrons in the different bands together with the corresponding
current densities may also be different. Therefore it is also possible that the hole current
dominates, i.e. the observed current may be the current of holes instead of electrons.
The sign of the dominating charge carriers can be determined using the Hall effect.

The Hall effect

If an electric current flows through a conductor in a magnetic field, the magnetic field
exerts a transverse force on the moving charge carriers which tends to push them to one
side of the conductor. This is most evident in a thin flat conductor as illustrated. A
buildup of charge at the sides of the conductors will balance this magnetic influence,
producing a measurable voltage between the two sides of the conductor. The presence
of this measurable transverse voltage is called the Hall effect9 after E. H. Hall who
discovered it in 1879.

Figure 15.11: The Hall effect. a) for electrons b) for holes Both types of charge builds
up on the same face of the sample.

It is easy to prove10 that UH =
IB

n q d
. The sign of UH determines the sign of the

charge of the charge carriers (q = ±e).
9The measurement of large magnetic fields on the order of a Tesla is often done by making use of

the Hall effect. A thin film Hall probe is placed in the magnetic field and the transverse voltage (on the
order of microvolts) is measured.

10In equilibrium the total Lorentz force acting on the q charge must be 0 as the force from the electric
field of the charges at the opposite faces just cancels the force acting on the charge that moves with v
velocity in the B magnetic induction. In our case v is orthogonal to B and both force acts perpendicular
to the current: q(E + vB) = 0. Let us denote the width and thickness of the sample with w and d!
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15.5.1 Effective mass of electrons and holes

In most metals electric current is carried by electrons, but there exist divalent metals
(Mg, Cd) in which the current is carried by holes and not by electrons as the sign of the
Hall voltage show for samples made from these metals . What is the reason for this?

Explanation:
the electron configuration of these metals are:

Mg : 1s22s22p63s2,
Cd : 1s22s22p63s23p63d104s24p64d105s2

Both metals have a completely filled outer shell which results in a completely filled
band. The fact that these are metals hints that there must exist an overlapping empty
conduction band. When electrons are excited from one band to the other their effective
mass may change. Mobility of the charge carriers is inversely proportional to their
effective mass by the formula (C.f. (15.3.10) ):

µ =
eτ

meff

(15.5.3)

In Mg and Cd electrons in the conduction band have larger effective mass than holes in
the valence band. This will result in a greater mobility of holes (with smaller effective
mass compared to electrons) i.e. a larger hole current and smaller electron current. In
this case both electrons and holes contribute to the total current, because they are in
different bands, but the sign of the Hall voltage is determined by the dominating hole
current.

Because I = n q vdriftA, where A = w d and U = E w it follows that

UH
6 w

= − I B

q n 6 w d
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Chapter 16

Semiconductors

16.1 Homogeneous semiconductors. Charge carrier

concentrations. Donors and acceptors

Diamond, silicon, germanium and GaAs each have two atoms of valence four, so there
are 8 electrons per primitive cell; their bands do not overlap, and the pure crystals are
insulators at T= 0 K. Their forbidden gaps are:
Diamond - Eg = 5.5eV , Si - Eg = 1.1eV , Ge - Eg = 0.7eV , GaAs - Eg = 1.42eV . Let us
recap from Section 14.1: Semiconductors are insulators with an energy gap around 1 eV.

16.1.1 Intrinsic semiconductors

Intrinsic semiconductors are pure perfect crystals. Only electrons excited into the con-
duction band and the remaining holes in the valence band may carry electricity. As the
concentration of these are small they are very bad conductors. The probability of an
electron to be excited to the conduction band can be expressed by the Boltzmann-factor:

P(T ) = e
− Eg
kBT

Example 16.1. Compare the electron excitation probabilities in silicon at room temper-
ature and at T = 450K. Solution Substituting into the probability formula: at
room temperature

P(300K) = 3.32 10−19,

while at T = 450K:
P(450K) = 4.79 10−13
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So the ratio of these probabilities is

P(450K)

P(300)
= 1.44 106

i.e. the number of electrons available for conduction is about 106 larger at
450K than at 300 K. In the same range the increase in the resistivity because
of lattice vibrations is about linear. As a consequence resistivity of Si de-
creases with increasing temperature, i.e. has a negative thermal coefficient
contrary to metals. The same is true for all semiconductors.

When electrons are excited from the valence band to the conduction band holes appear
in their place in the valence band. Because hole-electron pairs are continually created by
thermal agitation of a semiconductor lattice, it might seem that the number of holes and
free electrons would continually increase with time. This does not happen because free
electrons are continually recombining with holes. At any temperature, an equilibrium is
reached when the creation rate of hole-electron pairs is equal to the recombination rate.

Important 16.1.1. The mean lifetime τn(s) of a free electron is the average time that
the electron exists in the free state before recombination. The mean lifetime τp(s) for the
hole is defined similarly. In an intrinsic semiconductor, τn(s) is equal to τn(s) because
the number of free electrons must be equal to the number of holes. However, the addition
of foreign atoms ( impurities) to the semiconductor lattice can cause the mean lifetimes
to be unequal.

In contrast with metals where the conduction can be attributed to either movable
holes or movable electrons in the same band but not both at the same time, in semicon-
ductors the electrons and the holes move in different bands, therefore both electron and
hole currents exist independently.

Holes are positively charged particles whose e charge is of the same magnitude and
opposite sign as the electron charge. The electric current in a semiconductor is the sum
of currents of electrons and holes:

j = je + jh = −ne e〈ve〉+ nhe〈vh〉

Substituting 〈ve〉 = µeE and 〈vh〉 = µhE and ni ≡ ne = nh

j = e(nc µe + pv µh)E (16.1.1)

j = nie〈v〉 = nie(µe + µh)E and

j = σE
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σ = nie(µe + µh) (16.1.2)

Example 16.2. A rod of intrinsic Si is 1 cm long and has a diameter of 1mm. At room
temperature, the intrinsic concentration in the silicon is ni = 1.5 1016m−3. The electron
and hole mobilities are µe = 0.13m2V −1s−1 and µh = 0.05m2V −1s−1. Calculate the
conductivity σ of the silicon and the resistance R of the rod. Solution

σ = nie(µe + µh) = 4.33 10−41/Ωm

R =
l

σd2π/4
= 29.4MΩ

Both the curvature of the branches of the electron dispersion relation and the sign of
the effective masses of conduction electrons and valence holes differ. As an example let
us compare the band structure of Si and Ge.

Both Ge and Si have a diamond structure (which can be viewed as either an fcc
lattice with 2 atoms basis or 2 single atom fcc lattices displaced by 1/4th of the main
diagonal of the unit cell). Therefore the reciprocal lattice is a bcc lattice. At the band
edges (i.e. at the minimum and maximum positions) the constant energy surfaces in 3D
are ellipsoids of revolution and can be written using the effective masses (here denoted
by an asterix):

Econd(k) = Ec +
~2

2

(
k2

1

m∗e,1
+

k2
2

m∗e,2
+

k2
3

m∗e,3

)
(16.1.3)

Eval(k) = Ec +
~2

2

(
k2

1

m∗h,1
+

k2
2

m∗h,2
+

k2
3

m∗h,3

)
(16.1.4)

From Fig. 16.1 the band gap Eg is 1.12 eV. Because the conduction band minimum and
valence band maximum are at a different k vector Si has an indirect gap. (C.f. Section
15.3.) There are 6 equivalent valleys in the conduction band (corresponding to the same
effective masses) in the 〈100〉 direction: (km, 0, 0), (−km, 0, 0), (0, km, 0), (0,−km, 0),
(0, 0, km), (0, 0,−km), where km = 5 1/nm. The effective mass of these anisotropic min-
ima is characterized by a longitudinal mass along the corresponding equivalent 〈100〉
directions and two transverse masses in the plane perpendicular to the longitudinal di-
rection. The two transverse effective masses of holes and electrons in Si (and Ge) are
equal. There are also 3 maxima at k = 0 called light and heavy hole bands and a so
called split-off band.

As you can see Ge is also an indirect gap semiconductor (see Fig. 16.2). Like Si Ge
also has 6 equivalent valleys but in the 〈111〉 direction, it has light, heavy and split-
off hole bands and the corresponding transverse, longitudinal light and heavy hole and
split-off effective masses.
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A semiconductor with a direct gap is gallium arsenide. Fig. 16.3 shows its band
structure.

Important 16.1.2. In the following we use the simple model that electrons in the con-

duction band are free particles in a potential box whose bottom is at Ec, i.e. E = Ec+
~2k2

2me
where mc denotes the effective mass for density of states calculations of the electron in
the conduction band. Similarly holes are free particles in a potential box whose bottom1

is at Ev with an effective mass for density of states calculations mh.

The density of states then are given by (C.f. equation (14.3.10)):

gc(E) =
8π
√

2m3
e

h3

√
E − Ec E ≥ Ec

gv(E) =
8π
√

2m3
h

h3

√
Ev − E E ≤ Ev

Therefore the effective mass for density of state calculations is the one which provides
the density of states using the expression for one isotropic maximum or minimum. For
instance for a single band minimum described by a longitudinal and two transverse
effective masses (e.g. Si, Ge) the effective mass for density of states calculations is the
geometric mean of the three masses:

mc = Nmin
3
√
mlmtmt

where Nmin is the number of equivalent minima.
The effective masses of electrons and holes in Si and Ge are in Table 16.1. The effective

mass for conductivity of electrons mcc is what we must use for mobility or diffusion
constant calculations. For cubic isotropic semiconductors with anisotropic dispersion
relations minima (again e.g. Si and Ge), one has to sum over the effective masses in the
different minima along the equivalent directions. The resulting effective mass for bands
which have ellipsoidal constant energy surfaces is given by:

mcc =
3

1

ml

+
1

ml

+
1

mt

As we discussed, in homogeneous perfect semiconductor crystals, the so called intristic
semiconductors, the number of conduction electrons (nc) and (movable) valence band
holes (pv) are equal. Because the probability that a level is filled in with electrons is
given by the Fermi-Dirac distribution function f(E) and holes are missing electrons, the

1Hole energy increases as electron energy decreases.
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electrons
rel. eff.mass Si Ge

longitudinal ml/me 0.98 1.59
transverse mt/me 0.19 0.0815
dens.of.states mc/me 0.36 0.22
conduct. mcc/me 0.26 0.12

holes
rel. eff.mass Si Ge

heavy mh/me 0.49 0.33
light mlp/me 0.16 0.043
split-off band mso/me 0.24 0.084
dens.of.states mv/me 0.81 0.34

Table 16.1: Effective masses in Si and Ge

probability of a level to have a hole equals to (1 − f(E)). The expectation values of nc
and pv can be calculated by2

nc(T ) =

∫ ∞
Ec

gc(E)
dE

e(E−EF )/kBT + 1
(16.1.5)

pv(T ) =

∫ Ev
−∞

gv(E)

(
1− dE

e(E−EF )/kBT + 1

)
(16.1.6)

=

∫ ∞
Ev

gv(E)
dE

1 + e(EF−E)/kBT
(16.1.7)

where gc(E) and gvE) are the density of states in the conduction and valence bands
respectively.

nc(T ) =
8π
√

2m3
e

h3

∫ ∞
Ec

√
E − Ec

e(E−EF )/kBT + 1
dE (16.1.8)

pv(T ) =
8π
√

2m3
h

h3

∫ Ev
−∞

√
Ev − E

e(EF−E)/kBT + 1
dE (16.1.9)

These integrals cannot be expressed analytically at non-zero temperatures3. We either

2Strictly speaking the upper limit for nc should be Etop of the conduction band and the lower limit for pv
should be Ebottomof the valence band, but the fF−D function goes to 0 there, so we can use ±∞ instead.
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calculate them approximately or numerically. For non-degenerate semiconductors, i.e.
for semiconductors, where EF is at least 3kBT away from either band edge4 the Maxwell-
Boltzmann distribution function can be used instead of the Fermi-Dirac one because
(E − EF ) is large (c.f. Chapter 9). In this case5:

nc(T ) =
8π
√

2m3
e

h3

∫ ∞
Ec

√
E − Ec e−(E−EF )/kBTdE

pv(T ) =
8π
√

2m3
h

h3

∫ Ev
−∞

√
Ev − E e−(EF−E)/kBTdE

the integrals can be calculated analytically6

nc(T ) = Nce
−Ec−EF

kBT (16.1.10a)

pv(T ) = Pve
−EF−Ev

kBT (16.1.10b)

3At 0K the calculation is simple because the Fermi-Dirac function is 1 below EF and 0 above it.
Therefore

n0 ≡ nc(0) =

∫ EF
Ec

gc(E)dE

=
8π
√

2m3
e

h3

∫ EF
Ec

√
(E − Ec)dE

=
16π

√
2m3

e

3h3
(EF − Ec)3/2 for EF ≥ Ec

similarly

p0 ≡ pv(T ) =
16π

√
2m3

e

3h3
(Ev − EF )3/2 for Ev ≥ EF

4This is true to Si, Ge and Ga As.
5when |E − EF | � kBT

1

e(E−EF )/kBT + 1
≈ e−(E−EF )/kBT

1− 1

e(E−EF )/kBT + 1
=

1

e(EF−E)/kBT + 1
≈ e−(EF−E)/kBT

6Calculate the integrals by variable substitution. E.g. for nc let y ≡
√
E − Ec. Then dE = 2y dy and

at the lower limit y(E = Ec) = 0 The exponent becomes E − EF = y2 + Ec − EF and the integral:∫ ∞
0

y2 e−(y
2+Ec−EF )/kBT dy = 2e−(Ec−EF )/kBT

∫ ∞
0

y2 ey
2/kBT dy =

√
π kBT )3

2
e−(Ec−EF )/kBT
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where Nc and Pv are the effective density of states in the conduction and valence bands
respectively:

Nc(T ) = 2 ·
(

2πmekBT

h2

)3

2 (16.1.11)

Pv(T ) = 2 ·
(

2πmhkBT

h2

)3

2 (16.1.12)

In this formula again the effective mass for density of states must be used.

Example 16.3. Calculate the effective carrier densities of states in the conduction and
valence bands of germanium and silicon at 300 K. Solution Substitute the effective
masses for the density of states from Table 16.1 into (16.1.11) and (16.1.12).

cm−3 Ge Si
Nc(300K) 1.02 1019 2.81 1019

Pv(300K) 5.64 1018 1.83 1019

The general formula from the calculations above can be expressed in the simple form

Nc(T ) = 2.5 1019

(
mc

me

) 3
2
(

T

300K

) 3
2

(16.1.13)

Pv(T ) = 2.5 1019

(
mh

me

) 3
2
(

T

300K

) 3
2

(16.1.14)

A very useful fact is that the product nc(T )pv(T ) for non degenerate semiconductors7

is independent of the EF Fermi energy:

nc(T )pv(T ) = Nc(T )Pv(T )e
−Ec−Ev

kBT = Nc(T )Pv(T )e
− Eg
kBT (16.1.15)

so if we know the concentration of either of these at a given temperature(!) we can
calculate the other one. This is the mass action law for non degenerate semiconductors.
This formula remains valid (see Section 16.1.2) even for non intrinsic semiconductors8 .

For intrinsic semiconductors

nc(T ) = pv(T ) (16.1.16)

ni ≡ nc(T ) = pv(T ) =
√
Nc(T )Pv(T ) e

− Eg
2kBT (16.1.17)

7Intrinsic semiconductors are usually non-degenerate.
8i.e. when a semiconductor is doped (see below)

280



From (16.1.16), (16.1.11) and (16.1.12):

Nce
−EF−Ec

kBT = Pve
−Ev−EF

kBT

taking the logarithm of both sides and reordering the resulting equation we can obtain
EF

EF =
1

2
(Ec + Ev) +

1

2
kBT ln

(
Pv
Nc

)
(16.1.18)

and using (16.1.11) and (16.1.12) and that
1

2
(Ec + Ev) =

1

2
Eg + Ev

EF =
1

2
Eg + Ev +

3

4
kBT ln

(
mh

mc

)
(16.1.19)

When the effective masses are equal (mh = mc) the logarithm is zero. Then:

EF =
1

2
Eg + Ev where mh = me (16.1.20)

that is for non-degenerate intrinsic semiconductors with equal electron and hole effective
masses the Fermi level lies in the middle of the forbidden gap. In the general case the
chemical potential shifts toward the band with the lower effective mass, but this deviation
can be practically neglected even at room temperature.

16.1.2 Extrinsic (doped) semiconductors

To create semiconductor devices intrinsic semiconductors, i.e. pure single crystals with
negligible concentration of impurities (foreign atom content) are not sufficient. For prac-
tical use semiconductors are doped, i.e. a well known concentration of selected foreign
elements called dopants are introduced in the crystal in very small concentrations to
change its electrical properties9. Dopant concentrations are ≈ 1013 − 1016cm−3 which is
10−9 − −10−6 times smaller than the concentration of the of the semiconductor atoms
(≈ 1022cm−3) Dopants can come in two flavors: they either have more or fewer valence
electrons than the atoms (molecules) that form the crystal.

Background 16.1.1. For Group IV semiconductors10 such as silicon, germanium, and
silicon carbide, the most common dopants are acceptors from Group III or donors from

9The color of some gemstones is also caused by dopants. For example, ruby and sapphire are both
aluminum oxide, the former getting its red color from chromium atoms, and the latter doped with any
of several elements, giving a variety of colors.

10When discussing periodic table groups, semiconductor physicists always use an older notation, not
the current IUPAC group notation. For example, the carbon group is called ”Group IV”, not ”Group
14”
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Group V elements. By doping pure Group IV semiconductors with Group V elements
such as phosphorus, extra valence electrons are added that become un-bonded from indi-
vidual atoms and allow the compound to be an electrically conductive n-type semicon-
ductor. Doping with Group III elements, which are missing the fourth valence electron,
creates ”broken bonds” (holes) in the silicon lattice that are free to move. The result is
an electrically conductive p-type semiconductor.

The energy required to remove an electron from a donor atom can be approximated
using a hydrogen-like model. After all, the donor atom consists of a positively charged
ion and an electron just like the proton and electron of the hydrogen atom. The difference
however is that the average distance between the electron and the donor ion is much larger
since the electron occupies one of the outer orbitals. By modeling the surroundings of
an atom with a continuous medium of permittivity ε the Bohr radius of the n-th orbital
of the single valence electron will be larger than that for H in vacuum by a factor of
εrme/m

∗
e, where we used an asterisk to denote the effective electron mass:

rn =
2 (2π)3n2

m∗ee
2

εoεr

The ionization energy11 will be correspondingly smaller:

Eion = 13.6
m∗e
meε2r

[eV ]

For silicon εr = 11.7, m∗e = 0.12me so the ionization energy is ESi,ion ≈ 13.6·0.12/11.72 =
0.012eV . The exact value depends on the actual donor atom. By similar consideration
we can see for acceptors too that their “ionization energy” (or the energy for electron
capture) in Si is also small.

A justification of our starting assumption is given by calculating the first Bohr radius
in Si using the well known value for the first Bohr radius in vacuum ao = 0.05nm. The
result is rSio ≈ 8nm which is very large relative to the lattice constant, therefore we may
regard the neighboring Si atoms as a continuous medium.

Thus the donor atoms can be easily ionized giving the system movable conduction
electrons and creating immobile holes localized at the donor atoms. Similarly the accep-
tor atoms trap electrons making them immobile and add movable holes to the system.
In the band structure these atoms give shallow donor or acceptor levels in the forbidden
gap near the band edges.

Conduction in doped semiconductors is different from the intrinsic case, because
dopants contribute movable charge carriers (electrons or holes) for conduction thus in-
creasing the conductivity, while keeping opposite charges (holes or electrons) localized.

11Remember the H ionization energy is 13.6 eV.
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acceptor in B Al Ga In Te
Si 0.046 0.057 0.065 0.16 0.26
Ge 0.01 0.01 0.061 0.011 0.01

donor in P As Sb Bi
Si 0.046 0.057 0.065 0.16 .
Ge 0.01 0.01 0.061 0.011 .

Table 16.2: Shallow donor and acceptor levels in Si and Ge in eV.

The neutrality of the semiconductor requires that the total of positive charges per
unit volume from pv movable holes, and N+

d immobile donor ions and negative charges
from nc movable electrons and N−a immobile acceptor ions is zero, therefore:

N+
d + pv = N−a + nc (16.1.21)

(N+
d ≤ Nd and N−a ≤ Na are the ionized part of the donor and acceptor atoms respec-

tively.)
Semiconductors in which the majority carriers are electrons, i.e. in which there are

more donors than acceptors are called n-type semiconductors, while semiconductors in
which the majority carriers are holes, i.e. in which there are more acceptors than donors
are called n-type semiconductors.

For n-type semiconductors (N+
d > N−a where N+

d ≈ Ndand N+
a ≈ Na):

nc ≈ (Nd −Na) pv ≈
n2
i

Nd −Na

(16.1.22)

while for p-type semiconductors (Na > Nd):

pv ≈ (Na −Nd) nc ≈
n2
i

Na −Nd

(16.1.23)

Example 16.4. A rod of n-type extrinsic Si is 1 cm long and has a diameter of 1mm.
At room temperature, the donor concentration is 5 1014 atom/cm3 and this corresponds to
1 impurity for 108 Si atoms. A steady 2µA current is flowing through the bar. Determine
the electron and hole concentrations, the conductivity and the voltage across the rod. The
intrinsic electron concentration in silicon is12 ni = 1.01 1010m−3. The electron mobility
is µe = 0.13m2 V −1 s−1. Solution n-type: Na ≈ 0. From (16.1.22) n = Nd =
5 10201/m3,

pv =
n2
i

Nd

= 4.5 10131/m3

12The previously accepted value before 1991 was 1.45 · 1010m−3
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From (16.1.1) and using that pv � nc

σ = encµe = 0.104S/m

The voltage across the rod:

U =
I l

σA
= 0.12V

Fermi level of doped semiconductors

Consider an n-type semiconductor. Near T = 0K all electrons in the conduction band
must come from the donor levels. The excitation energy required for this is small and
this situation corresponds to an intrinsic semiconductor with a band gap of Ec − Edonor.
Similarly for acceptor levels Eacceptor − Ev can be used. So in this case 13 The Fermi

energies E (d)
F and E (a)

F attributed to the dopants are (c.f. equation (16.1.19))

E (d)
F =

1

2
(Ec + Edonor) +

3

4
kBT ln

(
mh

mc

)
(16.1.24a)

(16.1.24b)

E (a)
F =

1

2
(Ev + Eacceptor) +

3

4
kBT ln

(
mh

mc

)
(16.1.24c)

The equivalent of equations (16.1.10) in the case when the number of electrons from the
valence band and holes from the conduction band are negligible relative to the ones due
to the dopants14:

n(d)
c (T ) = Nce

−
Ec−E

(d)
F

kBT for an n-type semiconductor (16.1.25a)

p(a)
v (T ) = Pve

−
E(a)
F
−Ev

kBT for a p-type semiconductor (16.1.25b)

Substituting both carrier concentrations nc and pv in (16.1.25) with their equivalent
intrinsic ni gives:

n(d)
c (T ) = ni e

−
E(d)
F
−EF

kBT for an n-type semiconductor (16.1.26a)

p(a)
v (T ) = ni e

−
EF−E

(a)
F

kBT for a p-type semiconductor (16.1.26b)

13Even at so low temperatures where the excitation of the donor atoms is negligible too there is still
some conduction, because the wave function of the localized donor electrons overlap even for very small
donor concentrations. This is called impurity band conduction

14C.f. (16.1.10).
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Example 16.5. Determine the ratio of conduction electrons from P dopants in Si to the
intrinsic electron concentration at the following temperatures: room temperature, 100oC
and 500oC! Is it possible for the intrinsic electron concentration to become larger than
the one due to the dopants? Solution a)
P is a donor atom, therefore the ratio of the conduction electrons from P and
from the valence band can be calculated according to (16.1.26), using (16.1.24a)

and neglecting the factor ln

(
mc

mh

)
:

n
(d)
c (T )

ni(T )
= e

−
E(d)
F
−EF

kBT

= e
−
(
Ed−Ev
2 kBT

)

= e
−
(
Ed−Ec+Eg

2 kBT

)

The value of Ed−Ec from Table 16.2 is −0.046 eV , Eg = 1.12 eV , and kBT at room
temperature (300 K) equals to 0.0258 eV so

n
(d)
c (T )

ni(T )
= e−( 1.12−0.046

2·0.0258 ) = 1.09 · 109

Similarly at 100oC (373K) and 500oC (773K)

n
(d)
c (373K)

ni(373K)
= 1.08 · 107

n
(d)
c (773K)

ni(773K)
= 3.17 · 103

The conduction electron concentration in P doped Si at room temperature is
≈ 109 times larger than the electron concentration in intrinsic Si, and about
a thousand times as large even at the very high temperature of 737 K !

b)
From this formulas it seems that the intrinsic electron concentration may
never reach n

(d)
c and the two concentrations may never even be equal. But

this is not so. We made some assumptions, which become invalid at higher
temperatures. First we neglected the logarithmic terms when we calculated
the Fermi energies and second we neglected the fact that the donor concen-
tration is very small and the number of conduction electrons from donors
has an upper limit, i.e. the electron density due to dopants has saturation.
Therefore it is possible for the intrinsic electron concentration to exceed the
electron concentration from dopants.
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Important 16.1.3. Because donor and acceptor levels are very close to the band edges
it is much more easy to excite charge carriers from them to the near band. Therefore
even at higher temperatures the overwhelming majority of the charge carriers (electrons
in the conduction and holes in the valence band) come from donor or acceptor atoms.

When the temperature increases the ionized portion of the ionized donor or acceptor lev-
els will become larger. At the same time the number of conduction electrons that come
from the valence band or the hole concentration that remains behind also increases. But
because the dopants are almost all ionized even at very low temperatures the increase in
charge carrier concentrations due to dopants is much smaller than that of the intrinsic
charge carriers. This is the saturation region. Increasing the temperature further the
intrinsic charge carrier concentration will exceed the one due to the dopants. This is the
intrinsic region. As a consequence the Fermi energy will shift towards the intrinsic value
as is depicted in Fig 16.7 for an n-type semiconductor.

As we mentioned in the previous section the law of mass action holds true even for
extrinsic semiconductors. That is

nc(T ) · pv(T ) = n2
i (T ) (16.1.27)

This means that when we create an n-type semiconductor we not only increase the
conduction electron concentration but decrease the valence hole concentration at the
same time as well. A short qualitative explanation why it is so is given in Appendix
23.9.

16.2 Semiconductor structures. The p-n junction.

Applications

Homogeneous intrinsic semiconductors are rare to find in practice. In every semicon-
ductor device special inhomogeneous structures are used. These are created by locally
varying the level of doping (number of donor and acceptor states) when the semiconduc-
tor device is fabricated. A short description of the fabrication process is in Appendix
23.10.

16.2.1 Inhomogeneous semiconductors. The (unbiased) p-n junc-
tion.

In inhomogeneous semiconductors the concentration of donors and acceptors is different
at different parts of the material. The simplest such structure is the p-n junction when

286



a p-type and an n-type layer meets (see Fig. 16.8)

Nd(x) =


0 x ≤ −ln
0 < Nd(x) < Nd −ln < x < lp

Nd x ≥ 0

(16.2.1)

Pv(x) =


Na x > 0

0 < Na(x) < Na −ln < x < lp

0 x ≤ 0

(16.2.2)

Here ln and lp are the widths at the n- and p- sides of the boundary between the dif-
ferently doped sides where the concentration of one of the dopant drops to 0 while the
concentration of the other dopant increases up to its bulk level, called the transition
region. Its width is ≈ 1 - 1000 nm.

Imagine that the two types of semiconductors has just been connected. Because at the
p-type side there are fewer electrons than holes and at the n-type side fewer holes than
electrons a diffusion current of electrons and holes starts. As majority charge carriers
move to the opposite side where they are minority carriers a ϕ(x) potential arises between
the n and p-type sides. After a short while this potential difference grow high enough
to stop the diffusion current. There will be a region wider than the transition region
where no movable charge carriers could be found, only unmovable negative and positive
charges. The width of this region is ≈ 10-1000 nm. This is called either the space charge
region or the depletion region15. The calculation of the nc(x) and pv(x) concentrations
is in Appendix 23.11.

If we simplify our task by setting lp and ln to 0 (i.e. abrupt change of doping at the
boundary) the simple Poisson equation is

dϕ(x)

dx
=


0 x > dn

− eNd(x)
ε

0 < x < dn

+ eNa(x)
ε

−dp < x < 0

0 x < −dp

(16.2.3)

The result with simple integration:

ϕ(x) =


ϕ(∞) x > dn

ϕ(∞)− eNd
2 ε

(x− dn)2 0 < x < dn

ϕ(−∞) + eNa
2 ε

(x+ dp)
2 −dp < x < 0

0 x < −dp

(16.2.4)

15Originally the EF,p and EF,n Fermi levels are different at the two sides, at the p-type region it will
be closer to the valence band at the n-type region closer to the conduction band. After equilibrium is
reached the Fermi level at both sides will be the same. C.f. contact potential
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The boundary conditions that must be satisfied are the continuity of ϕ(x) and its
first derivative are explicitly obeyed by these equation. If we write them for x = 0 we
can determine the values of dn and dp

16.

dn =

√
Na

Nd(Nd +Na)

ε∆ϕ

2 e

dp =

√
Nd

Na(Nd +Na)

ε∆ϕ

2 e

(16.2.5)

Example 16.6. Calculate the total voltage difference (the built in potential) between
the n-type and p-type part for a uniformly doped Silicon p-n junction with Nd = Na =
1017cm−3 at room temperature. The intrinsic carrier density is 1.45 1014m−3 Will the
built-in voltage increase or decrease with an increase in temperature? Solution From
formula (23.11.4)

Vp−n ≡ ∆ϕ =
1

e
kBT ln

(
NdNa

n2
i

)
(16.2.6)

Vp−n =1.38 10−23[
J

K
] 300[K]

1

1.6022 10−19[As]
ln

(
1021 1021

(1.45 1014)2

)
=0.82V

Substituting back the expression (16.1.17) of n2
i (T ) and (16.1.14) we find that

Vp−n is of the form:

e Vp−n = const1 kBT − const2 kBT ln T + Eg

When T increases the change in the term containing −kBT ln T is larger than
the change in the term containing kBT → the voltage decreases.

Example 16.7. Determine the widths dn and dp and the electrical field strength for the
Si p-n junction of the previous example. The relative permittivity of Si is εr = 16.0.

16Continuity of ϕ′(x)|x=0 gives
Nddn = Nadp

i.e. the excess positive charge on the n-side of the junction is the same as the excess negative charge on
the p-side. From the continuity of ϕ(x) at x = 0:

e

2 ε

(
Ndd

2
n +Nad

2
p

)
= ∆ϕ

From these two equations dn and dp can be determined.
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Solution We may write (16.2.5) in a more convenient form:

dn = 5257

√
Na

Nd(Nd +Na)

εr∆ϕ

2
[nm]

dp = 5257

√
Nd

Na(Nd +Na)

εr∆ϕ

2
[nm]

(16.2.7)

Substituting the data from the previous example gives dn = dp = 425.8 nm.
The magnitude of E is ∆ϕ/(dn + dp) = 0.82V/4.258 10−7 m = 1.93 107 V/m.

The Fermi energy is the (electro)chemical potential for a semiconductor. In inhomoge-
neous semiconductors we can define a position dependent chemical potential by

µe(x) = EF + eϕ(x) (16.2.8)

With this (23.11.1) can be written in the form:

nc(x) = Nc(T )e−(Ec−µe(x))/kBT

pv(x) = Pv(T )e−(µe(x)−Ev)/kBT
(16.2.9)

These are precisely the form of relations (16.1.10) for homogeneous semiconductors, ex-
cept that EF is replaced by the position dependent electrochemical potential. Therefore
the p-n junction may be described by either having constant band and impurity ener-
gies and a position dependent µe(x) electrochemical potential17 or by having position
dependent bands and impurity energies and a constant electrochemical potential (Fig.
16.10).

16.2.2 The biased p-n junction.

Things become really interesting when an external voltage (bias) is applied across the p-n
junction. We shell take V positive (forward bias) if its application raises the potential
of the p-side with respect to the n-side, in the opposite case it is negative (reverse bias).
When V = 0 as above there is a depletion layer of 10-100 nm in extent about the transition
point where the doping changes from n-type to p-type. Because of the lack of carriers
this layer has a much higher electrical resistance then the homogeneous regions. Most of
the voltage drop will occur in this region:

V = Vhomog + Vdepl ≈ Vdepl

17Even though µe(x) is not equivalent with EF it is sometimes called the Fermi energy and denoted
by EF (x).
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This modifies the total potential difference:

∆ϕ = ∆ϕ0 − V (16.2.10)

where ∆ϕ0 is the potential difference in (16.2.6). This change in ∆ϕ changes the values
of dn and dp according to (16.2.5):

dn(V ) = dn |V=0 ·
(

1− V

∆ϕ0

)
dp(V ) = dp |V=0 ·

(
1− V

∆ϕ0

) (16.2.11)

When V = 0 no current flows through the junction. When V 6= 0 electron and hole
currents of the same values will flow. The total current is the sum of the electron and
hole currents. It follows it is sufficient to deal with only one of them. Let us consider
the current of the holes! It has two components:

• Generation current (jgenhole)
Holes are continuously generated on the n-side by thermal excitation of electrons
to the conduction band. Although these are minority carriers there, they still have
an important role in the total current. Any hole generated near the junction may
wander into it then it is swept over to the p-side by the strong electric field in the
depletion layer. This current is insensitive to the magnitude of V.

• Recombination current (jrechole(V ))
A hole current flows from the p-side to the n-side. But in that direction the
potential change presents a barrier to the holes. Only holes which have high enough
thermal energy may go in that direction. This current depends on V exponentially
with the proportionality constant C:

jrechole(V ) = C e−e(∆ϕ0−V )/kBT (16.2.12)

The total current jtothole(V ) is the difference of the recombination and generation currents:

jtothole(V ) = jrechole(V )− jgenhole (16.2.13)

When V = 0 the total current is 0 and the generation and recombination current
must be equal

jtothole(0) = 0 = jrechole(0)− jgenhole and jrechole(0) = C e−∆ϕ/kBT

From this C can be determined:

C = jgenhole e
∆ϕ/kBT
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Consequently the factor e−e∆ϕ0/kBT is cancelled, therefore

jtothole(V ) = jgenhole

(
eV/kBT − 1

)
(16.2.14)

jtot(V ) = jtoth (V ) + jtote (V )

jtot(V ) = (jgenh + jgene )
(
eV/kBT − 1

) (16.2.15)

The current exponentially depends on V as seen in Fig. 16.12.

Diode

This is the characteristics of a rectifier or diode. When forward bias is applied the current
flows freely while with reverse bias the current is very small. Putting a semiconductor
diode into an electric circuit where alternating current flows effectively allows current
to flow only when the direction of the instantaneous voltage corresponds to the forward
bias. It is worth to note that too high voltages damage the p-n junction.

16.2.3 Transistors

The Bipolar Junction Transistor (BJT)

The invention of the Bipolar Junction Transistor in 1948 turned the fate of electronics,
which up to that time only used relatively large, fragile vacuum tubes.

The BJT is a 3 terminal (Base, Emitter, Collector) electronic device. The “Bipolar”
in the name implies that in a BJT both types of charge carriers are used. They come in
two flavors: there are PNP and the NPN transistors, where the letters refer to the types
of the three regions of the device. In a PNP transistors the holes, in an NPN transistor
the electrons are the majority carriers. As the mobility of electrons is usually larger than
that of the holes NPN transistors are faster devices than PNP transistors.

In typical operation, the base-emitter junction is forward biased and the base–collector
junction is reverse biased. The collector–emitter current (collector current in short) is
controlled by the much smaller base–emitter current ( base current in short), but can
also be viewed as controlled by the base–emitter voltage (voltage control). These views
are related to the current–voltage relation of the base–emitter junction, which is just the
usual exponential current–voltage curve of a p–n junction (diode). The collector current
flows through only the collector and the base current only through the base electrode,
while according to Kirchoff’s law the sum of these must flow through the emitter. It may
seem that BJTs can be considered as two diodes with a shared anode.
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This is true only when just two electrodes are used18 However when voltage applied
between both B and E and B and C the behavior is different.

Background 16.2.1. In an NPN transistor, for example, when a positive voltage (for-
ward bias) is applied to the base–emitter junction, the equilibrium between thermally gen-
erated carriers and the repelling electric field of the depletion region becomes unbalanced,
allowing thermally excited electrons to enter the base region (and a smaller current of
holes flows from base to emitter). The base region is narrow therefore just a fraction of
these electrons can recombine in it or reach the base electrode. Although there is a reverse
bias between the base and the collector most of the electrons wander (or ”diffuse”) through
the base into the collector, which means the base-collector junction does not operate like
a diode.

Without the forward bias no current can flow between the base–emitter diode, therefore
no current will flow from the emitter to the collector.

The electrons in the base are only called minority carriers because the base is doped
p–type which would make holes the majority carrier in the base.

To minimize the percentage of carriers that recombine before reaching the collector–
base junction, the transistor’s base region must be thin enough that carriers can diffuse
across it in much less time than the semiconductor’s minority carrier lifetime. In partic-
ular, the thickness of the base must be much less than the diffusion length of the electrons.
The collector-base junction is reverse–biased, and so little electron injection occurs from
the collector to the base, but electrons that diffuse through the base towards the collector
are swept into the collector by the electric field in the depletion region of the collector-base
junction. The thin shared base and asymmetric collector–emitter doping is what makes
a bipolar transistor different from two separate and oppositely biased diodes connected in
series.

The Field Effect Transistor (FET)

FETs has 3 terminal connectors19:

Source (S) through which the current IS enter the device. This is connected
to a heavily doped region.

Drain (D) , through which the current ID leave the device. This is also
connected to a heavily doped region.

18When the first portable “transistor radios” become available the number of transistors was the main
selling point, therefore many radio contained a surplus number of transistors used as diodes.

19Most FETs also have a fourth terminal called the body, base, bulk, or substrate. This fourth terminal
serves to bias the transistor into operation; it is rare to make non-trivial use of the body terminal in
circuit designs, but its presence is important when setting up the physical layout of an integrated circuit.
In discreet FETs the bulk terminal usually is connected to the source.
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Gate (G) , the terminal whose voltage relative to the source controls the
ID current. The voltage is related to the strength of the electric field
between the terminals thus the name “Field Effect” transistor.

In FETs only one kind of charge carriers are used. It is a unipolar device. The current
that flows from source to the drain is the current of majority charge carriers, electrons
or holes. It is flowing through an active channel induced in the doped substrate by the
voltage between the gate and the source.

There are many kinds of FETs. The substrate of a FET is doped to produce either
an n-type or a p-type semiconductor. The drain and source may be doped of opposite
type to the channel (depletion mode FET ), or doped of similar type to the channel
(enhancement mode FET ), but both source and drain must be doped with the same
type of dopant and more heavily than the substrate. Field–effect transistors are also
distinguished by the method of insulation between channel and gate.

The most widely used FET type is the metal–oxide–semiconductor field-effect tran-
sistor and we will only describe it here. The structure of a MOSFET is in Fig 16.14.

MOSFETs are based on the modulation of charge concentration by a MOS capaci-
tance between the source electrode and the gate electrode20, located above the body and
insulated from all other device regions by a gate dielectric layer which in the case of a
MOSFET is an oxide, such as silicon dioxide.

Background 16.2.2. A traditional metal–oxide–semiconductor (MOS) structure is ob-
tained by growing a thin (fraction of a micron) layer of silicon dioxide (SiO2) on top of
a silicon substrate and depositing a layer of metal or polycrystalline silicon (the latter is
commonly used). As the silicon dioxide is a dielectric material, its structure is equivalent
to a planar capacitor, with one of the electrodes replaced by a semiconductor.

When a voltage is applied across a MOS structure, it modifies the distribution of
charges in the semiconductor. In the structure in Fig 16.14 a positive voltage, VGS, from
gate to body creates a depletion layer by forcing the positively charged holes away from
the gate–insulator/semiconductor interface, leaving exposed a carrier–free region of im-
mobile, negatively charged acceptor ions. As VGS increases, hole concentration decreases,
and the region near gate behaves progressively more like intrinsic semiconductor material
as the excess hole concentration is zero.

If VGS is higher than a Vth threshold, electrons from the heavily doped source and
drain regions enter this region. The high concentration of negative charge carriers form
a thin inversion layer located next to the interface between the semiconductor and the
insulator. This inversion layer serves as the channel. The thickness of this channel is
controlled by the applied VGS (or more accurately by VGS − Vth).

In an n–channel depletion–mode device, a negative gate–to–source voltage causes a
depletion region to expand in width and squeezes the channel from the sides, narrowing

20Source and Body electrodes are usually connected.
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it. If the depletion region expands to completely close the channel, the resistance of the
channel from source to drain becomes large, and the FET is effectively turned off like a
switch. Likewise a positive gate–to–source voltage increases the channel size and allows
electrons to flow easily.

Advantages of FET

The main advantage of the FET is its high input resistance, on the order of 100M ohms
or more. Thus, it is a voltage–controlled device, and shows a high degree of isolation
between input and output. It is a unipolar device, depending only upon majority current
flow. It is less noisy and is thus found in FM tuners for quiet reception. It is relatively
immune to radiation. It exhibits no offset voltage at zero drain current and hence makes
an excellent signal chopper. It typically has better thermal stability than a Bipolar Junc-
tion Transistor (BJT).

Disadvantages of FET

It has relatively low gain–bandwidth product compared to a BJT. The MOSFET has a
drawback of being very susceptible to overload voltages, thus requiring special handling
during installation.

16.3 Metal–semiconductor junctions

A metal—semiconductor (M–S) junction is a type of junction in which a metal comes
in close contact with a semiconductor material. It is the oldest practical semiconductor
device. M–S junctions can either be rectifying or non–rectifying. The rectifying metal—
semiconductor junction forms a Schottky barrier, this is used in a device known as the
Schottky diode, while the non–rectifying junction is called an ohmic contact.

Rectifying (Schottky) junction

When a metal is contacted with an n-type semiconductor where the EF,s Fermi energy
is larger than EF,m in the metal, electrons move into the metal thus creating a deple-
tion layer in the semiconductor and thus giving rise to a potential barrier of eφm − eφs.
Applying a V voltage may increase or decrease this barrier: φtot = φm − φs − V . The
probability of an electron to go through this barrier ∝ e−∆E/kBT . Therefore the current
is small when reverse bias is applied, in which case the current is dominated by electron
flow from the metal to the semiconductor and increasing exponentially with forward bias
when the current is dominated by electron flow from the semiconductor to the metal.
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Therefore like a p-n junction Schottky barriers too are rectifying junctions. Table 16.3
compares the properties of a p-n and a Schottky junction.

p-n junction Schottky junction
Reverse current due to minority
carriers diffusing to the depletion
layer leads to strong temperature
dependence

Reverse current due to majority
carriers that overcome the barrier
leads to less temperature depen-
dence

Forward current due to minority
carrier injection from n- and p-sides

Forward current due to majority in-
jection from the semiconductor

Forward bias needed to make the
device conducting (called cut-in or
knee voltage) is large

The cut-in voltage is quite small

Switching speed controlled by re-
combination (elimination) of mi-
nority injected carriers

Switching speed controlled by ther-
malization of ”hot” injected elec-
trons across the barrier ∼ few pi-
coseconds

Recombination in depletion region Essentially no recombination in de-
pletion region

Table 16.3: Comparison of the rectifying properties of a p-n junction and a metal—
semiconductor junction.

Ohmic contact

An ohmic contact is a contact between a semiconductor and a metal is a contact whose
resistance is voltage independent. Such a contact can be the result of a negative or zero
Schottky barrier height or of heavy doping. Frequently the creation of ohmic contacts
includes a high temperature step which causes the deposited metals to form an alloy
with the semiconductor or the high temperature anneal reduces the barrier height at the
interface.

• Heavy doping (Nd or Na ∼ 1024m−3) in the semiconductor causes a very
thin depletion width and electrons can tunnel across this barrier leading
to ohmic behavior.

• Diffusion of metals into the semiconductor creates continuous concen-
tration change leading to ohmic behavior.
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Figure 16.1: Band structure of Si in the <100> and <111> directions. Observe that the
band minimum at k = 0 is not the lowest one.
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Figure 16.2: Band structure of Ge in the <100> and <111> directions.
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Figure 16.3: Band structure of gallium arsenide in the <100> and <111> directions.
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Figure 16.4: The carrier density integral. Shown are the density of states, gc(E), the
density per unit energy, n(E), and the probability of occupancy, fFD(E). The carrier
density, no, equals the crosshatched area.

Figure 16.5: The density of states and carrier densities in the conduction and valence
band. The crosshatched area indicates the electron and hole densities.
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Figure 16.6: Levels and ionization of a) a shallow donor and b) a shallow acceptor
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Figure 16.7: Schematic view of the Fermi level in an n-type semiconductor.
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Figure 16.8: The p-n junction without an external voltage.

Figure 16.9: Charge density, electric field, and voltage in a p-n junction in thermal
equilibrium with zero-bias voltage applied.
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Figure 16.10: Two equivalent ways to describe the p-n junction.

Figure 16.11: Charge density ρ and potential ϕ for a) unbiased, b) forward biased and
c) reverse biased p-n junction
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Figure 16.12: Current vs applied voltage for a p-n junction.

Figure 16.13: Schematics of an NPN Bipolar Junction Transistor
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Figure 16.14: The structure of an n type Metal-Oxid-Semiconductor FET (MOSFET).
Note that although in this figure the source and drain electrodes are symmetrical in
electrical circuits FETs must be connected correctly.

Figure 16.15: Band profiles for a) unconnected metal and an n-type semiconductor, b)
Schottky junction.
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Figure 16.16: Ohmic contact between a metal and a semiconductor
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Chapter 17

Superconductivity

17.1 Conductivity revisited. Superconductivity. Type

I and II superconductors. High temperature

superconductors

Superconductivity was discovered in 1911 by H. Kamerlingh Onnes who successfully
liquified helium in 1908, when he investigated the low temperature resistivity of mercury
in 1911. The reason he selected mercury was that it could be made very pure by dis-
tillation, and the resistivity at low temperatures are dominated by impurity effects as
we stated above. He expected the resistivity to smoothly tend to zero which it would
reach at 0 K, but to his surprise he found that mercury went through a phase transition
and its resistance suddenly dropped to zero at 4.2K instead. This phenomenon is called
superconductivity. The temperature at which it occurres is called the critical temperature
(Tc).

In the Bloch model the Bloch wave function already incorporates the effect of the
periodic potential and lattice vibrations are not considered, so Bloch electrons move
freely in the crystal with a constant k momentum at any temperature. When an external
field acts on the system of electrons it will distort the Fermi sphere and k of all electrons
will increase, but still the electrons will move without any scattering1. But in real metals
the conductivity is not infinite. Even ideal metal crystals has a finite coductivity at
T > 0K temperature.

An assumption of the Bloch model was that ion cores are at their equilibrium po-
sition in a perfect (infinite/periodic) crystal. Scattering of Bloch electrons may occur
at scattering centre (described below) which are characterized by their scattering cross
section σs

2. The probability of scattering in a unit time interval is the inverse of the

1C.f. Equation 15.2.6
2Don’t confuse σs with the conductivity σ!
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Figure 17.1: H. K. Onnes, Commun. Phys. Lab.12,120, (1911)

average scattering time (or relaxation time):

1

τ
= σs(v)nsvF (17.1.1)

where the scattering cross section σs(v) may depend on the velocity v, ns is the density of
the scattering centers, and vF is the Fermi velocity, as only electrons near the Fermi level
can take part in conduction. If more than one mutually exclusive scattering processes
are possible the probability of scattering

1

τ
=
∑
i

σs,ins,ivF =
∑
i

1

τi
(17.1.2)

This is Mathiessen’s rule.

The following scattering mechanisms are possible:

• Scattering on crystal defects characterized by the scattering cross section σs,def
This is independent of the temperature.

• Scattering on small amplitude lattice vibrations (i.e. far from the melting point)
with σs,vib This is proportional to the temperature
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The resulting resistivity as we show in Appendix 23.12 is

ρ = A+B T (17.1.3)

Measured ρ(T ) curves are shown in Fig 17.2.

Figure 17.2: Resistivity of the disordered copper-zinc alloy system. Numbers on the
curves give the concentration of zinc in atomic percent. (After W. E. Henry and P. A.
Schroeder, The low-temperature resistivities and thermopowers of α-phase copper-zinc
alloys, Can. J. Phys., 41:1076-1093, 1963)

Superconductors

Superconductors are materials displaying zero resistivity at finite temperatures. Super-
conductivity differs from the “simple” 0 resistivity state achieved at 0K in the Bloch
model for all very pure and perfect crystals, because

• The material need not to be perfect crystal, crystal defects may be present in it.

• 0 resistivity appears at T > 0K temperatures, where there are lattice vibrations.
Usually Tc < 30K, but there are high temperature (Tc ∼ 100K) superconductors
too.
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Figure 17.3: The Meissner effect in Type I superconductors. a) when a perfect dia-
magnet goes through a transition from finite to zero conductivity without becoming a
superconductor, magnetic fields inside it remain untouched, b) the same transition for
a superconductor induces currents inside the material which expels the magnetic field
from the material.

• When a material makes the transition from the normal to superconducting state,
it actively excludes magnetic fields from its interior. This is called the Meissner
effect.

The Meissner effect

Every zero resistivity material shows perfect diamagnetism. Zero resistance implies that
if you tried to magnetize the material, current loops would be generated to exactly
cancel the imposed field (Lenz’s law). If a conductor already had a steady magnetic field
through it before this transition and was then cooled to a zero resistance state, during
which it becomes a perfect diamagnet, the magnetic field would be expected to stay the
same. A superconductor however actively excludes any magnetic field present when it
makes the phase change to the superconducting state. This is depicted in Fig. 17.3.

If a small magnet is brought near a superconductor, it will always be repelled because
induced supercurrents, i.e. superconducting currents that can flow without resistance,
will produce mirror images of each pole. If a small permanent magnet is placed above a
superconductor, it can be levitated by this repulsive force independent of its orientation
at any height if the magnetic field of the magnet is strong enough at the superconductor.
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Type I and II superconductors

When high enough external magnetic fields are applied the superconductive state van-
ishes depending on the type of the superconductor:

Type I there exists a single critical field Bc, above which all superconductivity is lost.

Type II there exist two critical fields B
(1)
c , B

(2)
C , between which they allow partial pen-

etration of the magnetic field constrained in filaments within the material. These
filaments are in the normal state, surrounded by supercurrents in what is called a
vortex state. Such materials can be subjected to much higher external magnetic
fields and still remain superconducting.

BCS theory of superconductivity

In 1972 the Physical Nobel Price was awarded to John Bardeen, Leon Cooper, and Robert
Schrieffer for their successful model of Type I superconductors, what is now commonly
called the BCS theory.

In the BCS theory a slight attractive force arises between electrons with opposite k
wave vector close to the Fermi level through interaction with the crystal lattice, which
binds them in pairs. These pairs are called Cooper pairs. This attractive force is due to
lattice vibrations that is the reason why the coupling to the lattice is called a phonon
interaction.

In a material at T > 0K whose all bands are either completely filled, or completely
empty and there is no overlap between a filled and empty band or in any other material
at T = 0K no current may flow, because there are no empty energy levels for electrons
to move under the influence of an external electric field. But Cooper has shown that
if there exists an attractive interaction between electrons then the system of electrons
becomes unstable against formation of bounded pairs of electrons of opposite k values,
now called Cooper pairs. This occurs, because the energy of these pairs is lower than the
sum of the energy of the individual electrons.

Important 17.1.1. The critical temperature of superconductors of different isotopes of
the same atoms is found to be inversely proportional to the mass of the isotope used in
the material. This hints that the cause of the attraction between electrons is related to
lattice vibrations.

In a solid the appearance of such an attractive interaction can be explained qualita-
tively using a simplified non-quantum physical argument:
When (classical) electrons are moving in a crystal they not only repel other electrons but
also distort the lattice by attracting the ion cores. This small distortion creates a small
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Figure 17.4: A visual model of the Cooper pair formation. A passing electron attracts the
lattice, causing a slight ripple toward its path. Another electron passing in the opposite
direction is attracted the resulting net positive charge. This creates a coupling between
these two electrons.

net positive charge around the electron which attracts other electrons thus electron pairs
may be formed. The magnitude of this interaction is about 10−3 eV which is equivalent
to T ∼ 10K. Therefore at higher temperatures this attraction is easily suppressed by
thermal vibrations.

But this model is incomplete and does not explain why only electrons with k vectors
of same magnitude and of opposite direction are affected.

The correct explanation requires quantum physics and too complicated to discuss
here3. But regardless to the source of the attractive interaction the formation of pairs
of electrons of opposite momenta means that the total energy of the pair will be smaller
than the energy of two unpaired electrons. This creates a band gap of about 10−3 eV
below EF . This effective energy gap in superconductors can be measured in microwave
absorption experiments.

A band gap is implied by the very fact that the resistance is precisely zero. Charge
carriers may only move through a crystal lattice without interacting with lattice vibra-
tions and crystal defects if their energies are quantized and there are no available energy
levels in the ranges needed for interactions.

The critical temperature for superconductivity must be a measure of the band gap,
since the material could lose superconductivity if thermal energy could get charge carriers
across the gap. The critical temperature depends upon isotopic mass. This supported
that the superconducting transition involved some kind of interaction with the crystal
lattice.

3It involves phonon transfer between electrons of the pair.
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Figure 17.5: The measured bandgap in Type I superconductors. BCS prediction is
Eg ∼ 7/5kBTc.

Although electrons (as every half spin particles) are fermions, the Cooper pairs they
form have a total spin of 0 or 1 therefore behave like bosons. There are profound
consequences of this fact, as no two electrons may be in the same quantum state, but
any number of bosons can and will be.

Conduction in the superconducting state

According to the argument in Section 9.5 bosons in a system tend to condensate into
the same quantum state. When no external electric field is applied the momentum of
any Cooper pair will be 0 in which case their position is completely undetermined in the
crystal. When we start a current by applying an electric field we force all Cooper pairs
to move with the same k vector. After switching off the field the Cooper pairs remain
in motion, because they can only be slowed down collectively and at low temperatures
there is not enough thermal energy to break the pairs.

The current in superconductors must flow in a thin layer of width Λ near the surface.
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Λ is called the London penetration depth4 and can be calculated from

Λ =

√
mec2

4πns(T )e2

where ns(T ) is the density of superconducting electrons.

High temperature superconductivity

Until 1986, physicists had believed that BCS theory, which forbade superconductivity
at temperatures above about 30 K, is valid for all superconductors. But in 1986 Georg
Bednorz and Karl Müller discovered high-temperature superconductivity in a lanthanum
barium copper oxide. High temperature here means liquid nitrogen temperatures5 of
about 100K = −173oC. This is good news, because liquid nitrogen can be produced
cheaply on-site from air.

Many other cuprate superconductors have since been discovered, and the theory of
superconductivity in these materials is one of the major outstanding challenges of theoret-
ical condensed matter physics. In 2013 there is still no suitable theory which completely
describes high temperature superconductivity.

Macroscopic quantum effects involving superconduc-

tors

Magnetic flux quantization

Place a ring from a superconductive material, not yet in the superconductive state, into a
magnetic field. Cool it down below Tc. When it becomes superconducting the magnetic
field is expelled from it by supercurrents that flow through the ring as we discussed.
But a surprisingly unexpected fact is that the value of the magnetic flux enclosed by the
superconductive ring is quantized. The flux quantum in SI units is

|φB| = n
h

2e
= nφ0 = n 2.0679 10−15Wb (17.1.4)

Such arrangement occurs in the normal state filaments of Type II superconductors which
are subjected to a magnetic field between Hc,1, and Hc,2. The magnetic flux penetrates
in discrete units while the bulk of the material remains superconducting.

4This can be deduced from the London equations of classical physics, named after F. and H London
(1935)

5The boiling point of nitrogen is 77 K (−196 oC) at atmospheric pressure
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Josephson junction

Fig. 17.6 shows a structure called a Josephson junction. As you now know, because
they are bosons, all the Cooper pairs in a superconductor can be described by a single
wavefunction because all the pairs will have the same phase. This phase can be different
in the two superconducting half of the junction. When the insulating layer is very thin
Cooper pairs may tunnel through it without breaking up thus creating a continuous
current. This is called Josephson effect6 and has four variants:

Figure 17.6: Schematics of a Josephson junction: two superconducting material separated
by a thin insulating or normal state layer.

DC Josephson effect: in the absence of a voltage a current proportional to the sine
of the phase difference across the insulator can flow through the junction.

AC Josephson effect: when a constant V voltage is applied the phase difference varies
linearly in time and an alternating current flows through the junction with the
frequency

νJosephson =
2 e∆V

h

Because frequencies can be measured with great accuracy (∼ 1/10−10) a Josephson
junction device is the standard measure of voltage7.

The inverse AC Josephson effect: if the applied voltage is of the following form:
φ(t) = φ0 + nωt + a sin(ωt), then for distinct DC voltages the junction carries a
DC current and the junction behaves like an ideal frequency to voltage converter

6The Josephson effect was discovered in 1962 by Brian Josephson as a graduate student, while
investigating what would happen if two superconducting metals were placed very close together without
touching. He was awarded the Nobel price in physics for this discovery in 1973.

7The American National Institute of Standards and Technology (NIST) has produced a chip with
19000 series junctions to measure voltages on the order of 10 volts with this accuracy.
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DC Josephson heat transfer: In 1965 it was proposed that the total heat flux through
two parallel, paired Josephson junctions (SQUID - see below) whose half was heated
up can be influenced by an applied magnetic field. This was only proved to be true
in 2012.

Application of the Josephson effect includes:

• as the measure of voltage

• SQUIDs, or superconducting quantum interference devices (see below)

• ”superconducting single-electron transistors”

• rapid single flux quantum (RSFQ) digital electronics

• Josephson junctions are integral in superconducting quantum computing as qubits

• Superconducting tunnel junction detectors (STJs) for use in astronomy and astro-
physics in a few years.

Important 17.1.2. Definition of the unit of voltage in SI used the Josephson effect
between 1990 and 1997:
The voltage on a Josephson junction is 1V when the Josephson frequency is 483.6GHz

Application of superconductors

• Superconducting magnets are some of the most powerful electromagnets known.
They are used in MRI/NMR machines, mass spectrometers, MAGLEV trains8 and
the beam-steering magnets used in particle accelerators (e.g. LHC)9

• They can also be used for magnetic separation, where weakly magnetic particles are
extracted from a Background of less or non-magnetic particles, as in the pigment
industries.

• The standard volt is now defined in terms of a Josephson junction oscillator.

8One, built in Japan in 2005, traveled at half the speed of sound.
9Type II superconductors such as niobium-tin and niobium-titanium are used to make the coil wind-

ings for superconducting magnets. These two materials can be fabricated into wires and can withstand
high magnetic fields. Typical construction of the coils is to embed a large number of fine filaments (
20 micrometers diameter) in a copper matrix. The solid copper gives mechanical stability and provides
a path for the large currents in case the superconducting state is lost. These superconducting mag-
nets must be cooled with liquid helium. Superconducting magnets can use solenoid geometries as do
ordinary electromagnets. Most high energy accelerators now use superconducting magnets. The proton
accelerator at Fermilab uses 774 superconducting magnets in a ring of circumference 6.2 kilometers.
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• SQUIDs (superconducting quantum interference devices) are the most sensitive
magnetometers known. There are DC and RF SQUIDs. RF SQUIDs use one
Josephson junction, while a DC SQUID consists of two superconductors separated
by thin insulating layers to form two parallel Josephson junctions. When a bias

Figure 17.7: Workings of a DC SQUID.

current flows through the structure in the absence of an external field it will split
equally at the two branches. But in a non zero external magnetic field the magnetic
flux inside the loop must be an integer multiple of the flux quantum ϕo. This is
achieved by induced screening supercurrents in the loop as we discussed above,
whose direction will depend on the magnitude of the external field, because if the
flux from the external field is smaller than ϕo/2 the screening current must cancel
out the flux, while just above ϕo/2 the screening current must increase it to get an
integer multiple of ϕo. Thus the screening current changes direction every time the
external flux increases by half integer multiples of ϕo. We therefore will measure
an oscillating voltage across the loop.
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The device may be configured as a magnetometer to detect incredibly small mag-
netic fields – small enough to measure the magnetic fields in living organisms.
SQUIDs are used in scanning SQUID microscopes and magnetoencephalography10.

• Superconducting transmission lines (experimental): In prototype superconducting
transmission lines at Brookhaven National Laboratory, 1000 MW of power can be
transported within an enclosure of diameter 40 cm. This amounts to transporting
the entire output of a large power plant on one enclosed transmission line.

10SQUIDs have been used to measure the magnetic fields in mouse brains to test whether there might
be enough magnetism to attribute their navigational ability to an internal compass. Some data:

Threshold for SQUID 10−14 T
Human heart 10−10 T
Human brain 10−13 T
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Chapter 18

Optical properties

18.1 Optical properties. X-ray emission and absorp-

tion.

18.1.1 X-ray emission

X-ray emission occurs during electronic transitions from an upper band to empty states
in a core level band (very nearly atomic states). (C.f. Section 7.4.) The difference
between atomic and interband X-ray transitions:

• Atomic: single line in emission spectrum (2 sharp atomic levels)

• Solids: emission band spectrum (source level can be any occupied level above Eg)

The shape of the emission curve is determined by the density of state function. For
nearly free electrons this is well known:

I(E) ∝ dn(E)

dE
(

= g(E)
)
, and g(E) =

8 π
√

2m3
e

h3

√
E

The edge of the spectra is at EF , so measuring X-ray emission spectra is a way to
measure EF . Two types of X-ray emission spectroscopy is used1: resonant inelastic X-ray
emission spectroscopy (RIXS), in which the core electron is excited to a bound state in
the conduction band and non-resonant X-ray emission spectroscopy (NXES), when the

1Soft X-rays have different optical properties than visible light and therefore experiments must take
place in ultra high vacuum, where the photon beam is manipulated using special mirrors and diffraction
gratings. Gratings diffract X-ray photons of each wavelength present in the incoming radiation in a
different direction, while the specific photon energy we wish to use to excite the sample with is selected
by grating monochromators. Diffraction gratings are also used in the spectrometer to analyze the photon
energy of the radiation emitted by the sample.
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Figure 18.1: Schematic comparision of soft X-ray spectra of some metals. The cause of
the peaks for Mg and Al is the band overlap: electrons may come from bands 3p and 3s.

core electron is excited to the continuum. Both involve the photonic promotion of a core
level electron, and the measurement of the fluorescence (see below) that occurs as the
electron relaxes into a lower-energy state.

Metal Na Mg Al
EF [eV ] 3.12 7.3 11.9

Table 18.1: Fermi energies of some metals

18.1.2 X-ray absorption

The absorption of an X-ray photon by an atom results in the consequent emission of
a photoelectron from the core level. The core hole created this way is filled in by an
electron from another shell. The energy lost by this decaying electron either manifests
itself in the emission of a fluorescent photon or by exciting a second outer shell electron
(called an Auger electron) out of the atom2. The directly emitted photoelectron, the
fluorescent photon or the Auger electron (or any combination of these) are measured.
The shape of the absorption spectra depends on the type of the solid and its chemical
composition.

• Conductors with no band overlap:

2The latter is called the Auger effect, which is the base of Auger electron spectroscopy (AES).
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Figure 18.2: Possible processes in X-ray absorption spectroscopy

there are inter-band and intra-band transitions, resulting in two separate
regions

• Conductors with band overlap:
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because there is no forbidden gap the spectrum is continuous.

• Insulators:

The minimum energy required is Eg
• Intrinsic semiconductors: they have spectrum similar to insulators, ex-

cept that because the band gap is smaller there is a small contribution
from the valence band as well.

• Extrinsic (doped) semiconductors:

they have impurity levels in the band gap therefore transitions from the
gap are also possible.
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18.2 Emission and absorption of visible light by solids.

Luminessence and phosphorescence

18.2.1 Absorption of visible light

Solids may or may not absorb light of a given frequency depending on their band struc-
ture. Absorption occurs when the photon in question is able to excite an electron in the
solid and it is prohibited if no such transition is allowed, either because some selection
rule prohibits it or the photon energy is smaller than the band gap.

The color of a particular solid is determined by its absorption, reflection and refraction
characteristics3.

Important 18.2.1. The energy range of light visible to the human eye is: 1.6 − 3.2 eV.

Figure 18.3: Colors and corresponding wavelengths and energies

It follows that insulators with a band gap larger than 3.2 eV are clear transparent
materials, except when they contain many lattice defects. If, for instance, they contain
impurities with impurity levels inside the band gap then electrons can be excited from the
impurity levels to the next band or electrons can be excited from a lower band to these
levels by visible light they become colored while either retaining or loosing transparency,
depending on the impurity concentration.

3The average human eye has only three color receptors (some women’s eye have four), two of these
(sensitive to red and green) with very close spectral responses, therefore the color of two solids with
different absorption and reflection characteristics may look the same when illuminated by white light.
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Example: impurity free crystalline form of Al2O3 (corundum) is transparent and
colorless. When contaminated with impurities like substitutional Cr they may remain
transparent but become colored. Transparent specimens are used as gems. The gems
are called ruby if they are red and padparadscha if pink-orange. All other colored gems
are called sapphire (e.g., ”green sapphire”)4.

Insulators that are semiconductors have a band gap smaller than 1.6 eV, consequently
they are opaque.

Figure 18.4: Color of insulators. A) schematic band diagram together with density of
state, B) possible light absorption transitions, C) absorbed colors vs band gap width, D)
observed color for various Eg values

If the efficiency of absorption and reflection (re-emission) is approximately equal at
all optical energies, then all the different colors in white light will be reflected equally.
This leads to the metallic silver color of polished iron and silver surfaces.

For most metals, a single continuous band extends through to high energies. The
surface of a metal can absorb all wavelengths of incident light which excites electrons to
a higher unoccupied energy level. When they fall back almost immediately most of the
incident light is immediately re-emitted at the surface, creating the metallic luster we see
in gold, silver, copper, and other metals. This is why most metals are white or silver5.

The efficiency of this emission process depends on selection rules. However, even
when the energy supplied is sufficient, and a transition is permitted by the selection
rules, this transition may not yield appreciable absorption. This can happen when the
energy level accommodates only a small number of electrons.

4The red color of ruby comes from the absorption of green light at 561 nm (E = 2.21eV )
5Gold is so malleable that it can be beaten into very thin foil less than 100 nm thick, revealing a

bluish-green color when light is transmitted through it. Gold reflects yellow and red, but not blue or
blue-green. The direct transmission of light through a metal in the absence of reflection is observed only
in rare instances.
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Figure 18.5: Absorption in metals. A) schematic band diagram together with density of
state, B) light absorption transitions may occur at any visible frequencies.

Silver, gold and copper have similar electron configurations, but we perceive them as
having quite distinct colors. This is explained in Appendix 23.13.

18.2.2 Luminescence and phosphorescence

Luminescence is emission of light by a substance not resulting from heat. Compare it
with incandescence which is light emitted by a substance as a result of heating6. It can
be caused by chemical reactions, electrical energy, subatomic motions, or stress on a
crystal.

In luminescence an excited electron emits a photon when it returns to the ground
state. Many processes are possible:

• direct transition to ground state
Occurs in a perfect lattice. There is a small time delay between excitation and

6Historically, radioactivity was thought of as a form of ”radio-luminescence”, although it is today
considered to be separate since it involves more than electromagnetic radiation. The term ’luminescence’
was introduced in 1888 by Eilhard Wiedemann.
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recombination, because electrons and holes are moving in opposite directions with
high mobility.

• transition through impurity levels
Electrons return from the conduction band to the valence band through impurity
levels in the gap. I.e. the electrons from the impurity levels fall into the valence
band, while electrons from the conduction band falls to the impurity levels left
empty. These are small energy transitions in the IR region.

• electron transitions from one impurity level to an other one
Elumin < Eexcitation

• electron transition through traps
Traps are metastable states in the gap, from where transitions to the valence band
or to impurity levels are prohibited. To get back to the valence band they first must
somehow get back to the conduction band from which they decay by a luminescence
process which requires a (relatively) long time. This is called phosphorescence.
Examples: ZnS - used in cathode ray tubes (excitations by electrons), NaJ used
in scintillation detectors (excitation by γ rays).
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Chapter 19

Magnetism

19.1 Magnetic susceptibility

Any material placed into a magnetic field of field strength H will interact with it. The
best known such interaction is the case when a material becomes a permanent magnet,
but this is not the most general form of magnetism.

From a macroscopic point of view the magnetic interaction is described by the
Maxwell equation

B = µ0 (H + M) (19.1.1)

where the quantity µ0M is called magnetic polarization. For homogeneous and isotropic
materials1 put into weak magnetic fields in a good approximation

M = χH (19.1.2)

The constant of proportionality being called the magnetic susceptibility. This definition
works well for dia- and paramagnetism, but breaks down for ferro- or ferrimagnetism,
because in those materials the connection between H and B is not linear. To simplify
and unify the description a linear notation is used by making the magnetic susceptibility
itself dependent on H:

M = χ(H) H (19.1.3)

1Crystals are not always isotropic, therefore the definition of the susceptibility must be modified to
cover them as well:

M = χ
=
·H

where the magnetic susceptibility χ
=

is a tensor, i.e. it is represented in any coordinate system by a 3×3

matrix whose components depends on the selection of the coordinate system. It follows that if a crystal
is anisotropic the magnetic polarization is not necessarily parallel with H.
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Because (19.1.2) (and even the form of (19.1.3)) is linear H can be expressed as

B = µ0 µr H (19.1.4)

where the µr relative permeability is expressed through the susceptibility by the equation:

µ = µ0 µr = µ0 (1 + χ) (19.1.5)

19.2 Types of magnetism

There are many types of magnetism in different materials:

Diamagentism is caused by magnetic moments induced in every material by external
magnetic fields. These diamagnetic moments have a magnetic field of opposite
direction to the generating field due to Lenz’s law and therefore, are repelled by
the magnetic field. Although all materials have diamagnetic properties other types
of magnetism are stronger hiding this common behavior. The diamagnetic moment
is created by the external field (induced moment).
Diamagnets may be levitated in stable equilibrium in a magnetic field, with no
power consumption.
The diamagnetic susceptibility is a small negative number: −10−4 . χdia . −10−5.

Paramagnetism occurs in materials with magnetic moments already present in them
(e.g. the spin magnetic moment of unpaired electrons). These existing magnetic
moments align with the field, giving the material a small magnetic moment, which
is lost as soon as the magnetic field is switched off.
The paramagnetic susceptibility is positive and also small 10−1 & χpara & 10−3.)

Ferromagnetism of a material results in a permanent magnetic moment of either the
whole of its volume or at least in regions of it. The unpaired electron magnetic mo-
ments align themselves not only as a response to external fields, but also because
of a (non-magnetic) interaction with the magnetic moments of the other electrons.
The magnetic polarization in ferromagnetic materials has a non-linear field de-
pendence. Below a material specific temperature (called Courier temperature) the
internal magnetism remains even after the field is switched off.
The ferromagnetic susceptibility χ(H)� 1, depends on the field strength and has
a saturation value.

Antiferromagnetism A special form of ferromagnetism is antiferromagnetism, where
the magnetic moments of the neighboring electrons are equal but opposites to each
other. These materials have a zero net magnetic moment and are less common
then ferromagnetic materials.
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Ferrimagnetism is similar to ferromagnetism2 in that respect that ferrimagnetic mate-
rials also keep their magnetic moment even in the absence of an external magnetic
field. The magnetic moment of the neighboring valence electrons in them are op-
posites (like in antiferromagnets), but their magnitude is different, therefore they
do not cancel each other out.

Superparamagnetism is the phenomena that suitably small ferro- or ferrimagnetic
particles act like a single magnetic moment that is subject to Brownian motion.
Their response to a magnetic field is qualitatively similar to the response of a
paramagnet, but their susceptibility is much larger.

Although magnetism is strictly a quantum mechanical phenomenon3, formulas ob-
tained using simple classical physical models to explain dia- and paramagnetic behavior
are similar to those obtained by the rigorous use of quantum mechanics. Therefore we
will try to use classical physical models to explain these phenomena. As for ferro- and
ferrimagnetism no completely classical physical model would do.

19.3 Magnetism of free atoms.

Three factors affect the magnetic behaviour of free atoms:

• electron spin→ paramagnetism

• orbital moment→ paramagnetism

• change in the orbital moment caused by the external field→ diamagnetism

Examples:

H(1s)
orbital momentum is 0 so the source of the magnetic moment is the spin and the
diamagnetic induced moment

He(1s2)
both orbital and spin momentum are 0 it only has diamagnetic induced moment

The total permanent magnetic moment of a completely filled shell including both
orbital and spin momenta is 0.

2Conventionally ferrimagnetism and antiferromagnetism was considered as just some sub-cases of
ferromagnetism.

3As Bohr and van Leeuwen proved, if we apply electrodynamics and classical mechanics together
with thermodynamics and statistical physics consistently we find there can be no magnetism whatsoever!
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Electrons in an atom or molecule are not the only particles that have magnetic mo-
ments because of their orbital and spin angular momentum. Protons and neutrons in
the atomic nucleus also have spins and depending on the configuration may or may not
have their own magnetic moments. Generally susceptibility from the nucleus is about
100 times smaller than that of the electrons.

19.4 Diamagnetism

Diamagnetism occurs because the external field alters the orbital velocity of electrons
around their nuclei, thus changing the magnetic dipole moment. According to Lenz’s
law, the field of these electrons will oppose the magnetic field changes provided by the
applied field.

In most materials diamagnetism is a weak effect, but in a superconductor a strong
quantum effect repels the magnetic field entirely, apart from a thin layer at the surface.

In our classical physical model when B = 0 the electron moves around the nucleus in
a classical orbit with a constant angular momentum. The magnetic moment of a current
loop is equal to the current times the area of the loop, which in this case is pm = I A.
When an external B field is turned on it exerts a torque on this magnetic moment:

T = pm ×B

which causes a precession of the angular momentum, as the magnetic moment and the
angular momentum are coupled through

pm = γ · L

Here γ is the gyromagnetic ratio which is related to the g-factor g:

γ = g
−e

2me

The angular frequency of the precession is given by the Larmor formula:

ω = |γ|B = g
eB

2me

(19.4.1)

where g = 1 in classical physics. Derivation of this formula is in Appendix 23.14.
If the atoms of the material have closed shells with a total of Z electrons on them then

the total angular momentum and the coupled total magnetic moment of the atom without
a magnetic field is 0, however the Larmor precession of L gives rise to an additional
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magnetic moment. The number of revolutions per unit time is ω/2π, so the Z electrons
of the atom present a loop current of4

I = −Ze
2B

4πme

(here g=1)

Suppose the field is aligned with the z axis. The average loop area can be given as π 〈ρ2〉
where 〈ρ2〉 is the mean square distance of the electrons perpendicular to the z axis. The
magnetic moment µ of this current loop is therefore

pm = −Z e
2B

4me

〈ρ2〉 = −Z e
2B

4me

(
〈x2〉+ 〈y2〉

)
For spherically symmetric charge distributions we may assume that the probability dis-
tribution of the three coordinates are independent and equal, so

〈x2〉 = 〈y2〉 = 〈z2〉 =
1

3
〈r2〉.

If n is the number of atoms in unit volume of the material, then the magnetic polarization
of this material is5

M = −nZ e
2B

6me

〈r2〉

From the definition (19.1.2) of the magnetic susceptibility we arrive to the Langevin
formula of the diamagnetic susceptibility of insulators and free atoms:

χ =
M
H

=
µ0M
B

= −µ0
N Z e2

6me

〈r2〉 (19.4.2)

This theory of diamagnetism however is not applicable to metals, as metals contain
(quasi) free electrons6.

19.5 Pauli paramagnetism of metals

Paramagnetism is always connected to already existing permanent magnetic moments
in materials. Strictly speaking paramagnetism occurs when the interaction between the

4The charge of an electron is (−e).
5

〈x2〉+ 〈y2〉 =
2

3
〈r2〉

6Although the theory of the diamagnetism of an electron gas (Landau diamagnetism) is well known we
do not deal with it here in detail, we will only use the result in the discussion of the (Pauli) paramagnetism
of the electron gas.
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magnetic moments is zero7 therefore without an external field the orientation of the mag-
netic moments is random. If the interaction is strong enough the material will be ferro-,
antiferro- or ferrimagnetic8. Because the magnitude of the paramagnetic susceptibility
is in the range9 10−5 – 10−3, the paramagnetic polarization in an applied field is very
small it requires a very sensitive device to be measured. Modern measurements on para-
magnetic materials are often conducted with a SQUID magnetometer (see Section ??).
A material may contain permanent magnetic moments if

• it is a metal which contains free electrons with their spin related magnetic moments.
Examples: Al,Cs,Li,Mg,Na,W.

• it contains atoms, molecules or lattice defects with an odd number of electrons
(total electron spin is not 0). The O2 molecule is a good example.

• it contains atoms with unoccupied inner shells. Examples: K, Ca.

Non ferromagnetic metals are usually paramagnetic, because the wave functions of
their s and p electrons are strongly delocalized, which usually leads to the pairing of
electron spins therefore very weak magnetic moments. An exception is gold, which is
diamagnetic, because in a magnetic field the diamagnetic moments from the electrons
on its closed inner shells are larger than the paramagnetic moments of the delocalized
electrons.

Metals contain (quasi) free electrons which have a spin-related magnetic moment of

µS =
−gµB
~

S = g
−e
2me

S (19.5.1)

where g = 2 and the − sign is present because the charge of the electron is (−e), and

µB =
e ~

2me

is the Bohr-magneton (C.f. (6.3.1)).

In an external B field the magnetic moment of the electron, like the spin, must be
either parallel or anti-parallel to the magnetic field. Consequently the interaction energy
is either positive or negative

∆E = −µS ·B = ± g e

4me

= ± e

2me

(19.5.2)

where the + sign corresponds to the anti-parallel (B ↑ µS ↓), the − sign to the parallel
(B ↑ µS ↑) orientation. Because the energy of the electrons depend on the orientation
of their spins (the total energy will be E(B) = E(B = 0) + ∆E) this deforms their
distributions. But the EF Fermi energy of electrons of both spin orientations must be the

7Or at least the interaction energy is smaller than the thermal energy.
8In this section when we use the term ’ferromagnetic’ we mean any of these.
9may be as high as 10−1for synthetic paramagnets
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Figure 19.1: The formation of the electron (Pauli) paramagnetism

same. As a consequence the number density of electrons with parallel and ant-parallel
spins denoted by n↑↑ and n↑↓ respectively must also differ.

The paramagnetic polarization M from Appendix 23.15 (equation (23.15.4))

M = µS · (n↑↑ − n↑↓) = µ2
Sg(EF )B =

3ntotµ
2
S

2 e EF
B (19.5.3)

where ntot is the electron density in the metal and the paramagnetic susceptibility of the
electron gas is

χ =
3ntotµ

2
S

2 e EF
(19.5.4)

However the external B field modifies the spatial movement of the electrons as well,
which gives rise to a diamagnetic momentum. Without going into details we just use the
result:

Mdia = −1

3
Mpara (19.5.5)

The total susceptibility therefore positive and its magnitude is

χ =
ntot µ

2
S

e EF
(19.5.6)

As we see the susceptibility is independent of the temperature. This follows from the
Pauli principle: only electrons in the vicinity of the Fermi energy can change their energy
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as a response to the B field. The number of these electrons is proportional to
kBT

EF
while the difference of the magnetic moments in is proportional to

µS B

kBT
. The resulting

magnetic momentM being the product of these factors is temperature independent. But
the paramagnetic moment from independent atomic moments is temperature dependent.

19.6 Paramagnetism of independent atomic moments

Paramagnetism may not only arise due to the collective system of electrons as in metals,
but also as a result of independent atomic (orbital momentum and electron spin related)
moments being oriented into the direction of the external field. In this case the occupation
numbers of the two non-degenerate levels produced by the split of the twice degenerated
ones may be calculated using the Boltzmann-factor. Let us denote the total electron
density with n0 and the electron density on the two non-degenerate levels with n1 and
n2. Then for a single level in thermal equilibrium the well known Zeeman splitting occurs

n1

n0

=
eµS B/kBT

eµS B/kBT + eµS B/kBT
(19.6.1)

n2

n0

=
e−µS B/kBT

eµS B/kBT + eµS B/kBT
(19.6.2)

Figure 19.2: Paramagnetic moment of independent electrons as a function of µS B/kBT .
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The total magnetic moment of a unit volume then

M = (n1 − n2) · µS = n0 ·
eµS B/kBT − e−µS B/kBT

eµS B/kBT + eµS B/kBT
= n0 · µS · th

µS B

kBT
(19.6.3)

When µS B � kB T the hyperbolic tangent function may be approximated by its
argument, and the magnetic polarization becomes

M = χpB ≈ n0 · µS ·
µS B

kBT
=
C ·B
T

(19.6.4)

where

C =
n0 · µ2

S

kB
(19.6.5)

is called the Curie-constant. This is the Curie-law of paramagnetism. Curie’s law is
valid under the commonly encountered conditions of low magnetization, but does not
apply in the high-field/low-temperature regime where saturation of magnetization occurs
(µS B ≈ kB T ) and magnetic dipoles are all aligned with the applied field. When all of the
dipoles are aligned, increasing the external field will not increase the total magnetization
since there can be no further alignment.

Let us denote the maximum of the z component of the total angular momentum (both
the orbital momentum and spin) with J · ~ and the total magnetic moment with µ. The
degeneracy of the original single energy level in this case10 is 2J + 1. If we calculate M
again in the limit of µB � kB T we find a similar formula as in (19.6.4)11:

M =
n0 · J (J + 1)µ2B

3 kB T
=
C ·B
T

(19.6.6)

where µ is the magnetic moment associated to the total angular momentum12

C =
n0 · J (J + 1)µ2

3 kB
(19.6.7)

(19.6.6) shows that the paramagnetic susceptibility is influenced strongly by the total J
angular momentum:

χ =
n0 · J (J + 1)µ2

3 kB T
(19.6.8)

10e.g. for the inner unfilled levels of Pd
11The derivation of this formula which explains the appearance of all the factors is somewhat com-

plicated so we do not present it here. Those interested may refer to http://en.wikipedia.org/wiki/

Paramagnetism.
12µ = gJ · µB , where µB is the (6.3.1) Bohr-magneton.
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19.7 Ferromagnetism

Ferromagnetic materials also contain constant magnetic moments, like paramagnetic
materials do. However in contrast with the paramagnetic behavior ferromagnetism is a
collective phenomena. In ferromagnetic materials permanent magnetism may be observed
when all of the elementary moments are oriented in the same direction, even without
any external magnetic field. This is called spontaneous magnetization. Even when a
ferromagnetic material seemingly does not possess a permanent magnetic moment we
find that regions of it do. These regions are called magnetic domains and are separated
by relatively stable domain walls. Domain sizes range between 0.1 to several mm. In each
of these domains all magnetic moments are parallel, but the orientation of the magnetic
moments of these domains are random because it is energetically favorable, therefore no
macroscopic magnetic moment is observed.

When an external H field is applied to a ferromagnetic material with unordered
domains the domain structure changes. At lower field strengths this change is reversible,
after switching the field off again the original structure will reassert itself. Irreversible

Figure 19.3: Schematics of ferromagnetic magnetization

change occurs when the magnetic field is strong enough to make domain walls move and
rotate through lattice defects. As the H field changes, the magnetization too changes in
thousands of tiny discontinuous jumps as the domain walls suddenly ”snap” past defects.
This is called the Barkhausen effect, which is the direct evidence of the existence of
ferromagnetic domains. It can be observed by winding a coil around the material in
which these sudden jumps induce electric pulses. After amplification the pulses will be
audible as a series of clicks. The material will not return to its macroscopically non-
magnetic state even after we switch off the magnetic field, because the domain walls
cannot move past the defects without an external energy source, consequently a non zero
Mrem magnetization remains in it.

This non-ground state of aligned domains is metastable and can persist for long
periods of time. Some samples of magnetite collected from the sea floor, have maintained
their magnetization for millions of years.
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Increasing the external magnetic field strength turns more and more domains to be
parallel with it. There exists a saturation field strength Hsat when all magnetic moments
points the same direction. Further increase in the magnetic field cannot produce larger
magnetization. Due to the irreversible changes to return to the original non-magnetic
state we need to apply again an external field in a direction opposite to the field which
created the magnetized state. Therefore the M(H) curve (Fig. 19.4) shows hysteresis.

Figure 19.4: Magnetization M against magnetic field H. Units used are the saturation
field Hs and saturation magnetization Ms Starting at the origin, the upward curve is
the initial magnetization curve. The downward curve after saturation, along with the
lower return curve, form the main loop. The intercepts Hc and Mrs are the coercivity
and saturation remanence.

Ferromagnetism is a property related not only to the chemical composition of a ma-
terial, but of its crystalline structure and microscopic organization13.

This ordered state may not be explained by classical magnetic interaction between
the constant magnetic moments from two reasons:

13Some metal alloys, called Heusler alloys are ferromagnetic although their constituents are not them-
selves ferromagnetic. On the other hand some alloys, like certain types of stainless steel, are non-
magnetic, but are composed almost exclusively of ferromagnetic metals.

Non-crystalline ferromagnetic metallic alloys may be produced by very rapid quenching (cooling)
of a liquid alloy. Their advantage is their nearly isotropic properties, this results in low coercivity, low
hysteresis loss, high permeability, and high electrical resistivity. One such typical material is a transition
metal-metalloid alloy, made from about 80% transition metal (usually Fe, Co, or Ni) and a metalloid
component (B, C, Si, P, or Al) that lowers the melting point. A relatively new class of exceptionally
strong ferromagnetic materials are the rare-earth magnets. They contain lanthanide elements that are
known for their ability to carry large magnetic moments in well-localized f-orbitals.
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1. because the magnetic dipol–dipol interaction energy

E = − µ0

4 π

(
3 (µ1 r) (µ2 r)

r5
− µ1 µ2

r3

)
is in the range of 10−4 eV which is too small compared to the kB T thermal energy14,
which means the ordering interaction may not be a classical physical magnetic one.

2. classical dipole-dipole interaction would turn neighboring moments not the same
but in opposite directions.

Still we may describe this behavior by introducing an internal exchange (magnetic) field.

The ordering interaction is the consequence of the Pauli principle. The total state
function of the system of electrons must be antisymmetric. When electron spins are
parallel (spin part of the wave function is symmetric) the corresponding spatial wave
function must be antisymmetric, which corresponds to electrons that are further apart.
This reduces the electrostatic energy of the electrons when their spins are parallel com-
pared to their energy when the spins are anti-parallel, so the parallel-spin state is more
stable. This difference in energy is called the exchange energy (C.f. Section 6.7).

We may assume the internal exchange field Bi is proportional to the magnetization
M itself which it creates

Bi = λM
and using the paramagnetic susceptibility formula (see (19.6.4)) χp = C/T we deduced
above:

M = χp · (B +Bi) = χp · (B + λM) =
C

T
· (B + λM)

After reordering

M =
C

T − λC
B (19.7.1)

χ =
C

T − λC
=

C

T − Tc
(19.7.2)

This is the Curie-Weiss law15. C is the material specific Curie constant and the quantity
Tc is called the Curie temperature aka Curie point. From (19.7.2) it follows that as the
T temperature approaches Tc from above the susceptibility approaches infinity. Above
Tc the susceptibility is positive, i.e. the material becomes paramagnetic. Although this
model may loose validity near Tc, experimental facts indicate that real ferromagnetic
materials obey this law with a good accuracy and ferromagnetic ordering is lost above
Tc, and paramagnetic behavior takes over.

14At 300K it kbT = 0.0258 eV .
15More accurate models predict a dependence on the 1.33 power of the denominator
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Material Tc (K)

Co 1388
Fe 1043
MnBi 630
Ni 627
MnSb 587
CrO2 386
MnAs 318
Gd 292
Dy 88
EuO 69

Table 19.1: Courier temperatures of some crystalline materials(Source:Wikipedia)

Below the Curie temperature spontaneous magnetization occurs16. The resulting
saturation magnetization of the domains that form can be calculated from a formula
similar to (19.6.3):

M = n0 · µ · th
µBi

kBT
= n0 · µ · th

µ λM
kBT

Substituting λ = Tc/C and using (19.6.5)

M
n0 µ

= th
µ TcM
C kBT

= th
M
n0 µ

Tc
T

M could be calculated from this numerically or graphically.

Example 19.1. The susceptibility of a ferromagnetic material is χ = 0.0116 at T =
1100 K and χ = 0.0042 at T = 1200 K. What material is it? of this material? Solution
Calculate its Curie temperature first. Using (19.7.2) for both susceptibility
we get two equations for the two unkonwn, from which both Tc and C (and

16This is an example of spontaneous symmetry breaking : above the Curie temperature the state of
the system is symmetric, and this symmetry breaks as the non-symmetric spontaneous magnetization
occurs
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therefore λ too) can be determined

χ1 =
C

T1 − Tc
⇒ C = χ1 · (T1 − Tc)

χ2 =
C

T2 − Tc
⇒ C = χ2 · (T2 − Tc)

χ1 · (T1 − Tc) = χ2 · (T2 − Tc)

Tc =
χ1 · T1 − χ2 · T2

χ1 − χ2

= 1043 K

Using Table 19.1 we find the material is iron. Furthermore from the equations
above we get the value of C = 0.66 too

19.8 Antiferromagets

In antiferromagnetic materials the magnetic moments are ordered similarly as in ferro-
magnets, but the neighboring magnetic moments are oriented in opposite directions to
each other. Therefore the magnetization in these materials vanishes. But this is only
valid at low temperatures. Antiferromagnetic materials also have a critical temperature
called the Néel temperature above which the antiferromagnetic ordering is lost and the
material becomes paramagnetic. In contrast, to the transition between the ferromagnetic
to the paramagnetic phases where the susceptibility diverges the magnetic susceptibility
of an antiferromagnetic material typically shows a maximum at the Néel temperature.
Examples of antiferromagnetic materials are: hematite, Cr, iron manganese (FeMn),
NiO.

19.9 Ferrimagnetism

The oldest known magnetic substance magnetite (iron(II,III) oxide: Fe3O4) is a ferri-
magnetic material17. In a crystal lattice with a basis a part of the basis in every cell
form a sublattice. In a ferrimagnetic material the magnetic moments of the different
sublattices of different materials or ions (such as Fe2+ and Fe3+) are antiparallel and
are unequal which results in spontaneous magnetization. Ferrimagnetic materials are the
ferrites, (composed of iron oxides and other elements such as aluminum, cobalt, nickel,
manganese and zinc), and magnetic garnets (silicate minerals, yttrium iron garnet or
YIG).

17Magnetite was originally classified as a ferromagnet before N eel’s discovery of ferrimagnetism and
antiferromagnetism in 1948.
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Figure 19.5: Comparison of the temperature dependence of para-, ferro- and antiferro-
magnetic susceptibilities

Like ferromagnetic materials ferrimagnetic ones have spontaneous magnetization be-
low the Curie temperature, and are paramagnetic (show no magnetic order) above this
temperature18.

Ferrimagnetic materials have high resistivity. This is an advantage as it prohibits
the appearance of eddy currents which lead to significant heating losses in metallic fer-
romagnetic materials. Ferrimagnetic materials absorb long wavelength electromagnetic
radiation which is a unique property as metals reflect, insulators transmit those. Ferrite
crystals are a major ingredient in snooper paint, which makes stealth airplanes unde-
tectable by radar. They also have anisotropic properties. The anisotropy is induced
by an external applied field, which if it aligns with the magnetic dipoles causes a net
magnetic dipole moment and causes the magnetic dipoles to precess at the Larmor fre-
quency (see Section 19.4). For instance a microwave signal circularly polarized in the
same direction as this precession strongly interacts with the magnetic dipole moments;
when it is polarized in the opposite direction the interaction is very low19.

18However, there is sometimes a temperature below the Curie temperature at which the two sublattices
have equal moments, resulting in a net magnetic moment of zero; this is called the magnetization
compensation point. Furthermore, ferrimagnets may also exhibit an angular momentum compensation
point at which the angular momentum of the magnetic sublattices is compensated. This compensation
point is a crucial point for achieving high speed magnetization reversal in magnetic memory devices.

19When the interaction is strong, the microwave signal can pass through the material. This di-
rectional property is used in the construction of microwave devices like isolators, circulators and
gyrators. Ferrimagnetic materials are also used to produce optical isolators and circulators. See
http://en.wikipedia.org/wiki/Ferrimagnetism
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Material Tc (K)

MnO 116
MnS 160
MnTe 307
MnF2 67
FeF2 79
FeCl2 24
FeO 198
CoCl2 25
CoO 291
NiCl2 50
NiO 525
Cr 308

Table 19.2: N eel temperatures of some crystalline materials(Source:Wikipedia)
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Chapter 20

Dielectric properties of solids

In insulators there are no movable charge carriers therefore no electric current flows when
an external electric field is applied to them. But the unmovable charges (e.g. ion cores
and valence electrons) are affected by the external field and they shift from their original
positions forming electric dipoles. This phenomena is called dielectric polarization or sim-
ply polarization. Polarization is characterized by the polarization density or polarizability
vector P which is the density of the electric dipole moment of the material1.

It is also possible that the material was polar, i.e. already contained molecules with
non zero dipole moments and the external E field tries to rotate these into the same
direction. However independent of the concrete method of polarization the field created
or rotated dipole moments create an electric field in the opposite direction of E thus
weakening it inside the material.

The electric susceptibility χe of a dielectric material is a measure of how easily it
polarizes in response to an electric field. In many cases polarizability is proportional to
the field2

P = εo χe E (20.0.1)

The well known macroscopic formula connects the electric displacement D, the external
field E and the polarization P

D = εo E + P (20.0.2)

In homogeneous and isotropic materials χe is a scalar and

D = εo (1 + χe) E = εr εo E (20.0.3)

1In the simplest case this is the electric dipole moment of the unit volume.
2εo = 8.854187817620 10−12 F/m is the electric permittivity of free space which has a defined value

εo =
1

µ0 c2

because both µ0 = 4π 10−7 H/m. and c = 299 792 458 m/s are defined values.
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In non-isotropic (non-cubic) crystals χe is a tensor, represented by a matrix.
The different kinds of polarization are

• Induced polarization - polarization of non-polar molecules/atoms (electron polar-
ization, displacement or ionic polarization)
The external field creates dipole moments inside the material either by deforming
the electron shell of atoms or moving the atoms of molecules apart.

• orientation polarization - polarization of polar molecules
The external field only aligns existing dipole moments.

20.1 Induced polarization

Fig. 20.1 shows the schematics of electron polarization. For ionic polarization the same
schematics holds just the constant dipole moment is created by displacing the atoms of
a molecule from each other by the external field. In both cases we may use a harmonic
oscillator model for the dipoles. The interaction energy around the minimum can be

Figure 20.1: Classical physical model of electron polarization. The external E(t) field
shifts the center of charges of the ion cores and valence electrons. This charge distribution
can be reduced to that of a single dipole using the superposition principle. M is the dipole
moment vector: M = q d.

approximated by a harmonic potential. For electron polarization this is in which the
electron moves. As the mass of the electron is much smaller than the mass of the ion
core we may consider the ion core immobile and deal with the electron only. For ionic
polarization this harmonic potential is a good approximation around the equilibrium ion
distance. In the following we use the example of electron polarization, but the same
arguments could be used for ionic polarization too.
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Electronic polarization

When a time dependent electric field E(t) is applied to an atom the Newton’s equation
of classical physics for the movement of the (center of mass of the) electron is described
by a damped and driven harmonic oscillator. In 1 dimension:

mẍ+mω2
0 x− γ ẋ = −eE

(
= −eE0 e

i ω t
)

(20.1.1)

Here ω0 is the angular frequency of the atomic oscillator and γ is the damping constant.
The electric field E = (Eloc =) Eaver+Epol is the field felt by the atom. In addition to

the average Eaver field the atomic/molecular dipoles feel the field Epol of the neighboring
dipoles as well. We will determine this local Eloc field later.

When the field is static (E(t) = const), ẋ = 0 and ẍ = 0 and the equilibrium distance
of the electron and the ion core is

x =
−eE
mω2

0

where in solids m is the effective mass of the electron, from which the (static) electric
dipole moment of the atom is

p = −e x =
e2E

mω2
0

= α εoE (20.1.2)

where we introduced the atomic polarizability α

α =
e2

εomω2
0

(20.1.3)

The polarization density of N such atoms (N is the atom density) then

P = N p = N α εoE (20.1.4)

and the susceptibility is

χe =
P
εoE

= N α = N
e2

εomω2
0

(20.1.5)

When the external field is not static the solution of (20.1.1) has the form

r(t) = r0 e
i ω t

After substitution we arrive to the formula

r =
e

m
· 1

ω2
0 − ω2 + i ω γ

E (20.1.6)

The induced dipole moment of the atom then simply

pind = e · r =
e2

m
· 1

ω2
0 − ω2 + i ω γ

E (20.1.7)
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Since this is a complex quantity, in this case the atomic polarizability will also be complex:

αind =
e2

εom
· 1

ω2
0 − ω2 + i ω γ

(20.1.8)

If we introduce the plasma frequency

ωp ≡

√
N e2

mεo
(20.1.9)

αind =
ω2
p

N
· 1

ω2
0 − ω2 + i ω γ

(20.1.10)

The effects of a complex polarizability will be dealt later in Section 20.4.

Ionic polarization

This occurs in ionic solids such as sodium chloride etc. Ionic solids possess net dipole
moment even in the absence of external electric field. But when the external electric
field is applied the separation between the ions further increases. Hence the net dipole
moment of the material also increases.

To get the formula for displacement polarizability in general and not only for electrons
substitute the q charge of the ions into every equations in which we used e so far.

20.2 Orientation polarization

When the molecules of the solid have constant dipole moments a homogeneous external
E field3 creates a torque which tries to rotate the dipoles into the direction of the field.
Thermal vibrations act against this, consequently only part of the molecular dipoles
will be rotated into the direction of the field. Let us select a coordinate system whose
positive z-direction is parallel with E and use spherical polar coordinates (ρ, θ, ϕ). Then
for the polarization density and the susceptibility in homogeneous an isotropic material4

we obtain the following formulas:

P =
N p2

e

3 kBT
E (20.2.1)

χ =
N p2

e

3 kBT
(20.2.2)

3 Although denoted by E this is not the external electric field but the local electric field which
incorporates the external field and the fields of the neighboring dipoles.

4e.g. cubic crystals
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It follows that the temperature dependence of the orientation susceptibility is ∝ T , which
is the Courier law. In the high field limit all dipoles are turned into the direction of the
field while in the small field limit the polarization density is proportional to the field5:

lim
E/T→∞

P = N pe · (1− 0) = N pe high field limit

lim
E/T→0

P =
N pe α

3
=

N p2
e

3 kBT
E low field limit

The local Eloc field in uniformly polarized homogeneous isotropic (cubic) solids

As we said earlier the local electric field Eloc which creates or orients the electric dipoles
is not the same as the average E field in the dielectric, because the atomic/molecular
dipoles feel the field of the neighboring dipoles as well. In an isotropic uniformly polarized
material every atom/molecule finds itself surrounded by the other atoms/molecules a
spherical symmetric way. When a uniform average E field is present all of them will be
uniformly polarized. To calculate Eloc we must sum up the electric field of all of these at
the position of our selected atom. This would require complicated calculations. Instead
of this we may use a simplified model.

Let us take a spherical plug of polarized material surrounding our selected atom out
of the dielectric. This will result in the appearance of inhomogeneous surface charges on
the surface of the hole this creates. These surface charges will create the same field at
the position of our atom (origin of the hole) as the original material without the hole
did.

Figure 20.2: The field at any point of the dielectric can be considered as a sum of the
field in a spherical hole (i.e. the local field) plus the field of the spherical plug.

E = Ehole + Eplug

The local field is the field in the hole:

Eloc ≡ Ehole = E− Eplug

5Detailed derivation of the polarization for this case is in Appendix 23.16
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where Eplug is the electric field inside a uniformly polarized sphere, which is

Eplug = − P

3 εo
(20.2.3)

Therefore the local field, which is larger than E is:

Eloc = E +
P

3 εo
(20.2.4)

Those interested in the derivation will find it in Appendix 23.17.

The Clausius-Mosotti formula

The fact that the local field is on one hand responsible for the polarization and on the
other hand at the same time it depends on the polarization too leads to the reformulation
of the susceptibility. Substituting the local field (20.2.4) into the electronic polarization
formula (20.1.4) containing the atomic polarizability α

P = N p = N α εo

(
E +

P

3 εo

)

P =
N α

1− N α
3

εo E (20.2.5)

χe =
N α

1− N α
3

(20.2.6)

20.3 Solid Dielectrics

There are special solid dielectric materials in which there exists a permanent built-in
polarization even in the absence of an external electric field. For instance wax contains
long molecules having a permanent dipole moment. If you melt some wax and apply a
strong electric field on it when it is a liquid then cool it down the (partial) ordering of
the permanent dipoles stays that way when the liquid freezes. Such a solid is called an
electret. An electret is the electrical analog of a ferromagnet only much less useful. The
air always contains free charges which are attracted to the surface and which neutralize
the polarization charges.

Not only electrets may contain permanent polarization but there exist such crystalline
materials too. Normally this effect is also unnoticed from the same reason. However
when these permanent dipole moments change external fields appear. This change may
be caused by
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• thermal expansion - this is called pyroelectricity

• mechanical stress - this is called piezoelectricity

Ferroelectric crystals like BaTiO3 also have built-in permanent dipole moment. But if
we increase the temperature even a tiny bit they loose this permanent moment. However
in cubic crystals in which the moments can be oriented into any direction all of them
can change at the same time when the external field changes and we get a large effect.

20.4 Application of the oscillator model

In section 20.1 we calculated the complex polarizability as a function of the frequency
of the external field. This describes propagation of electromagnetic waves in dielectric
materials. If we substitute (20.1.8) in the (20.2.6) Clausius-Mosotti formula we may
calculate the real and imaginary part of the permittivity. To simplify the formulas let
us introduce two frequencies: the plasma frequency ωp and the resonance frequency ω1

ω2
p ≡

N q2

εo
me (20.4.1)

ω2
1 ≡ ω2

o −
N q2

εo
(20.4.2)

With these the real (ε′) and imaginary (ε′′) parts of the permittivity are

ε′(ω) = 1 + ω2
p

ω2
1 − ω2

(ω2
1 − ω2)2 + ω2 γ2

(20.4.3)

ε′′(ω) = ω2
p

γ ω

(ω2
1 − ω2)2 + ω2 γ2

(20.4.4)

The real part of the complex refractive index (or index of refraction)

n̂ ≡ n− i nκ =
√
ε

describes refraction, while the imaginary part is responsible for absorption:

E(r, t) = E ei ω (t−n̂ r/c) =

= (E e−nκ r/c) ei ω (t−n r/c) (20.4.5)

The real (not complex) refractive index n and absorption coefficient κ can be calculated
from

ε′(ω) = n2 − n2κ (20.4.6)

ε′′(ω) = 2n2 κ (20.4.7)
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Figure 20.3: Dielectric responses in different frequency ranges

or

ε′(ω) = n2 − n2κ (20.4.8)

ε′′(ω) = 2n2 κ (20.4.9)

Usually the real refractive index n ≥ 1. This is nice, because by definition (C.f. (20.4.5))

n =
cm
c

where c is the speed of light in vacuum and cm is the phase velocity of light in the
material, but in some cases (e.g. near to resonant frequencies or for X-rays) n may be
smaller than 1 giving a phase velocity which is larger than c. This is possible as the phase
velocity is not the velocity of the energy or information of light, which are given by the
propagation speed which is never larger than c. As an example, water has a refractive
index of 1−2.6 ·10−7 = 0.99999974 at a photon energy of 30 keV (0.04 nm wavelength)6.

6Recent research has also demonstrated the existence of the negative refractive index, which can
occur if permittivity and permeability have simultaneous negative values. This can be achieved with
specially crafted periodic structures which are called metamaterials. The resulting negative refraction
(i.e., a reversal of Snell’s law) offers the possibility (but not the reality - as of 2012) of the superlens
(lens whose resolution go beyond the diffraction limit) and other exotic phenomena.
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Conduction electrons in metals

The conduction (Bloch) electrons in metals can move freely therefore they are not
bounded by harmonic forces, so the angular frequency ωo in (20.1.10) is 0. This gives

α̂ =
ω2
p

N
· 1

−ω2 + i ω γ
(20.4.10)

Introducing the average collision time τ with γ = 1/τ , the complex susceptibility and
permittivity are using (20.1.9) and (16.1.1) are

χ̂ = εo ·
ω2
p

−ω2 + i ω γ
(20.4.11)

n̂2(= ε̂) = 1 +
ω2
p τ εo

i ω (1 + i ω τ)
(20.4.12)

From (20.4.12) we see7 that when ω < ωp then n̂ is complex with a large imaginary part
so the attenuation of the wave is large, while in the region ω > ωp n̂ is real, i.e. the metal
becomes transparent. In most metals, the plasma frequency is in the ultraviolet, making
them shiny (reflective) in the visible range. Some metals, such as copper and gold, have
electronic interband transitions in the visible range, whereby specific light energies (col-
ors) are absorbed, yielding their distinct color. In semiconductors, the valence electron
plasma frequency is usually in the deep ultraviolet which is why they too are reflective.

20.5 Non-linear effects

At very high electric field strengths the polarization density is not linear with the field
strength. In most cases the susceptibility can be expanded in a power series, which for
isotropic materials can be written as8:

P = εoχ
(1) · E + εoχ

(2) · E2 + εoχ
(3) · E3 + . . . (20.5.1)

7(20.4.12) may also be expressed with the conductivity σ, which is related to the plasma frequency
by the formula ω2

p τ = σ/εo as

n̂2(= ε̂) = 1 +
σ/εo

i ω (1 + i ω τ)

8For non-isotropic crystals a more complicated formula must be used. The j-th component of the
polarization density is calculated from

Pj = εoχ
(1)
j,k · Ek + εoχ

(2)
j,k,l · Ek · El + εoχ

(3)
j,k,l,m · Ek · El · Em + . . .

where we used the common notation in which a summation must be performed to all of the indices
occuring twice in a product.
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In this formula the numbers in braces are the order of approximation. From the possible
consequences9 we only show you one: frequency doubling.

If the electric field is in the form

E(t) = Eo · ei ω t−k r

then the second term in (20.5.1) gives:

P = εo χ
(2)Eo · ei (ω t−k r) · Eo · ei (ω t−k r) = εo χ

(2) E2
o · ei (2ω t−2 k r)

so the polarization contains a term which oscillates twice the frequency of the incoming
light. Such frequency doubling is used e.g. in green laser pointers.

9χ(2) is responsible for frequency doubling, the Pockels effect used in nanosecond optical shutters,
χ(3) corresponds to the Kerr effect, which is a change in the refractive index of a material in response
to an applied electric field.
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Chapter 21

Appendices
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Chapter 22

Quantum Mechanics

22.1 Measurement of the electromagnetic spectrum

by a spectrometer

White light can be broken up unto a colored band by an optical prism or an optical
grating.

Figure 22.1: Visible spectrum of a white light source. The numbers mean the wavelengths
in nm.

The reason for this is that the diffraction angle of the light depends on the wavelength
(or frequency), which determines the color of the light. The light intensity at different
wavelengths depends on the characteristics of the light source and the medium the light
travels through. This wavelength - intensity (or frequency - intensity) relation is called
the spectrum of the light.

Generally the properties (intensity, polarization state, etc) of light or any other form
of electromagnetic radiation depend on the wavelength (or equivalently on the frequency).
The corresponding I(λ) or I(ν), etc functions are called the spectrum of the electromag-
netic wave. In practice the independent variable used can also be the wave number

(k =
2 π

λ
) or any quantity which is directly proportional to the energy. 1

1The term electromagnetic spectrum means the range of all possible electromagnetic radiation, while
the electromagnetic spectrum of an object means the characteristic distribution of electromagnetic radi-
ation emitted or absorbed by the object.
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Devices that measure this wavelength dependence are called spectrometers, spec-
trophotometers, spectrographs, spectroscopes or spectral analyzers.

Spectrophotometers measure the absolute light intensity as a function of λ or ν. The
majority of spectrophotometers are used in spectral regions near, or in the visible spec-
trum. Other devices measure intensities relative to the spectrum of some standard.

Spectroscopes are often used in astronomy and some branches of chemistry. Early
spectroscopes were simply prisms with graduations marking wavelengths of light. Mod-
ern spectroscopes generally use a diffraction grating, a movable slit, and some kind of
photodetector, all automated and controlled by a computer. In microwave and radio
frequencies the spectrum analyzer is a closely related electronic device.

Figure 22.2: Schematics of a spectrometer. A parallel beam of light is projected to a
reflective optical grating which diffracts different wavelengths to different directions and
the photodetector measures the intensity of the light in a particular dimension. Rotating
the grating changes what wavelength is diffracted to the detector.

Fig. 22.2 shows the schematic design of a spectrometer working in the optical range.
The reflective grating nowadays produced by holographic techniques. It consists of closely
spaced parallel lines (their period d is the grating constant) of varying reflectivity.

The operation of a reflective grating is shown in Fig 22.3. If the grating is perpendic-
ular to the incoming parallel ray of light (the angle of incidence, i.e. the angle between
the light ray and the surface normal, α0 = 0) and it is of wavelength λ, part of the
light is reflected straight back, and in addition we can observe intensity maxima in the
diffracted light waves in directions αm, in which the condition

d sinαm = mλ, m = 1, 2, ... (22.1.1)
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Figure 22.3: Diffraction on a reflective optical grating. The arrows denote the traveling
direction of beams of light. a) Diffraction when the angle of incidence α0 = 0. Only four
reflected beams, and the angle for the m-th and m′ = −m-th order are shown. b) One
diffracted beam when the angle of incidence α0 6= 0. The number m can be both positive
and negative resulting in diffracted waves at both sides of the zero order beam.

is true. Here m is the diffraction order. If the angle of incidence is α0 6= 0 the grating
equation becomes:

d (sinα0 + sinαm) = mλ m = 1, 2, ... (22.1.2)

For m = 0 it describes the specular reflection and is called the zero order. Fig. 22.4 shows
what happens when the light diffracted is a mixture of multiple (discreet) wavelengths
(colors).

22.2 The spread of a wave pocket in time

In the double slit experiment when we put a detector to one of the slits to determine
which slit the electron went through the interference pattern vanishes. Why is it so?

For the sake of simplicity in the following we will usually confine the description to
one dimension. In one dimension (3.4.1) becomes

P(x, dx) = |C · ψ(x, t)|2 · dx (22.2.1)

The shape of the wave function (wave packet) of an electron changes in time. If at
t = 0 the shape of the wave packet was a sharply localized Gaussian function, e.g.

ψ(x, 0) = C e
− x2

2 ∆ x0 · e−i k x
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Figure 22.4: An argon laser beam consisting of multiple colors (wavelengths) strikes
a silicon diffraction mirror grating and is separated into several beams, one for each
wavelength. The wavelengths are (left to right) 458nm, 476nm, 488nm, 497nm, 502nm,
515nm.
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where ∆x is small with

|ψ(x, 0)|2 = |C|2 e−
x2

∆ x

then at any t > 0 time the width of the wave packet will grow according to the formula2

∆x(t) =

√
(∆x0)2 + (~ t/m)2

∆x0

In the light of the Heisenberg uncertainty relations this means that the wave packet will
spread over time even without an external electric field. In Fig. 22.5 4 stages of this
spreading is shown. At the same time because no external field is acting on the electrons

Figure 22.5: The spread of the wave function of an electron

the momentum uncertainty does not change, only the relative phases of the constituent
waves change, therefore the product of uncertainties ∆x ·∆ p, which at t = 0 was exactly
~/2 also increases:

∆x(t) ·∆ p >
~
2

if t > 0

This spread of the wave function would continue indefinitely long, unless the electron
enters in an interaction with any other particle (e.g. collides with a photon). In the
interaction the position uncertainty of the electron shrinks and the wave function becomes
sharply localized again. This fast shrinking of the wave function cannot be described by
quantum mechanics.

2This can be derived with a long and tedious although straightforward manner with (22.4.3) and
(22.4.4) and taking the absolute square of the ψ(x, t) function.
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22.3 Derivation of the Compton formula

A photon with wavelength λ collides with an electron e in an atom, which is treated
as being at rest. The collision causes the electron to recoil, and a new photon γ′ with
wavelength λ′ emerges at angle θ from the photon’s incoming path as shown in Fig 22.6
a). According to the conservation laws both the energy and the momentum must be
preserved in the collision:

Ee + Eph = E ′e + E ′ph (22.3.1)

0 + pph = p′e + p′ph (22.3.2)

where Ee = me c
2 and E ′e are the energy of the electron before and after the collision and

pe is the momentum of the electron after the collision, while Eph = h ν and E ′ph = h ν ′

are the energies, pph and p′ph are the momenta of the incoming and outgoing photons
respectively. From special relativity we know that the magnitude of the momentum of a
photon is

pph =
E
c

and the connection between the energy and the momentum of the electron is3

E2 − p2 c2 = m2 c4

The energy loss of the photon then

h (ν − ν ′) =
√
p′2e +m2 c4 −m2 c2 (22.3.3)

Solving for the term concerning the post-collision momentum of the electron gives

p′
2
e =

(
h ν +me c

2 − h ν ′
)

(22.3.4)

On the other hand from the conservation of momentum

p′e = pph − p′ph (22.3.5)

therefore

p′
2
e =

(
pph − p′ph

)
·
(
pph − p′ph

)
=

= p2
ph + p′

2
ph − 2 pph p′ph cosθ =

= h2 ·
(
ν2 + ν ′2 − 2 ν ν ′ cosθ

)
3Substituting pe = 0 gives the well known relation of E = mc2
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Figure 22.6: Dynamics of the Compton effect. a) visualization, b) momentum diagram
for the calculation

Substituting this formula for p′2e into the left hand side of (22.3.4) and dividing both
sides with 2h ν ν ′ c

c

ν ′
− c

ν
=

h

me c
(1− cosθ) (22.3.6)

Then the final result using that λ = c/ν

λ′ − λ =
h

mec
(1− cos θ), (22.3.7)

22.4 Uncertainty relations for a wave packet

Localized electronic states are described by a wave packet. According to the Fourier-
theorem any function, therefore our wave packet as well, can be written as a sum of an
infinite number of harmonic functions. For periodic functions this is a sum of an infinite
series, for non-periodic functions it is an integral. For the sake of simplicity we will stay
in one dimension. therefore our wave packet will be a linear combination of waves of the
form

u(x, t) = A(k)ei
(
ω(k) t−k x

)
,

where the wave with k > 0 travels in the positive, the ones with k < 0 in the negative x
direction with a k dependent phase velocity of

c := vph =
ω(k)

k
(22.4.1)
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The ω(k) function for a particle4

ω(k) =
Ekin
~

=
~ k2

2me

It follows that the group velocity of a constituent wave

vg =
dω(k)

d k
=

~ k
me

(22.4.2)

depends on the actual k: different harmonic components of the originally localized wave
function travel with different velocities their relative phases change in time. As a re-
sult the wave packet becomes wider and wider, it disperses. The (3.2.1d) relation is a
dispersive one.

The group velocity of electromagnetic waves in vacuum is the same as their phase
velocity, therefore an electromagnetic wave packet can only disperse if the medium is
dispersive. Material waves do not need a dispersive medium to spread over time, they
do it in vacuum too.

Our wave packet therefore is written as

ψ(x, t) =
1√
2π

∞∫
−∞

A(k)ei
(
ω(k) t−k x

)
dk, (22.4.3)

where A(k) is the k dependent amplitude.

You can recognize that (22.4.3) is the Fourier transform of the function5

A(k)ei ω(k) t

4using the de Broglie relations (3.2.1c) and (3.2.1d)
5There are some conventions regarding the Fourier transform. We use the one called unitary angular

frequency convention.
In one dimension the ξ(x) Fourier transform of the function f(k) is denoted with F

(
f(k)

)
its inverse

with F−1
(
ξ(x)

)
:

ξ(x) := F(f(k)) =
1√
2π

∞∫
−∞

f(k) e−i k xdk, and

F−1(ξ(k)) =
1√
2π

∞∫
−∞

ξ(x) ei k xdx
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The A(k) amplitude function then can be calculated by the inverse Fourier transform
at t = 0:

A(k) =
1√
2 π

∞∫
−∞

ψ(x, 0) ei k xdx (22.4.4)

As an example let us suppose that at t = 0 the wave packet describing an electron
localized around the origin has a Gaussian shape

ψ(x, 0) = e−
x2

2σ2 · e−i ko x

where σ is a positive real number, whose square is twice the width of the wave packet:

2 (∆x)2 ≡ σ2. (22.4.5)

The first exponential is the envelope which determines the localized shape of the function,
the second one with the imaginary exponent describes the motion of the center of the
wave packet with a constant momentum of po = ~ ko. This second part when combined
with ei ω t is what makes the function a wave. Substituting into (22.4.4)

A(k) =
1√
2π

∞∫
−∞

e−
x2

2σ2−i ko x ei k xdx =

=
1√
2π

∞∫
−∞

e−
x2

2σ
+i(k−ko)xdx

A(k) can be obtained from a table of Fourier integrals:

A(k) =
1√
2π

σ e−
σ2 (k−ko)2

2 (22.4.6)

Substituting back into (22.4.3) we can calculate the shape of the wave function at an
arbitrary time.

The A(k) function describes the localization of the K values of the wave packet
around ko. Because it also has a Gaussian shape it may also be written as

A(k) =
1√
2π

σ e
− (k−ko)2

2σ2
k , where

σk =
1

σ
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and because (c.f. (22.4.5) )

2 (∆ k)2 ≡ σ2
k

the product of the square of the two widths

σ2 · σ2
k = 4 ·∆x ·∆ k from where

∆x ·∆ k =
1

2
,

and using the (3.2.1c) de Broglie relations

∆x ·∆ p =
~
2

(22.4.7)

A more general derivation would prove that for any functional shape of a wave pocket
the product of σ2 and σ2

k cannot be less than 1, but it can be larger than that, therefore

∆x ·∆ p ≥ ~
2

(22.4.8)

22.5 The linear harmonic oscillator - Analitical so-

lution

The Schrödinger equation of the linear harmonic oscillator is

− ~2

2m

d2 ϕ

dx2
+

1

2
mω2 x2 ϕ = Eϕ

Reorder the equation first:

d2 ϕ

dx2
+

2m

~2

(
E − 1

2
mω2

)
ϕ = 0 (22.5.1)

With introducing

ξ :=

√
mω

~
x and k :=

2 E
~ω

the equation takes the form

ϕ′′ + (k − ξ2)ϕ = 0 (22.5.2)

If x → ∞ then ξ → ∞. In this case k is negligible compared to ξ and for very large x,
i.e. very large ξ we have an asymptotic equation:

ϕ′′(ξ)− ξ2 ϕ(ξ) = 0, when x→∞
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The solution of this asymptotic equation is

ϕ(ξ) = e
±

1

2
ξ2

For physical solutions the total probability and correspondingly the scalar product of ϕ
with itself must be finite, which requires that limx→∞ ϕ(x) = 0. This is equivalent to
limξ→∞ ϕ(ξ) = 0. This allows only the asymptotic solution with the negative sign in the
exponent. Therefore try the solution for the non asymptotic equation in the form:

ϕ(ξ) = u(ξ) e
−

1

2
ξ2

(22.5.3)

The derivatives then (now ′ will denote the derivative with respect to ξ: ϕ′′ ≡ dϕ

d ξ
)

ϕ′ = (u′ − ξ u) e
−

1

2
ξ2

ϕ′′ = (u′′ − ξ u′ − u− ξ u′ + ξ2 u) e
−

1

2
ξ2

With this after dividing the equation with the non zero exponential factor (22.5.2) be-
comes:

u′′ − 2 ξu′ + (k − 1)u = 0 (22.5.4)

We will try to satisfy this equation with a polynomial

u(ξ) =
∞∑
r=0

cr ξ
r (22.5.5)

After substitution:

∞∑
r=0

[(r + 2) (r + 1) cr+2 − 2 cr + (k − 1) cr] ξ
r = 0

This equation can only be true for every possible value of ξ if the term inside the square
brackets is itself 0 for every r:

(r + 2) (r + 1) cr+2 − 2 cr + (k − 1) cr = 0

cr+2 =
2 r + 1− k

(r + 2) (r + 1)
cr where r = 0, 1, 2, ... (22.5.6)
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Because the index jumps by 2 we may select both coefficients c0 and c1 independently6.
Therefore the sum (22.5.5) may be separated to two sums, one for the indexes 0,2,4, etc,
the other one for 1,3,5, etc. The first one is an even function of ξ the second one is an
odd function of it.

ϕ is c0 c1 ϕ(0) ϕ′(0)
even 1 0 1 0
odd 0 1 0 1

Still it would be impossible to calculate all coefficients. But we know (see (22.5.3))
that how ϕ should look like for large ξ (asymptotically). We also know that ϕ must be
square-integrable. See if we can satisfy this condition.

For large ξ (22.5.6) simplifies to

cr + 2 ≈ 2

r
cr so

u ≈
∞∑
r=0

(2 ξ2)2

r !
= e2 ξ2

But then (22.5.3) becomes:

ϕ = e2 ξ2

e
−

1

2
ξ2

= e

3

2
ξ2

which is not square-integrable. Therefore we must not allow an infinite number of non-
zero cr coefficients in our result. Let us suppose therefore that in (22.5.6) there is an
index n for which cn+2 = 0, while cn 6= 0:

2n+ 1− k
(n+ 2) (n+ 1)

= 0

from which

2n+ 1 = k

(
=

2 E
~ω

)
i.e.

cr+2 =
2 (r − n)

(r + 2) (r + 1)
cr and

En = ~ω
(
n+

1

2

)
= h ν

(
n+

1

2

)
(22.5.7)

6The reason behind this is simply that (22.5.4) is a second order differential equation whose general
solution requires two constants.
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The polynomial (see (22.5.5))

Hn(ξ) =
n∑
r=0

cr ξ
r where (22.5.8)

cr+2 =
2 (r − n)

(r + 2) (r + 1)
cr

is called the Hermite polynomial7 The ϕn(x) eigenfunctions then

ϕn(x) = CnHn

(√
mω

~
x

)
e
− 1

2

mω2

~
x2

, (22.5.9)

where Cn is the normalization constant. The first 4 Hermite polynomials are

H0 = 1 H1 = x

H2 = 1− 2x2 H3 = x− 2

3
x3

H4 = 1− 4x2 − 1

3
x4

22.6 The linear harmonic oscillator - Ladder opera-

tors

To determine the eigenvalues of the linear harmonic oscillator we have to solve the
corresponding eigenvalue equation (the ’hat’ (̂ ) symbol denotes an operator):

Ĥϕ(r) = Eϕ(r) (22.6.1)

where

Ĥ =
p̂2

2me

+
1

2
mω2r̂2 (22.6.2)

In the Schrödinger picture of quantum mechanics the operators r̂ and p̂ are:

r̂ = r· (22.6.3)

p̂ =
~
i
∇ (22.6.4)

7Unfortunately there are at least two other definitions for the Hermite polynomials. The one we
selected here is the one best suited to our derivation.
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For the sake of symplicity in one dimension:

Ĥ =
p̂2

2me

+
1

2
meω

2x̂2 (22.6.5)

The corresponding Schrödinger equation then becomes

− ~2

2me

d2ϕ(x)

dx2
+

1

2
meω

2x2ϕ(x) = Eϕ (22.6.6)

The solution to this equation is far from simple. Furthermore using the Scrödinger equa-
tion suggests that quantum mechanical eigenvalue problems are differential equations. In
fact, however, this is not true. To illustrate this we will solve (22.6.5) in one dimension
and determine the E eigenvalues without using any differential calculus, even without
any advanced mathematics whatsoever (unless of course the algebraic calculations with
non-commuting quantities is considered

”
advanced” mathematics)!

We will only use (algebraic) operator equations so we will not use the mathematical
form of operators x̂ and p̂. But for our purposes (22.6.5) is not enough we need some-
thing more from quantum mechanics, namely the commutativity relation of quantum
mechanical operators, called the commutator. The definition of the commutator of any
two quantum mechanical operator Â, B̂ is:

[Â, B̂] := ÂB̂ − B̂Â (22.6.7)

The commutator may or may not be 0. When the commutator of two operator is ±i~
they are called canonically conjugate operators. The operators x̂ and p̂ are canonically
conjugate quantities, because from (22.6.3):

[x̂, p̂] = i~ (22.6.8)

The state of the electron is determined by the ϕ(x) wave function. If we had known the
wave function we also knew the solution of (22.6.5). in the followings we will determine
the energy eigenvalues without determining the wave function itself. Because we know
the solution of the classical mechanical problem of the linear harmonic oscillator we can
easily see that (22.6.5) may be written in a more symmetrical form by introducing to
new operators P̂ and Q̂ with equations:

X̂ :=

√
meω

~
x̂ and P̂ :=

√
1

meω~
p̂ (22.6.9)

we can see by substitution into (22.6.5) and (22.6.8):

~ω
2

(
P̂2 + Q̂2

)
ϕ(x) = Eϕ(x) (22.6.10)

[Q̂, P̂ ] = i (22.6.11)
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Those who know the result we are seeking may find (22.6.10) interesting. Unfortunately
(22.6.10) is not much simpler than the original equation was. Q̂ and P̂ are just inter-
mediate forms to make the following calculations easier. If we were using (commuting)
complex numbers and not non-commuting operators, then inside the braces in (22.6.10)
we may recognize the product of a sum and a subtraction8:

Q2 + P 2 = (Q+ iP )(Q− iP )

Therefore let us introduce the following two new operators:

â :=
Q̂+ iP̂√

2
and â+ :=

Q̂ − iP̂√
2

(22.6.12)

Substituting into (22.6.11) it is easy to see that

[â, â+] = 1 (22.6.13)

and because

Q̂ =
1√
2

(â+ â+) (22.6.14)

P̂ =
1

i
√

2
(â− â+) (22.6.15)

so in (22.6.10)

~ω
4

(
(â+ â+)(â+ â+)− 2(â− â+)(â− â+)

)
=

~ω
4

(
ââ+ ââ+ + â+â+ â+â+ − ââ+ ââ+ + â+â− â+â+

)
=

~ω
4

(2ââ+ + 2â+â)

Using (22.6.13) ââ+ = â+â+ 1

~ω
4

(2ââ+ + 2â+â) =
~ω
2

(2â+â+ 1)

therefore

Ĥ ≡ ~ω(â+â+
1

2
) so (22.6.16)

~ω(N̂ +
1

2
)ϕ(x) = Eϕ(x) (22.6.17)

8This formula is not instantly usable for us, because Q̂ and P̂ are non-commuting operators, but
may point us into the right direction.
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where we introduced the notation:
N̂ := â+â

Because of the connection between Ĥ and N̂ both operators have the same eigenfunc-
tions. Therefore if we determine the eigenvalues for N̂ we will get the eigenvalues of Ĥ
too. Let ϕ an eigenfunction of N̂ with eigenvalue λ:

N̂ϕ = λϕ (22.6.18)

Multiplying both sides with â+ from the left and using the definition od N̂ :

â+(â+â)ϕ = λâ+ϕ (22.6.19)

because λ is a number it commutes with â+.
Using (22.6.13)

â+(â+â) = â+(ââ+ − 1) = (â+â− 1)â+ = (N̂ − 1)â+

after reordering

N̂ (â+ϕ) = (λ+ 1)(âϕ) (22.6.20)

i.e. if ϕλ is an eigenfunction of N̂ with the eigenvalue λ then ϕλ+1 := â+ϕλ is also either
an eigenfunction of N̂ with the eigenvalue (λ + 1), or it may only differ from ϕλ+1 by
a constant factor. If we can find any of the eigenfunctions of N̂ then we can construct
an other eigenfunction by applying the operator â+ to it. This way we can construct an
infinite series of eigenfunctions and eigenvalues. On a similar way by multiplying both
sides with â from the left:

â(â+â)ϕ = λâϕ

â(â+â) = (ââ+)â = (â+â+ 1)â = (N̂ + 1)â

N̂ (âϕλ) = (λ− 1)(âϕλ) (22.6.21)

i.e. if ϕλ is an eigenfunction of N̂ with the eigenvalue λ then ϕλ−1 := âϕλ is also either
an eigenfunction of N̂ with the eigenvalue (λ− 1), or it may only differ from ϕλ−1 by a
constant factor. As before we can construct an infinite series of eigenfunctions each with
an eigenvalue 1 less then the previous one. But this poses a problem. From (22.6.17)

E = ~ω(λ+
1

2
)

The infinitely decreasing series of λ values correspond to an infinitely decreasing series of
energies, which may lead even to impossible negative energy values, unless there exists
a ϕ0 eigenfunction with an eigenvalue of λ = 0:

N̂ψ0 = 0ψ0 and ψ0 6= 0
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Therefore the possible λ values are

λ = 0, 1, 2, ...

and then (replacing λ with the usual n):

E = ~ω(n+
1

2
) n = 0,1,2,3... (22.6.22)

22.7 1 dimensional potential well

V (x) =

{
V0, |x| ≥ L

2

0, |x| < L
2

(22.7.1)

Again we will solve the Schrödinger equation piecewise and use boundary conditions to
connect the pieces.

The solutions in the three regions are similar to the wave functions we used section
3.5:

ϕI(x) = Aei q x +B e−i q x

ϕII(x) = C ei k x +D e−i k x (22.7.2)

ϕIII(x) = E ei q x + F e−i q x

where

q =

√
2m (E − V0)

~
and

k =

√
2m E
~

The boundary conditions for the continuity of the wave function and its derivative:

ϕI(−
L

2
) = ϕII(−

L

2
)

ϕII(
L

2
) = ϕIII(

L

2
)

ϕ′I(−
L

2
) = ϕ′II(−

L

2
)

ϕ′II(
L

2
) = ϕ′III(

L

2
)

These boundary conditions present only 4 equations for the 6 unknowns A,B,C,D,E
and F . That is either we can assign any values for two of the parameters or there must
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exist other conditions for the wave function. Again we must distinguish between the two
cases where the total energy of the particle is larger than V0 or smaller than V0.

In the first case we must decide from where the particle comes from. If it comes from
the left then F = 0 and we may set A to any value, if it arrives from right then A = 0 and
the value of F is arbitrary. In any case the particle will not be trapped in the potential
well, and this is the behavior we would expect from a classical particle too. There will
be no constraints for the possible energy values of these unbounded states. We say that
the energy spectrum of unbounded states is continuous and not quantized.

More interesting is the case when E < V0. Then q becomes imaginary

q ≡ i α =

√
2m (V0 − E)

~

and the exponent of the wave functions in ϕI and ϕIII will be real. Because the wave
function must be square-integrable only the exponentially decreasing terms can differ
from 0, i.e.

ϕI(x) = B eαx x ≤ −L
2

ϕII(x) = C ei k x +D e−i k x −L
2
≤ x ≤ L

2
(22.7.3)

ϕIII(x) = E e−αx x ≥ L

2

We reduced the number of unknowns to 4 and we have 4 independent homogeneous
equations. For such a system non zero solutions may only exist if the determinant of the
equation is 0 and in that case an infinite number of solutions exist. This is good news,
because it makes possible to select one of the unknowns in a way that the wave functions
is normalized!

As it turns out this is one of those occasions when working with sine and cosine
functions is easier than with complex exponential ones, therefore we will write

ϕII(x) = Gsink x+H cos k x |x| ≤ L

2
(22.7.4)

The two new constants are G = C +D and H = C −D9. The 2 boundary conditions at

9Using the well known formula: ei α = cos α+ i sinα this is easy to prove.

371



−L/2 and the other two at L/2 with these then are:

B e−αL/2 = Gsin(−k L/2) +H cos(−k L/2)

αB e−αL/2 = −k G cos(−k L/2)− k H sin(−k L/2)

and

E e−αL/2 = Gsin(k L/2) +H cos(k L/2)

−αE e−αL/2 = −k G cos(k L/2)− k H sin(k L/2)

On the right hand side of these equations we see a sum of two independent functions, one
is even ϕ(1)(−x) = ϕ(1)(x) the other one is odd ϕ(2)(−x) = −ϕ(2)(x). The probability
density is proportional with |ϕ(x)|2 so both of these are acceptable. (See Fig 3.15) We
can satisfy the boundary conditions with either of them. The boundary conditions for
the even cos function are

B e−αL/2 = H cos(−k L/2) (22.7.5a)

αB e−αL/2 = −k H sin(−k L/2) (= +H sin(k L/2) (22.7.5b)

E e−αL/2 = H cos(k L/2) (22.7.5c)

−αE e−αL/2 = −k H sin(k L/2) (22.7.5d)

If we are not interested in the wave functions themselves, but want to determine the
possible energy eigenvalues only, then we get rid of the unknowns by either dividing
(22.7.5b) with (22.7.5a), or (22.7.5d) with (22.7.5c):

α = k tan
k L

2
(22.7.6a)

On a similar way for the odd sin function we obtain:

α = −k cotk L
2

(22.7.6b)

Both α and k is related to the E energy. From their definitions it is easy to see that

α2 + k2 =
2mV0

~2
(22.7.7)

As you can see despite its simplicity this is a potential for which no analytical solution
exists. We may either use graphical or numerical methods to determine the energy values.
If we draw the α(k) function from (22.7.6a) (or from (22.7.6b)) and the (22.7.7) curve
in the same k − α coordinate system (see Fig. 22.7) then their intersection provides the
possible energy values. The number of the possible energy levels in this case is finite.
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Figure 22.7: Solution of (22.7.7)

22.8 Derivation of Perturbation theory formulas

First we try to write the unknown solution as a linear combination of the known eigen-
functions of the unperturbed Schrödinger equation:

ψ(x, t) =
∑
n

Cn(t)ϕn(x) e−
i
~ En t

where the Cn(t) coefficients are time dependent complex numbers (functions). Details of
the calculation are in Appendix 22.8 Substitute ψn(x, t) into the Schrödinger equation:∑

n

Cn(t)e−
i
~ En t

([
− ~2

2m

d2 ϕn
d x2

+ V ϕn

]
+K

)
=

=
∑
n

i ~
d(Cn(t)e−

i
~ En t)

dt
ϕn

The expression in the square bracket is the left hand side of the stationary Schrödinger
equation for ϕn, therefore it is equal to En. After reordering this gives:

∑
n

(
Cn(t)e−

i
~ En t (En +K)ϕn(x)− i ~ dCn(t)e−

i
~ En t

dt
ϕn(x)

)
= 0
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The term containing the derivative with respect to time is

i ~
dCn(t)e−

i
~ En t

dt
ϕn(x) =

(
i ~

dCn(t)

d t
+ Cn(t) En

)
e−

i
~ En t ϕn(x)

Therefore ∑
n

(
Cn(t)K(x, t)− i ~ dCn(t)

d t

)
ϕn(x) e−

i
~ En t = 0

Now we can use the orthogonality of the eigenfunctions ϕn(x). Multiply this equation

with
(
ϕm(x) e−

i
~ Em t

)∗
= ϕ∗m(x) e+ i

~ Em t and integrate for the whole space:

∞∫
∞

ϕ∗m(x) e+ i
~ Em t

[∑
n

(
Cn(t)K(x)− i ~ dCn(t)

d t

)
ϕn(x) e−

i
~ En t

]
dx = 0

The order of the summation and integration can be exchanged

∑
n

 ∞∫
∞

ϕ∗m(x) e+ i
~ Em t

(
Cn(t)K(x)− i ~ dCn(t)

d t

)
ϕn(x) e−

i
~ En t dx

 = 0

∑
n

Cn(t) e+ i
~ (Em−En) t

∞∫
∞

ϕ∗m(x)K(x)ϕn(x) dx

−
−
∑
n

i ~ dCn(t)

d t
e+ i

~ (Em−En) t

∞∫
∞

ϕ∗m(x)ϕn(x) dx

 = 0

Because ϕn and ϕm are orthogonal for n 6= m only the term where m = n remains and
the second sum evaluates to

∑
n

i ~ dCn(t)

d t
e+ i

~ (Em−En) t

∞∫
∞

ϕ∗m(x)ϕn(x) dx

 = i ~
dCm(t)

d t
,

therefore

dCm(t)

d t
= − i

~
∑
n

Cn(t) e+ i
~ (Em−En) t

∞∫
∞

ϕ∗m(x)K(x)ϕn(x) dx

 (22.8.1)
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The integral in this equation is called the m,n-th matrix element of the potential K(x, t)
and is denoted with Kmn(t):

Kmn(t) :=

∞∫
∞

ϕ∗m(x)K(x, t)ϕn(x) dx

Introducing ωmn = (Em − En)/~ the equation for the time dependence of the coefficients
Cn(t) is

dCm(t)

d t
= − i

~
∑
n

Kmn(t)Cn(t) ei ωmn t

The equation may be solved by successive approximation. For a sufficiently small ∆τ
interval

dCm(t)

d t
≈ Cm(t+ ∆τ)− Cm(t)

∆τ
so

Cm(t+ ∆τ) ≈ Cm(t)− i

~
∑
n

Kmn(t) ei ωmn tCn(t) ∆τ

Therefore an approximation of the coefficient Cm at t is

Cm(t) ≈ Cm(0)− i

~
∑
n

t∫
−0

Kt(τ) ei ωmn τ Cn(τ) dτ

where for the sake of clarity the variable under the integral is denoted by τ instead of
t. To turn this an interpolation formula first we arbitrarily select the initial Cn values.
Denote them with C0

n(t). Substituting these functions into the formula above we can
determine the first approximation of the coefficients:

C(1)
m (t) = C(0)

m (0)− i

~
∑
n

t∫
0

Kt(τ) ei ωmn τ C(0)
n (τ) dτ

In the next step we substitute C
(1)
n back in the equation and get the next approximation

C
(2)
m . Continuing this process in the r − th step of the approximation we get

C(r)
m (t) = C(r−1)

m (0)− i

~
∑
n

t∫
0

Kmn(τ) ei ωmnτ C(r−1)
n (τ) dτ (22.8.2)
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22.9 The operator of the angular momentum and its

z component in spherical polar coordinates

Determine the representation of the L̂z and L̂2 operators in spherical polar coordinates!
Solution In Cartesian coordinates

L̂z ϕ = x̂ p̂y − ŷ p̂x =
~
i

(
x
∂ ϕ

∂ y
− y ∂ ϕ

∂ x

)
(22.9.1)

Let us separate the ~ constant

L̂zϕ = ~l̂z, where l̂z = −i
(
x
∂ ϕ

∂ y
− y ∂ ϕ

∂ x

)
The connections between Cartesian and spherical polar coordinates are

x = r sin θ cos φ

y = r sin θ sin φ (22.9.2)

z = r cos θ

The Cartesian x, y and z can be thought as functions of r, θ and φ, therefore
we may use the chain rule of differentiation when we calculate the derivatives
of ϕ(x, y, z) = ϕ(r, θ, φ) with respect to the spherical polar coordinates:

∂ϕ

∂ r
=
∂ϕ

∂ x

∂x

∂ r
+
∂ϕ

∂ y

∂y

∂ r
+
∂ϕ

∂ z

∂z

∂ r
∂ϕ

∂ φ
=
∂ϕ

∂ x

∂x

∂ φ
+
∂ϕ

∂ y

∂y

∂ φ
+
∂ϕ

∂ z

∂z

∂ φ
∂ϕ

∂ θ
=
∂ϕ

∂ x

∂x

∂ θ
+
∂ϕ

∂ y

∂y

∂ θ
+
∂ϕ

∂ z

∂z

∂ θ

Calculate the derivatives of x, y and z with respect to r, θ and φ:

∂x

∂ r
= sin θ cos φ =

x

r
,

∂y

∂ r
= sin θ sinφ =

y

r
,

∂z

∂ r
= cosφ =

z

r
,

∂x

∂ φ
= −r sin θ sinφ = −y, ∂y

∂ φ
= r sin θ cosφ = y,

∂z

∂ φ
= 0,

∂x

∂ θ
= r cos θ cos φ =

cos θ

sin θ
x =

x

tan θ
,

∂y

∂ θ
= r cos θ sin φ =

y

tan θ
y,

∂z

∂ θ
= −r sin θ = −sin θ

cos θ
x = x tan θ,
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and substitute back into (22.9.2):

∂ϕ

∂ r
=
x

r

∂ϕ

∂ x
+
y

r

∂ϕ

∂ y
+
z

r

∂ϕ

∂ z
∂ϕ

∂ φ
= −y ∂ϕ

∂ x
+ x

∂ϕ

∂ y
(22.9.3)

∂ϕ

∂ θ
=

x

tan θ

∂ϕ

∂ x
+
∂ϕ

∂ y

y

tan θ
+
∂ϕ

∂ z
tan θ

Comparing the second equation with (22.9.1) we see that

L̂z =
~
i

∂

∂ φ
(22.9.4)

Using the equations above we can also calculate the whole 3D Laplace oper-
ator, which in Cartesian coordinates is

∆ ≡ ∇2 =
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
(22.9.5)

in spherical polar coordinates. The result:

∆ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (22.9.6)

The sum of the second and third parts contains the operator of the square of
the length of the angular momentum:

1

~2 r2
L̂2 ≡ 1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (22.9.7)

22.10 Russel-Sounders (LS) and jj coupling of angu-

lar momenta. Effects on the electronic struc-

ture of atoms

We have learned about spin-orbit coupling in a hydrogen atom, where the to-
tal angular momentum was the sum of L and S. In other atoms the calculation
of the total angular momentum is harder. Angular momentum coupling in
atoms is of importance in atomic spectroscopy. Angular momentum coupling
of electron spins is of importance in quantum chemistry.

In light atoms (Z < 30) the spins and the orbital momenta are interacting
with themselves, i.e. spin-spin (s− s) and orbit-orbit (L−L) interactions are
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larger than the individual spin-orbit (s − L) interactions, therefore we can
combine the spins into a total spin and the L’s into a total orbital angular
momentum with the formulas

S =
∑
k

Sk, L =
∑
m

Lm

The interaction between the resulting L and S is called Russell–Saunders
coupling or L-S coupling10. The total angular momentum J then can be
calculated as

J = L + S (22.10.1)

This approximation is good as long as no large external magnetic fields are
present, which would decouple these two momenta11. Because the complete
wave function must be antisymmetric not all combinations of L and S are
possible. The ground state term symbol is predicted by Hund’s rules

In heavier atoms with bigger nuclear charges spin-orbit coupling is fre-
quently as large as or larger than the spin-spin or orbit-orbit interactions.
In those cases not the total spins and orbital momenta, but the individual
total angular momenta Jk = Lk + Sk must be combined an the resulting total
angular momentum is

J =
∑
k

Jk =
∑
k

(Lk + Sk)

This is called jj coupling.
The effect of the L-S and jj couplings differ because the interaction energies

between the momenta are proportional to the product of the corresponding
angular momenta and the proportionality factors for the different couplings
are different:

∆EL−S = C1

(∑
k

Lk

) (∑
k

Sk

)
+ {small terms} (22.10.2)

∆Ejj = D1

(∑
k

(Lk + Sk)

) (∑
k

(Lk + Sk)

)
+ {small terms} (22.10.3)

Both of these lead to a complicated energy level structure, because there
are many possible combinations of L and S for the same principal quantum
number n.

10Named after Henry Norris Russell, 1877-1957 a Princeton Astronomer and Frederick Albert Saun-
ders, 1875-1963 a Harvard Physicist and published in Astrophysics Journal, 61, 38, 1925.

11This is called the Paschen-Back effect.
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22.11 Other type of hybridization: sp2 and sp.

We show only two other possible hybrids here: sp2 and sp. In sp2one s and
two p orbitals are combined to create three hybridized wave functions while
the fourth electron goes into the pz state, as shown in Fig. 22.8:

ψ1 =
1√
3

(s+
√

2 px) (22.11.1a)

ψ2 =
1√
3

(
s− 1√

2
px +

√
3

2
py

)
(22.11.1b)

ψ3 =
1√
3

(
s− 1√

2
px −

√
3

2
py

)
(22.11.1c)

ψ4 = pz. (22.11.1d)

This is the hybridization that occurs in ethylene, which is H2C = C H2, where
the double bond between the carbon atoms is formed by one sp2 hybrid from
each carbon atom forming a σ bond and the overlapping pz orbitals form a
π bond, again as a resemblance of the π orbitals in diatomic molecules. The

Figure 22.8: a) the sp2 electron orbitals in carbon, b) σ and c) π bonds in ethylen.
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hydrogen atoms are connected to the remaining sp2 hybrids, therefore this
molecule has a planar structure.

The last one of the hybridization we present here is the sp hybridization,
found for instance in acetylene (HC ≡ CH ). The wave functions are:

ψ1 = px

ψ2 = py

ψ3 = s+ pz

ψ4 = s− pz,

where the last two are the sp hybrids. The triple bond results from over-
lapping sp wave functions (σ bond) and the two px and py bonds creates two
π bonds. The hydrogen atoms are bonded by the remaining sp bonds all
together forming a linear molecule. These bonds are in Fig .22.9.

Figure 22.9: a) The wave functions of the sp hybridization - b) and in the acetylene
molecule.
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22.12 Conjugated molecules

Organic chemistry deals with molecules containing carbon Not only it is an
interesting area in its own right but it also the base of our existence. Organic
molecules contains single and (or) multiple bonds between carbon atoms. We
will discuss a class of molecules in which there is a single bond between two
double bonds (in other words single and multiple bonds alternate between
the carbon atoms), these are called conjugated molecules12. Conjugation is
the overlap of one p-orbital with another across an intervening σ bond13.

Our first example is butadiene (C4H6) which can also be written as

The carbon atoms along the chain are bound by σ bonds using sp2 hybrid
wave functions. The four pz electrons form π bonds along the chain, but in a
special way. Instead of being localized in particular regions of the molecule
as electrons in the σ bonds, these π bonding electrons can move along the
molecule. The electron wave functions in butadiene are in Fig. 22.10

The π electrons introduce a certain rigidity into the molecular structure.
If we now look at the four π wave functions, which, like before are created as
a linear combination of the four pz atomic wave functions. This linear com-
bination must be either symmetric or anti-symmetric relative to the center
of the molecule as shown in Fig. 22.11

Each energy level in Fig. 22.11 a) can accept two electrons with opposite
spins. Molecular orbital ψ1 is of the bonding type for each carbon atoms,
while ψ2 is bonding for the pairs 1–2 and 3–4 and anti-bonding for the pair
2–3. This is the reason for the dip in the probability distribution at the
center of the molecule. Therefore the bond strength is smaller between the
C atoms 2–3 than between the other pairs.

It is easy to generalize these thoughts for other polienes, which are conju-
gate compounds of 2n carbon atoms. The bonding between the carbon atoms

12If there is no other bond between two double bonds the molecule has cumulated bonds, while if the
double bonds are separated by two or more single bonds it is called unconjugated.

13In larger atoms d-orbitals can be involved.
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Figure 22.10: Electron distributon in butadiene. a) localized σ bonds, b) unlocalized π
bonds.

would be written in the classical valence model as ... − −C == C − −C ==
C − −C == .... Again in addition to the σ bonds between pairs of carbon
atoms we have 2n π electrons spread along the molecule. In this case there
are 2n closely spaced energy levels available. These could accomomodate 4n
electrons, but we only have 2n. Hence in the ground state only the lower half
of the energy levels are occupied which leads to an easily excitable system. It
can easily exited e.g. by light with frequency corresponding to ∆E/~. These
molecules absorb light at selected frequencies, i.e. they show color.

Our final example is the conjugate molecule of benzene (C6H6), or graph-
ically
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Figure 22.11: Schematic molecular orbitals for π electrons in butadine. a) The atomic
wave functions when the atoms are far apart. “C1...C4” are the carbon atoms. b) Molec-
ular orbitals, “A” - antisymmetric, “S” - symmetric wave function c) total probability
density along the axis, d) electronic potential energy vs distance.
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As seen in Fig. 22.12 the carbon atoms sit in the vertices of a hexagon and
joind by σ bonds using sp2 hybrid wave functions along each C − C line and
the hydrogen atoms are attached to the remaining sp2 orbitals. There are
also 6 electrons, one from each carbon atom in the pz orbitals, which are
perpendicular to the plane of the molecule. These π electrons move freely
along the hexagon like a closed current loop. This is the reason for the strong
diamagnetism of benzene and other cyclic conjugate molecules.

22.13 Calculating the maximum probability parti-

tion of the Maxwell-Boltzmann distribution

The formula whose maximum we want to calculate is (9.2.3)

P({ni}) =
∏
i

gnii
ni!

(22.13.1)

Usually a function f(n1, n2, ...) may have an extremum were

∂f

∂ ni
= 0 for all values if i

But this is not an ordinary maximum calculation for three reasons: the func-
tion is a product of many factors, it contains a factorial and the maximum is
not unconditional.

To get rid of the first problem let us observe that the logarithm of a
product is a sum and because the logarithm function is monotone f and ln f
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Figure 22.12: Benzene molecular orbitals
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has maximums at the same {ni} position. We can take the logarithm of P as
it never become 0 or negative.

This helps to solve the second problem too because the factorial may be
approximated by the analytical Stirling formula14:

ln(n!) ≈ (n+
1

2
) ln n− n+ ln

√
2 π (22.13.2)

In practice only the following simplified form is used:

ln(n!) ≈ n ln n− n. (22.13.3)

This simplified formula gives results which differs from the real value by a
factor of about 2.5, but even so it is be good enough for our purpose because
the derivative of any additional constant is 0.

The third problem that there are additional conditions can be overcome
by the method of Lagrange multipliers. In this method the conditions are
reordered to one side of the equal sign and the resulting zero valued expres-
sions multiplied by yet unknown constants, called Lagrange multipliers, are
added to the function whose maximum (or minimum) we want to find and we
search the maximum (or minimum) of the result. This will give us equations
for the unknown Lagrange multipliers.

The conditions which must be fulfilled are:

N =
∑
i

ni

E =
∑
i

ni Ei

which can be rearranged:

N −
∑
i

ni = 0 (22.13.4)

E −
∑
i

ni Ei = 0 (22.13.5)

14The Stirling formula is a good approximation for the factorial of large numbers. Even for small ones
like 10 it gives results of the correct order of magnitude:

10! = 3,628,800 ⇒ ln10! = 15.1044125730755153

(10 + 0.5) ∗ ln10− 10 + ln
√

2π = 15.0960820096421524 ⇒ 10! ≈ 3,598,696

the error is only 0.8% of the real vale. For larger numbers the accuracy increases, e.g. ln(100!) =
363.7393756, while the Stirling formula gives 363.73854224, which is only a factor of 1.000834 times
smaller than the real value.
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Using α and β as Lagrange multipliers we must determine the extremum
of the function:

f(n1, n2, ...) = lnP + α

(
N −

∑
i

ni

)
+ β

(
E −

∑
i

ni Ei

)

The logarithm of P is

lnP = ln

(∏
i

gnii
ni!

)
≈
∑
i

(ni ln gi − ni ln ni + ni) (22.13.6)

from which

f(n1, n2, ...) = αN + β E +
∑
i

ni ln gi − ni ln ni + ni − (α + β Ei)ni (22.13.7)

The position of the maximum is determined by

∂f

∂ ni
= ln gi − ln ni − (α + β Ei) = 0, i = 1, 2, ..., n (22.13.8)

The solution is

ln ni = ln gi − (α + β Ei), or

ni = gi e
−α−β Ei (22.13.9)

If we substitute ni back into lnP and assume that the total number of particles
is large: N � 1 we get

lnP = αN + β E (22.13.10)

We are almost done! Introduce a new variable S ≡ kB lnP, express E from this
formula and see how much would E change if both the number of particles
and S would change infinitesimally, i.e. take the difference of both sides:

d E =
1

kB β
dS − α

β
dN (22.13.11)

I hope you recognize this formula has the same the form as the second law
of thermodynamics:

d E = T dS + µ dN (22.13.12)
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if you substitute kB T for β and µ for (−α kB T ), where µ is the chemical
potential. From (22.13.9)

ni = gi e
−α−β Ei = gi e

−Ei−µ
kB T = gi

1

e
−Ei−µ
kB T

Because the total number of particles is

N =
∑
i

ni =
∑
i

gi e
−α−β Ei = e−α

∑
i

gi e
−β Ei

therefore

e−α =
N∑

i

gi e−β Ei

The factor e−α = eµ/kB T is called the absolute activity.
Introducing the Z partition function with

Z =
∑
i

gi e
−β Ei (22.13.13a)

the final result becomes

ni =
N

Z
gi e
−β Ei (22.13.13b)

22.14 Superfluidity in helium 4.

For instance helium-4 (4He) have zero spin, therefore it is a boson15, At
temperatures less than 2.17 K (the lambda point) it becomes a new kind of
fluid, now known as a superfluid 16. Superfluid helium, also called He-II has
many unusual properties, including zero viscosity, the ability to flow without
dissipating energy. This is so because all helium-4 atoms tend to be in the
same quantum state characterized by the magnitude and direction of their
velocity. As a result liquid 4He cannot be kept in an open container as it will
flow along its surface and out of it with a high velocity (≈ 20cm/s). Many
ordinary liquids like alcohol or petroleum creep up solid walls because of
surface tension, but this is constricted by their non-zero viscosity.

We can explain this phenomena on statistical ground:

15The more common helium-3, is a fermion.
16This was discovered in 1938 by Pyotr Kapitsa, John Allen and Don Misener.
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Example 22.1. Let us consider very low temperatures where the average
thermal energy will only allow the occupation of the lowest two quantum
states. In this case the probability of occupation will be larger for the lower
state. If a single boson has a p probability to be in the higher state, then,
because any number of bosons can be excited there with the same proba-
bility, the probability for n bosons being in the higher energy state will be
proportional to pn. The proportionality constant C is determined from the
condition that the sum of the probabilities of all possible distributions must
be 1:

N∑
n=1

C pn = 1

For large N ( or more accurately when N →∞)

∞∑
n=1

C pn = C
∑
n>0

pn = C
p

1− p
= 1 ⇒ C =

1− p
p

from the sum of the infinite geometric series. The average number of par-
ticles in the upper state for large N is then approximately

〈n〉 =
∑
n>0

nC pn = C
p2

(1− p)2
=

p

1− p

Which is negligible compared to N if p � 1, therefore almost all particles
will be in the lowest lying energy state.
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Chapter 23

Solid State Physics

23.1 The origin of van der Waals forces

The fact that the atoms do not possess a constant electric dipole moment
only means that the time averaged dipole moment is 0, but they may have
non vanishing electric dipole moments at any instance. Consider two atoms
at a distance r. Although the average moment is 0 the p1 instantaneous non 0
electric dipole moment of atom 1 creates an E electric field at the other atom.
This will induce a dipole moment in atom 2:

p2 = αE ∼ αp1

r3
(23.1.1)

where α is the polarizability of the atom. The interaction energy between p1

and p2 lowers the total energy of the system by1:

〈p1p2

r3
〉 ∼ αE ∼ 〈αp

2
1

r6
〉 =

α〈p2
1〉

r6
(23.1.2)

Although 〈p1〉(= 〈p2〉) = 0, 〈p2
1〉 6= 0

23.2 Examps of Bravais lattices

Important 23.2.1. Drawings which depict the geometry of the crystals (like
the one in Fig.11.13 usually shows small balls with connecting lines. These
lines neither represent the chemical bonds between the atoms in the crystal
(not even for monatomic lattices) nor do they show the real size of the
atoms.

1Exact theory: must consider the interaction between groups of three or more atoms.
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Figure 23.1: The two possible packing ofspherical atoms in the densest formation

Examples:

• Close packing structures. If we consider a crystal with atoms repre-
sented by solid spheres then there are two different possible choices to
select for the densest packing: we can view both structures as planes
of spheres closely packed in two dimensions, which gives a hexagonal
lattice; for close packing in three dimensions (Fig. 23.1) the successive
planes must be situated so that a sphere in one plane sits at the center of
a triangle formed by three spheres in the previous plane. There are two
ways to form such a stacking of hexagonal close-packed planes: ...AB-
CABC..., and ...ABABAB..., where A, B,C represent the three possible
relative positions of spheres in successive planes according to the rules of
close packing, as illustrated in Fig. 23.1. The first sequence corresponds
to the fcc (face centered cubic) lattice, the second to the hcp (hexago-
nal close packing) lattice. Elements which crystallize in monatomic fcc
are: Ba, Cr, Co, Fe, K, Li, Mo, Na, Nb, Rb, Ta, V, W Elements with
hexagonal close packed (hcp) crystal structure: Be, Cd, Ce, α-Co, Dy,
Er, Gd, He (2K!), Hf, Ho, La, Lu, Mg, Nd, Os, Pr, Re, Ru, Ru, Sc, Tb,
Ti, Tl, Tm, Y, Zn, Zr

• As a special variation of close packing the diamond lattice (or the zincblende
lattice) that consists of two interpenetrating face centered cubic Bravais
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lattice, displaced along the body diagonal of the cubic cell by one quar-
ter the length of the diagonal. (The same lattice therefore may be
considered an fcc lattice with a diatomic basis.) Elements with diamond

Figure 23.2: The diamond structure. The sides of the confining cell is drawn together
with the bonds.

crystal structure: C, Si, Ge, α-Sn (grey)

• Another special variation of the close packing structure is the wurtzite
lattice that consists of two interpenetrating hcp lattices.

• The bcc structure is almost close packing
Elements which crystallize in monatomic bcc are: Ar (at 4.2K!) , Ag,
Al, Au, Ca, Ce, β-Co, Cu, Ir, Kr, La, Ne, Ni, Pb, Pd, Pr, Pt, δ-Pu, Rh,
Sc, Sr, Th, Xe (at 58 K!), Yb

23.3 X-ray diffraction methods Laue-, rotating crys-

tal and Debye-Scherrer methods.

A simple geometrical construction due to Ewald helps to visualize the possi-
bilities.

The Ewald Construction

An incident wave vector will lead to a Bragg reflection if and only if the tip
of the wave vector lies on a plane in the k-space. Since the set of lattice
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Figure 23.3: Left: one atom and its eight neighbors in the body-centered cubic
(bcc) lattice; the size of the spheres representing atoms is chosen so as to make
the neighbors and their distances apparent. Right: a portion of the three-
dimensional bcc lattice; the size of the spheres is chosen so as to indicate the
almost close-packing nature of this lattice.

planes is discrete this condition cannot be fulfilled with an arbitrarily fixed
k, i.e. with arbitrarily fixed X-ray wavelength and arbitrarily fixed incident
direction, so in general there will be no diffraction peaks at all.

6

Figure 23.4: Ewald construction on a plane of the reciprocal lattice

To get a diffraction picture therefore we must vary k by either varying the

393



wavelength or varying the relative orientation of the crystal and the incident
wave.

For elastic scattering the length of k and k′ is the same and their difference
K must be a vector of the reciprocal lattice, therefore both of the endpoints
of K must lie on a point of the reciprocal lattice.

Let us take the incident k vector (Fig. 23.4). Put its origin in any point
of the reciprocal lattice. The endpoint of this vector usually does not point
to any other point of the reciprocal lattice. Draw a sphere with a radius of k
around the endpoint. If there will be any other reciprocal lattice points on
this sphere they all represent a possible Bragg peak. This sphere is called
the Ewald sphere.

This construction suggests some methods to study the structure of crys-
tals.

23.3.1 The Laue Method

The Laue method is mainly used to determine the orientation of large single
crystals whose structure is known. E.g. if the incident direction lies along
a symmetry axis of the crystal, the pattern of spots produced by the Bragg-
reflected rays will have the same symmetry. Because solid state physicist
generally do study known crystal structures, the Laue method is probably
the one of greatest practical interest.

White radiation of wavelengths between λmin and λmax and of a fixed di-
rection is reflected from, or transmitted through, a single crystal of fixed
orientation. For many k’s there will be planes in the crystal which satisfy
the Bragg-condition and produce constructive interference.

The Bragg angle is fixed for every set of planes in the crystal. Each set
of planes picks out and diffracts the particular wavelength from the white
radiation that satisfies the Bragg law for the values of d and Θ involved.
The diffracted beams lie on the surface of imaginary cones and form arrays
of spots. A sheet film perpendicular to the incident beam records these
spots, on curves. Each curve therefore corresponds to a different wavelength.
Experimental variations of the Laue method :

Crystal orientation is determined from the position of the spots. Each spot
can be indexed, i.e. attributed to a particular plane, using special charts. The
Laue technique can also be used to assess crystal perfection from the size and
shape of the spots. If the crystal has been bent or twisted in any way, the
spots become distorted and smeared out.
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6

Figure 23.5: Section of the Ewald sphere for the Laue method. The smaller circle
corresponds to kmin = 2π/λmin, the larger one to kmax = 2π/λmax, and the points within
the shaded area corresponds the reciprocal vectors that gives the observable Bragg peaks.

23.3.2 The Rotating Crystal Method

In the rotating crystal method, a single crystal is mounted with an axis nor-
mal to a monochromatic x-ray beam. A cylindrical film is placed around it
and the crystal is rotated about the chosen axis. As the crystal rotates, sets
of lattice planes will at some point make the correct Bragg angle with the
monochromatic incident beam, and at that point a diffracted beam will be
formed. The reflected beams are located at discrete positions corresponding
to the Laue condition on the surface of imaginary cones. When the film is
laid out flat, the diffraction spots lie on horizontal lines. The main applica-
tion of the rotating crystal method is the determination of unknown crystal
structures.

23.3.3 The Debye-Scherrer Powder method

The powder method is used to determine the value of the lattice parameters
accurately. Lattice parameters are the magnitudes of the unit vectors a1, a2

and a3 which define the unit cell for the crystal. If a monochromatic x-ray
beam is directed at a single crystal, then only one or two diffracted beams
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Figure 23.6: Back-reflection Laue In the back-reflection method, a photographic sheet
film is placed between the x-ray source and the crystal. The beams which are diffracted in
a backward direction are recorded. One side of the cone of Laue reflections is defined by
the transmitted beam. The film intersects the cone, with the diffraction spots generally
lying on an hyperbola.

may result. If the sample consists of some tens of randomly orientated single
crystals, the diffracted beams are seen to lie on the surface of several cones.
The cones may emerge in all directions, forwards and backwards. For a
sample of some hundreds of crystals (i.e. a powdered sample) the diffracted
beams form continuous cones. For every set of crystal planes, by chance,
one or more crystals will be in the correct orientation to give the correct
Bragg angle to satisfy Bragg’s equation. Every crystal plane is thus capable
of diffraction. Each diffraction line is made up of a large number of small
spots, each from a separate crystal. Each spot is so small as to give the
appearance of a continuous line. If the crystal is not ground finely enough,
the diffraction lines appear speckled.
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Figure 23.7: Transmission Laue In the transmission Laue method, the film is placed
behind the crystal to record beams which are transmitted through the crystal. The film
intersects the cone, with the diffraction spots generally lying on an ellipse.

23.4 Classical linear chain models of lattice vibra-

tions

23.4.1 Single atomic linear chain

The equation of motion for the n-th atom inside an N atom linear chain (see
(13.1.1)):

M
d2un
dt2

= β(un+1 − un)− β(un − un−1) = β(un+1 − 2un + un−1) (23.4.1)

Using the Born - von Karman periodic boundary condition:

uN+1 = u1

and the ansatz of
un = uoe

±i(ωt+kna) (23.4.2)

The periodic boundary condition then requires that

e±ikNa = 1
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Figure 23.8: The Rotating Crystal Method

We know that ei 2π n = 1, where n = 0,±1,±2, ... i.e. the possible values for k
are

k =
2π

a

n

N
where n is an integer (23.4.3)

Substituting (23.4.2) into (23.4.1):

−Mω2uoe
±i(ωt+kna) =

β
(
uoe
±i(ωt+k(n+1)a) − 2uoe

±i(ωt+kna) + uoe
±i(ωt+k(n−1)a)

)
canceling the common uoe

±i(ωt+kna) factor:

−Mω2 = β
(
eika + e−ika − 2

)
(Both sign selection would result in this formula.) So the final result is:

ω(k) = 2

√
β

M
sin

1

2
k a (23.4.4)

The general solution for the time dependent position excursion of the n-th
atom will be a linear combination of solutions of the form of (23.4.2):

un(t) =
∑
k

(
ξke

i(ωt+kna) + ξ∗ke
−i(ωt+kna)

)
(23.4.5)

This form ensures the reality of the solution and the 2 N parameters, required
for the general solution of N 2nd order differential equations, are the real
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Figure 23.9: The Powder MethodA circle of film is used to record the diffraction pattern
as shown. Each cone intersects the film giving diffraction lines. The lines are seen as
arcs on the film.

and imaginary parts of ξk. Because the summation goes over all positive and
negative values of k (23.4.5) may be rewritten:

un(t) =

π/a∑
k=−π/a

(
ξke

i(ωt+kna) + ξ∗ke
−i(ωt+kna)

)
=

=

+π/a∑
k=−π/a

ξke
i(ωt+kna) +

−π/a∑
k=+π/a

ξ∗−ke
−i(ωt−kna)

If ξ∗−k = ξk then

−π/a∑
k=+π/a

ξ∗−ke
−i(ωt−kna) =

+π/a∑
k=−π/a

ξ∗−ke
−i(ωt−kna),

therefore

un(t) =
∑
k

(
ξke

iωteikna + ξ∗−ke
−iωte−ikna

)
=

=
∑
k

(
ξke

iωt + ξ∗−ke
−iωt) eikna

Introducing new coefficients with

χ∗k(t) ≡ ξk
(
eiωt + e−iωt

)
un(t) will be real and may be written in the form

un(t) =
∑
k

χk(t)e
ikna (23.4.6)

399



23.4.2 Diatomic linear chain.

The equations for a diatomic linear chain with different mass atoms are

M1
d2un
dt2

= β ((vn − un)− (un − vn−1)) (23.4.7)

M2
d2vn
dt2

= β ((un+1 − vn)− (vn − un)) (23.4.8)

Try the solutions in the form

un = uke
i(ωt+kna) (23.4.9)

vn = vke
i(ωt+kna) (23.4.10)

Substituting into (23.4.7) and (23.4.8) then rearranging (to the right side)
and canceling the common ei(ωt+kna) factors, we arrive at the following pair of
equations:

0 = (M1ω
2 − 2β)uk + β(1 + e−ika)vk (23.4.11)

0 = β(1 + eika)uk + (M2ω
2 − 2β)vk (23.4.12)

Or in matrix form : [
M1ω

2 − 2β β(1 + e−ika)
β(1 + eika) M2ω

2 − 2β

] [
uk
vk

]
= 0 (23.4.13)

Because this is a homogenous pair of equations a solution only exists when
the determinant of the matrix is 0. This gives a quadratic equation for ω2 :

(ω2M1 − 2β)(ω2M2 − 2β)− β2(1 + e−ika)(1 + eika) =0

M1M2ω
4 − 2β(M1 +M2)ω2 + 4β2 − 2β2(1 + coska) =0;

Using the trigonometric identities

4β2 − 2β2(1 + coska) = 2β2(1− coska) = 4β2sin2(ka/2)

= 4β2sin2kb

We must solve this quadratic equation for ω±.

ω2
± =

β

M1M2

(
M1 +M2 ±

√
(M1 +M2)2 − 4M1M2sin2kb

)
(where a = 2b)

(23.4.14)
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23.4.3 3D Linear model of lattice vibrations

Let us denote the displacement of the j-th atom of the basis at the Bravais
vector R with uj(R). Then

U ≡ Etotal pot. energy = U(u1(R1),u2(R1), ...,un(R1),

u1(R2),u2(R2), ...,un(R2),

...

u1(RN),u2(RN), ...,un(RN))

U = uo +
∑

R,R′,j,j′

1

2
uj(R)Dj,j′(R,R

′)uj′(R
′) (23.4.15)

where uo is the potential energy when all atoms are in their equilibrium
position. Fortunately we know about the properties of tensor D of the spring
constants:

• It must have translational symmetry, therefore Dj,j′(R,R
′) may

only depend on the distance between sites R and R′:

Dj,j′(R,R
′) = Dj,j′(R−R′)

• Dj,j′(R,R
′) must be real and symmetric:

Dj,j′(R,R
′) = Dj′,j(R

′ −R)

• When the crystal is translated as a whole the total potential
energy must remain the same:∑

R,R′,j,j′

Dj,j′(R,R
′) = 0

Even with this knowledge it is easy to see that solving the equations in 3D
is much more complicated then it was in the 1D case. We will not solve the
equations in 3D, but will only discuss the results.

23.5 Mathematical note: From summation to inte-

gration

Summation over the allowed values of k may be approximated with integrals
if the physical quantity used does not vary appreciably over distances of order
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2π/L in k-space. Because the d3k(≡ Vk) volume of k-space per allowed k in 3D
is given by (14.3.6) Vk = 8π3/V :∑

k

F (k) =
∑
k

F (k)

(
V

8π3

)
d3k =

V

8π3

∑
k

F (k)d3k

in the limit d3k→ 0 (i.e. V →∞) for unit volume

lim
V→∞

1

V

∑
k

F (k) =
1

8π3

∫
k

F (k)d3k (23.5.1)

Usually when we apply (23.5.1) to finite, but macroscopic, systems we
assume that the density at the left hand side differs only negligibly from its
infinite volume limit (e.g it is the same for a crystal of 1 cm3 and for another
one of 2 cm3)

23.6 Derivation of the Bloch function

Let us determine the form of the wave function of an electron in a (weak)
periodic potential.

In 1D:
V (x+R) = V (x) and ψ(x+R) = ψ(x)

R = na, n = 1, 2, ....
For n = 1:

|ψ(x+ a)|2 = |ψ(x)|2

ψ(x+ a) = C(a)ψ(x) therefore

ψ(x+ 2a) = C(a)ψ(x+ a) = C(a)C(a)ψ(x) =

= C2(a)ψ(x)

...

ψ(x+ la) = C(a)ψ
(
x+ (l − 1)a

)
= C(a)lψ(x) (23.6.1)

...

Again, using periodic boundary conditions

ψ(x+Na) = ψ(x)⇒ ψ(x+Na) = CN(a)ψ(x) (23.6.2)
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i.e.
CN(a) = 1 (23.6.3)

C(a) =
N
√

1 = ei2π
n
N n = 1, 2, ..., N (23.6.4)

C(a) = eika where k ≡ 2π

Na
n, n = 1, 2, ..., N (23.6.5)

The number n has a maximum, because there are only N different unit
roots. For n > N the roots are the same as the ones already used, therefore
k also have a maximum: kmax = 2π

a

k is a vector of the reciprocal space, but it is a primitive vector of the
reciprocal lattice only at its maximum.

k ∈ [0, 2π/a]

Instead of the range [0, 2π/a] from (23.6.5) we generally use the equivalent
[−π/a, π/a] range (the first Brillouin zone).

From (23.6.3) and (23.6.1)

ψ(x) = ψ(x+ na)e−ikna (23.6.6)

Multiply the right hand side of (23.6.5) with e−ikxeikx = 1

ψ(x) = ψ(x+ na)e−ik(x+na)eikx (23.6.7)

which may be written in the form:

ψ(x) = u(x)eikx where u(x+ na) = u(x) (23.6.8)

23.7 Kinetic energy of a Bloch electron

Ekin =

∫
ψ∗

p̂2

2me

ψdx =

=

∫
ψ∗
(
− ~2

2me

d2

dx2

)
ψdx

= − ~2

2me

∫
ψ∗

d2

dx2
ψdx

= − ~2

2me

∫
u∗(x)e−ikx

d2

dx2
u(x)eikxdx
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= − ~2

2me

∫
u∗(x)e−ikx

d

dx
(
(
u′(x) + iku(x)

)
eikxdx

= − ~2

2me

∫
u∗(x)e−ikx

(
u′′(x) + iku′(x) + iku′(x)− k2u(x)

)
eikxdx

= − ~2

2me

∫
u∗(x)

(
u′′(x) + 2iku′(x)

)
dx− ~2k2

2me

∫
u∗(x)u(x)dx

=
~2k2

2me

− ~2

2me

∫
u∗(x)

(
u′′(x) + 2iku′(x)

)
dx

Ekin(k) =
~2k2

2me

+ Ecryst(k)

23.8 Tight-binding Bloch function

One dimensional calculation for a linear chain of atoms with a lattice constant
a:

Let the atomic orbital (wave function) of a localized electron at the free
atom be ϕ(x) and create a Bloch function using a linear combination of such
functions each localized around an atom2:

ψ(x) =
N−1∑
n=0

ei knaϕ(x− na) (23.8.1)

This can be written as

ψ(x) = ei kx
N−1∑
n=0

e−ik(x−na)ϕ(x− na)︸ ︷︷ ︸
u(x)

(23.8.2)

= u(x)ei kx (23.8.3)

2The wave functions ϕ(x) may be the same as the actual atomic wave functions ϕn,l,m(x), but any
localized functions may be used instead.
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This is a Bloch function, because u(x) is a lattice periodic function:

u(x) =
N−1∑
n=0

e−ik(x−na)ϕ(x− na)

u(x+ a) =
N−1∑
n=0

e−ik
(
x−(n−1)a

)
ϕ
(
x− (n− 1)a

)
=

N−2∑
l=−1

e−ik(x−la)ϕ(x− la)

= e−ik(x+a)ϕ(x+ a)

+
N−1∑
l=1

e−ik(x−la)ϕ(x− la)

− e−ik
(
x−(N−1)a

)
ϕ
(
x− (N − 1)a

)
After reordering:

u(x+ a) = u(x) + e−ik(x+a)ϕ(x+ a) (23.8.4)

− e−ik
(
x−(N−1)a

)
ϕ
(
x− (N − 1)a

)
(23.8.5)

Even without using the periodic boundary condition we can argue that when
N is very large (∼ 1024) then the sum (that is u(x)) in (23.8.5) is much larger
than the two terms with opposite signs outside it, therefore

u(x+ a) = u(x)

To get the width of the band calculate the total energy:

E =

∫
ψ∗Hψdx∫
ψ∗ψdx

(23.8.6)

where the Hamiltonian is written as the sum of the atomic Hamiltonians and
a small perturbing periodic potential:

H =
∑
n

Hatomic(x− na) + ∆Vp(x)

Here

Hatomic = − ~2

2me

d2

dx2
+ Vatomic(x)

and ∆Vp(x+a) = ∆Vp(x) is the periodic perturbing potential due to the overlap
of wave functions.
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For typographic reasons we will denote the numerator and denominator
of (23.8.6) with N and D respectively.

The denominator of (23.8.6)

D :=

∫ (N−1∑
n=0

ei kna ϕ(x− na)

)∗
·

(
N−1∑
m=0

ei kma ϕ(x−ma)

)
dx =

=
N−1∑
n,m=0

∫ (
e−i kna ϕ∗(x− na)

)
·
(
ei kma ϕ(x−ma)

)
dx =

=
N−1∑
n,m=0

∫
ei k(m−n)a ϕ∗(x− na)ϕ(x−ma) dx

The summation in D can be split into sums containing integrals referring to
the same atom (D0{n}), to nearest neighbors (D1{n,m}), to second nearest
neighbors (D2{n,m}), etc.

D =
∑
n,m=0
n=m

I0{n,m}+ e±i ka
∑
n,m=0
n=m±1

I1{n, n± 1}+ e±i 2ka
∑
n,m=0
n=m±2

I2{n, n± 2}+ ...

(23.8.7)

Similarly the numerator of (23.8.6)∫ (N−1∑
n=0

e−ikna ϕ∗(x− na)

)(∑
l

Hatomic(x− la) + ∆Vp(x)

)(
N−1∑
m=0

ei kma ϕ(x−ma)

)
dx

can also be split into similar sub-sums of n-th neighbor integrals. These
will symbolically be denoted as NH

0 {n}, NH
1 {n,m}, NH

2 {n,m}, etc and N V
0 {n},

N V
1 {n,m}, N V

2 {n,m}, etc.
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N =
N−1∑

n,m,l=0

∫
e−i kna ϕ∗(x− na)Hatomic(x− la) ei kma ϕ(x−ma)dx+

+
N−1∑
n,m=0

∫
e−i kna ϕ∗(x− na) ∆Vp(x) ei kma ϕ(x−ma)dx =

= ei k(m−n)a

N−1∑
n,m,l=0

∫
ϕ∗(x− na)Hatomic(x− la) ei kma ϕ(x−ma)dx+

+ ei k(m−n)a

N−1∑
n,m=0

∫
ϕ∗(x− na) ∆Vp(x)ϕ(x−ma)dx =

=
N−1∑

n,m,l=0
n=m=l

NH
0 {n}+ e±i ka

N−1∑
n,m,l=0
n=m±1
n=l±1

NH
1 {n,m}+ ...+

+
N−1∑
n,m=0
n=m

N V
0 {n}+ e±i ka

N−1∑
n,m=0
n=m±1

N V
1 {n,m}+ e±i ka

N−1∑
n,m=0
n=m±2

N V
2 {n,m}

The sums contain integrals of functions localized around the n-th and m-
th atom and the integrals in the first sum additionally contain the atomic
Hamiltonian of the l-th atom.

If we assume that only wave functions centered on the same or neighboring
atoms can overlap then the only non zero terms will be D0{n}, D1{n, n ± 1},
NH

0 {n}, ... , N V
0 {n} and , N V

1 {n, n± 1}.
From these if the ϕ functions are normalized then D0{n} = 1. NH

0 {n} is the
atomic energy.

N =
∑
n

Eatomic,n +
∑
n

N V
0 {n}+ ei ka

∑
n

N V
1 {n, n+ 1}+ e−i ka

∑
n

N V
1 {n, n− 1} =

= Eatomic +
∑
n

N V
0 {n}+

(
ei ka + e−i ka

)∑
n

N V
1 {n, n+ 1}

D = 1 + ei ka
∑
n

D1{n, n+ 1}+ e−i ka
∑
n

D1{n, n− 1} =

= 1 +
(
ei ka + e−i ka

)∑
n

D1{n, n+ 1}

where we used that integrals N V
1 {n, n + 1} = N V

1 {n, n − 1}, and D1{n, n + 1} =
D1{n, n− 1}.
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Introducing the notations α ≡
∑

nN V
0 {n} and β ≡

∑
nN V

0 {n, n+ 1} and
observing that the second term in D is very small, therefore

1/D ≈ (1− (small number))

we arrive to the energy formula:

E =
N
D
≈ Eatomic − α− 2 β cos ka (23.8.8)

23.9 The explanation of the mass action law for semi-

conductors

Let us again examine an n-type semiconductor. At temperature T the con-
duction electron concentration is

nc(T ) = ndc(T ) + ni(T )

But what is the hole concentration pv(T ) in the valence band?
In thermal equilibrium the generation and the recombination of elect-

ron-hole pairs are in equilibrium. When donors are added to an intrinsic
semiconductor the additional electrons from ionized donors may not only be
excited to the conduction band but they can also recombine with holes in the
valence band so the recombination rate for holes will increase, therefore the
number of movable holes will decrease. At the same time the number of con-
duction electrons will also increase, because although some of the additional
electrons may recombine with holes the remaining donor electrons will still
go the conduction band. And as we saw the number of electrons due to the
dopants are much higher than the intrinsic electron or hole concentration
therefore the decrement in the concentration of dopant supplied electrons
due to the electron-hole recombination is negligible while the effect the re-
combination has on the hole concentration is not. As a consequence in n-type
semiconductors the electron concentration is higher while hole concentration
is lower compared to those in an intrinsic semiconductor. When the donor
concentration is high enough to be useful (but still much smaller than the
concentration of the constituents of the semiconductor) the product nc · pv
will approximately be the same as in an intrinsic semiconductor. The higher
the dopant concentration (up to a point) the better is this approximation.

For p-type semiconductors the argument would be similar.
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23.10 Fabrication of Si based integrated circuits

It starts with the creation of semiconductor wafers from extremely pure
(only a few parts per million of impurities) Si. (The following section is
mainly from Wikipedia.)

A typical wafer is made out of extremely pure silicon that is grown into
mono-crystalline cylindrical ingots (boules) up to 300 mm (slightly less than
12 inches) in diameter using the Czochralski process. These ingots are then
sliced into wafers about 0.75 mm thick and polished to obtain a very regular
and flat surface.

Czochralski process: High-purity, semiconductor-grade silicon (only a few
parts per million of impurities) is melted in a crucible, usually made of quartz.
Dopant impurity atoms such as boron or phosphorus can be added to the
molten silicon in precise amounts to dope the silicon, thus changing it into
p-type or n-type silicon. This influences the electronic properties of the sili-
con. A precisely oriented rod-mounted seed crystal is dipped into the molten
silicon. The seed crystal’s rod is slowly pulled upwards and rotated simulta-
neously. By precisely controlling the temperature gradients, rate of pulling
and speed of rotation, it is possible to extract a large, single-crystal, cylin-
drical ingot from the melt. Occurrence of unwanted instabilities in the melt
can be avoided by investigating and visualizing the temperature and velocity
fields during the crystal growth process. This process is normally performed
in an inert atmosphere, such as argon, in an inert chamber, such as quartz.

Once the wafers are prepared, many process steps are necessary to produce
the desired semiconductor integrated circuit. In general, the steps can be
grouped into two major parts:

• Front-end-of-line (FEOL) processing : refers to the formation of the
transistors directly in the silicon. This includes:

– Deposition is any process that grows, coats, or otherwise transfers a
material onto the wafer. Available technologies consist of physical
vapor deposition (PVD), chemical vapor deposition (CVD), elec-
trochemical deposition (ECD), molecular beam epitaxy (MBE) and
more recently, atomic layer deposition (ALD) among others.

– Removal processes are those that remove material from the wafer
either in bulk or selectively and consist primarily of etch processes,
either wet etching or dry etching. Chemical-mechanical planariza-
tion (CMP) is also a removal process used between levels.
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– Patterning covers the series of processes that shape or alter the ex-
isting shape of the deposited materials and is generally referred to
as lithography. For example, in conventional lithography, the wafer
is coated with a chemical called a photoresist. The photoresist is
exposed by a stepper, a machine that focuses, aligns, and moves
the mask, exposing select portions of the wafer to short wavelength
light. The unexposed regions are washed away by a developer solu-
tion. After etching or other processing, the remaining photoresist
is removed by plasma ashing.

– Modification of electrical properties has historically consisted of
doping transistor sources and drains originally by diffusion furnaces
and later by ion implantation. These doping processes are followed
by furnace anneal or in advanced devices, by rapid thermal anneal
(RTA) which serve to activate the implanted dopants. Modification
of electrical properties now also extends to reduction of dielectric
constant in low-k insulating materials via exposure to ultraviolet
light in UV processing (UVP).

Modern chips (2011) have up to eleven metal levels produced in over
300 sequenced processing steps.

• Back-end-of-line (BEOL) processing : refers to the formation of inter-
connections with external circuitry.

23.11 Determination of nc(x) and pv(x) in a p-n struc-

ture

Quantitatively for non-degenerate semiconductors:

nc(x) = Nc(T )e−(Ec−eϕ(x)−EF )/kBT

pv(x) = Pv(T )e−(EF+eϕ(x)−Ev)/kBT
(23.11.1)

Far from the space charge region (for simplicity at ±∞3) and supposing the
donor and acceptor atoms are all completely ionized in the whole crystal:

nc(∞) = Nc(T )e−(Ec−eϕ(∞)−EF )/kBT = Nd

pv(−∞) = Pv(T )e−(EF+eϕ(−∞)−Ev)/kBT = Na

(23.11.2)

3Because there are no free charge carriers there almost the whole of this potential difference is realized
over the depletion region therefore this assumption will be valid for even small semiconductor samples.
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From this the total potential difference between the two sides is

e∆ϕ = (Ec − Ev)︸ ︷︷ ︸
Eg

+ kBT ln

(
NdNa

Nc Pv

)
(23.11.3)

But from (16.1.17)

ln(n2
i ) = ln(Nc Pv)− Eg/kBT ⇒ −kBT ln(Nc Pv)

= −Eg − kBT ln(n2
i )

e∆ϕ = kBT ln

(
NdNa

n2
i (T )

)
(23.11.4)

The value of ϕ(x) can be determined from the Poisson equation. In Si
units:

−d
2ϕ(x)

dx2
=
ρ(x)

ε
where

ρ(x) = e [Nd(x)−Na(x) + pv(x)− nc(x)]
(23.11.5)

Substituting (23.11.2) into (23.11.1)

nc(x) = Nde
−e(ϕ(∞)−ϕ(x))/kBT

pv(x) = Nae
−e(ϕ(x)−ϕ(−∞))/kBT

(23.11.6)

This equation can only be solved numerically, because the unknown function
appears at the right hand side in the exponent. However a quite reasonable
assumption is that the total change in ϕ(x) is of order Eg � kBT . If the ∆ϕ
change occurs in the interval −dp < x < dn (dn + dp is the width of the space
charge or depletion region) then nc = Nd and pv = Na outside this interval,
which means ρ = 0. Within this region, except quite near to the boundaries,
eϕ differs by many kBT from its asymptotic value, so nc � Nd on the n side
and pv � Na at the p side:

ρ =


0 x < dp

e (Nd(x)−Na(x)) −dp < x < dn

0 x > dn

23.12 Temperature dependent resistivity of materi-

als

Scattering on crystal defects

Crystal defects destroy the periodicity of the crystal potential locally, so the
Bloch model will break down there. This effect will be independent of the
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temperature, because the scattering cross section of crystal defects:

σs,def = const.

is independent of the temperature4 Because the amplitude of the lattice vi-
brations will decrease with decreasing temperatures this will be the dominant
scattering mechanism at very low temperatures.

Scattering on small amplitude lattice vibrations

Far from the melting point lattice vibrations increase the probability of a
scattering, which may be taken into account as the increase of the scattering
cross section of ions, which depend on the amplitude of the lattice vibrations:

σs,vib ∝ A2

A itself is proportional to the energy Evib of the lattice vibrations (See section
13.3):

Evib =
8πhν3

c3

1

ehν/kBT − 1

Not too near to T = 0K where ehν/kBT is near to 1

Evib ≈
8πhν3

c3

kBT

hν

therefore
σs,vib = const T

For the resultant τ then

1

τ
=

1

τdef
+

1

τvib
= ns,def vF σs,def + ns,vib vF σs,vib

According to Eq.(16.1.1), the conductivity:

σ =
ne2τ

meff (EF )

The resistivity

ρ =
1

σ
=
meff (EF )

ne2

1

τ
=
meff (EF )

ne2
(ns,def vF σs,def + ns,vib vF σs,vib)

Because of the temperature dependence of the cross sections

ρ = A+B T

4Strictly speaking this formula is not exactly true as the equilibrium vacancy concentration does
depend somewhat on the temperature.
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23.13 The explanation of the color of gold

The color of metals such as silver and gold is mainly due to absorption of light
when a d electron jumps to an s orbital. For silver, the 4d → 5s transition
has an energy corresponding to ultraviolet light, so frequencies in the visible
band are not absorbed. With all visible frequencies reflected equally, silver
has no color of its own; it’s silvery.

Silver and aluminum powders appear black because the white light that
has been re-emitted is absorbed by nearby grains of powder and no light
reaches the eye.

But to explain the yellow color of gold we need to turn to an unexpected
direction: toward special relativity!

With an atomic number of 79, gold is in the last row of the periodic
table containing stable elements, and only four stable elements (mercury,
thallium, lead, and bismuth) have greater atomic number. With 79 protons
in its nucleus, the electrons of the gold atom are subjected to an intense
electrostatic attraction. Using the näıve classical Bohr model of the atom
for the moment, electrons in the 1 s orbital, closest to the nucleus, would
have to orbit with a velocity v of 1.6 · 108 metres per second to have sufficient
kinetic energy to avoid falling into the nucleus. This is more than half the
speed of light, which, according to Einstein’s equation increases the electron’s
momentum (older terminology its mass) by about 20%.

Quantum mechanics replaces the Bohr orbits with a probability distribu-
tion of the electron’s position, with the Bohr orbit radius interpreted as the
distance from the nucleus where the peak probability occurs. The relativistic
increase in mass of the electron causes a relativistic contraction of its orbit
because, as the electron’s mass increases, the radius of an orbit with constant
angular momentum shrinks proportionately.

So in gold, relativistic contraction of the s orbitals causes their energy
levels to shift closer to those of the d orbitals (which are less affected by
relativity). This, in turn, shifts the light absorption (primarily due to the
5d → 6s transition) from the ultraviolet down into the lower energy and
frequency blue visual range. A substance which absorbs blue light will reflect
the rest of the spectrum: the reds and greens which, combined, result in the
yellowish hue we call golden5.

5Special relativity is also responsible for gold’s resistance to tarnishing and other chemical reactions.
Chemistry is mostly concerned with the electrons in the outermost orbitals. With a single 6 s electron,
you might expect gold to be highly reactive; after all, cæsium has the same 6 s1 outer shell, and it is the
most alkaline of natural elements: it explodes if dropped in water, and even reacts with ice. Gold’s 6 s
orbital, however, is relativistically contracted toward the nucleus, and its electron has a high probability
to be among the electrons of the filled inner shells. This, along with the stronger electrostatic attraction
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23.14 Derivation of the Larmor formula

Figure 23.10: Principle of the Larmor precession

From classical mechanics:
dL

dt
= Γ

where Γ denotes the torque.

dL

dt
= pm ×B = γ · L×B

i.e. L changes in a direction perpendicular to both itself and B, so its endpoint
will rotate around B. Let us select the z-axis parallel with the direction of B.

of the 79 protons in the nucleus, reduce the atomic radius of gold to 135 picometres compared to 260
picometres for cæsium with its 55 protons and electrons – the gold atom is almost 50% heavier, yet
only a little over half the size of cæsium. Only the most reactive substances can tug gold’s 6 s1 electron
out from where it’s hiding among the others, and hence not only the color of gold, but its immunity
from tarnishing and corrosion are consequences of special relativity. See http://www.fourmilab.ch/

documents/golden_glow/
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The trajectory of the endpoint of L is a circle whose plane is perpendicular
to B (Fig. 23.10) and if we denote the angle between L and B with θ, then
because ∣∣∣∣dL

d t

∣∣∣∣ = |γ · L×B|

both the derivative and the vector product contain the sine of the θ angle:∣∣∣∣dL

d t

∣∣∣∣ =
d (L · sin θ · ϕ)

dt
= L · sin θ · dϕ

d t

|γ · L×B| = γ · L ·Bsin θ

therefore

L · sin θ · dϕ
d t

= |γ| · L ·Bsin θ

from here:

ω ≡ dϕ

d t
= |γ|B = g

eB

2me

23.15 Calculating the Pauli paramagnetic moment

of metals

Orient the z-axis in the direction of B then at 0K

n↑↑ =
1

2

∫ EF
−µS B

g(E + µS B)

e−(E−EF )/kBT + 1
dE (23.15.1)

n↑↓ =
1

2

∫ EF
µS B

g(E − µS B)

e−(E−EF )/kBT + 1
dE (23.15.2)

Here g(E) is the (14.3.10) free electron density of state function:

g(E) =
8π
√

2m3
e

h3

√
E

Substituting a new variable E ≡ E ± µS B into the integrals the lower limit of
both integral become 0, while the upper limits change to EF ± µSB.

n↑↑ =
1

2

∫ EF+µS B

0

g(E)

e−(E−EF+µS B)/kBT + 1
dE

n↑↓ =
1

2

∫ EF−µS B
0

g(E)

e−(E−EF−µS B)/kBT + 1
dE
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If µS B � EF then the µS B is negligible in the exponent. If we denote the
integral

1

2

∫ EF
0

g(E)

e−(E−EF−µS B)/kBT + 1
dE

with I then

n↑↑ = I +
1

2

∫ EF+µS B

EF

g(E)

e−(E−EF+µS B)/kBT + 1
dE

n↑↓ = I +
1

2

∫ EF−µS B
EF

g(E)

e−(E−EF−µS B)/kBT + 1
dE

In the limit of kB T � EF

n↑↑ = I +
1

2

∫ EF+µS B

EF
g(E)dE ≈ I +

g(EF )µSB

2

n↑↓ = I +
1

2

∫ EF−µS B
EF

g(E)dE ≈ I − g(EF )µSB

2

The resulting magnetic moment (the magnetic polarization) is

M = µS · (n↑↑ − n↑↓) = g(EF )µ2
SB (23.15.3)

Substituting g(EF ) from (14.3.11)

M = µS · (n↑↑ − n↑↓) = µ2
Sg(EF )B =

3ntotµ
2
S

2 e EF
B (23.15.4)

where ntot is the electron density in the metal and the paramagnetic suscep-
tibility of the electron gas is

23.16 Derivation of the orientation polarization

From statistical physics the probability PE that a molecule gains

Epol = −pe E = −peE cos θ

energy is

PE(θ) =
1

Z
e−Epol/kBT =

1

Z
epe E cos θ/kBT

where Z is the sum of states:

Z =
∑

unit volume
all polar angles

e−Epol/kBT =

=

∫ π

0

∫ 2π

0

epe E cos θ/kBT sinθ dϕ d θ
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Because no term depends on ϕ the integral by ϕ gives just a 2π factor:

Z = 2π

∫ π

0

epe E cos θ/kBT sinθ d θ

Substituting α ≡ peE/kBT and x ≡ α cos θ6

d x = α(−sin θ) d θ ⇒ sin θ d θ = −d x
α

Z = −2 π

α

∫ −α
α

ex d x =
2π

α
[ ex ]α−α

=
4π

α

[
eα − e−α

2

]
=

4π

α
sinhα

For small values of alpha (i.e. when peE � kBT ) sinhα ≈ α from which Z = 4π.
The number of those dipoles whose angle to the z-axis is θ is

n(θ) = N PE(θ) =
N

Z
epe E cos θ/kBT

Summing up n(θ) naturally gives N.

The polarization density vector is the average polarization dipole moment
of the unit volume. Because adding pe(θ) vectors with opposite ϕ polar an-
gles the components perpendicular to the z axis cancel each outher out the
resulting vector will point into direction z. The z component of the moment
is pe cos θ

P =
∑

unit volume
all θ andϕ

pe cos θ · PE(θ) =

=
N

Z

∫ π

0

∫ 2π

0

n(θ)( pe cos θ) sin θ dϕ dθ =

=
2 π N

Z

∫ π

0

n(θ) pe cos θ sin θ dθ =

=
2 π N

Z

∫ π

0

e−pe E cos θ/kBT cos θ sin θd θ

6In the following we use the hyperbolic sine and cosine and cot functions, which are defined by

sinhα =
eα − e−α

2
, coshα =

eα + e−α

2
, , cothα =

coshα

sinhα
=
eα − e−α

eα + e−α
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Using the same substitutions as before and noting that pe is independent of
θ this becomes:

P =
2 π N pe
α2 Z

∫ α

−α
x ex d x

Integrating by parts

P =
N 2 π pe
Z α2

[(x− 1) ex]α−α =

=
N 2 π pe
Z α2

(
(α− 1)eα − (−α− 1) e−α

)
=

=
N 2 π pe
Z α2

(2α coshα− 2 sinhα) =

Using the value of Z calculated above yields:

P =
N 2π pe
α2 2 (α coshα− sinhα)

N 2π
α

2 sinhα
=

= N pe

(
coth α− 1

α

)
We expect that in the high E field limit (α → ∞) all dipoles are turned into
the direction of the field and in the small field limit (α → 0) we expect a
polarization density proportional to the field7

lim
α→∞

P = N pe · (1− 0) = N pe high field limit

lim
α→0
P =

N pe α

3
=

N p2
e

3 kBT
E low field limit

The latter one corresponds to (20.2.1).

23.17 Determination of the local electric field Eloc

The E field of a uniformly polarized sphere can be calculated using the def-
inition of P, the superposition principle and Gauss’s law. The polarization

7The first case is trivial and the second one requires the use of the Taylor series of coth, which – as
it is easy to check using e.g. the Taylor series of the exponential function

cothα =
1

α
+
α

3
− x5

45
+

2x5

945
+ . . .
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occurs, because the charge center of the positive and negative charge densi-
ties (±ρ) do not coincide, there is a distance l between them. According to
the superposition principle

P = ρ l

Of course neither ρ, nor l is known. We know however that l very small. So
we may consider both the positive and negative charge density distributions
are spherical with the same radius as that of the sphere’s R. The field of a
uniformly charged sphere is easy to calculate using Gauss’s law, which gives:

E(r) =


ρ r

3 εo
if r ≥ R

ρR3

3 εo

1

r2
if r ≤ R

Instead of adding up the field strengths directly it will be simpler to first
calculate the ϕ(r) potentials by integrating the field strengths, then adding
the potentials of the two charged spheres together and finally calculate the
electric field by derivation. The connection between E and ϕ is:

E = −gradϕ and ϕ =

∫
Ed3r

From the second formula:

ϕ(r) = −
∫ R

∞
E(r′)dr′ −

∫ r

R

E(r′)dr′ =

=

[
ρR3

3 εo

1

r2

]R
∞
−
[
ρ r2

3 εo

]r
R

=

=
ρ

2 εo

(
R2 − r2

3

)
The difference between the positive and negative charge distributions ap-

pears in the sign of ρ and in the fact that two distinct r± must be used in
place of r in the formula above. The resulting potential:

ϕ = ϕ+(r) + ϕ−(r) =
ρ

2 · 3 · εo
(
−r2

+ + r2
−
)

=

Observing that the difference of the square of the length of the two r± vectors
may be written as a product containing the vectors:

ϕ =
ρ

2 · 3 · εo
(r− − r+) (r− + r+)
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Figure 23.11:

r−− r+ = l. Using that l� r it follows that r− ≈ r+ ≈ r, therefore r−+ r+ ≈ 2 r:

ϕ =
ρ l r

3 εo
=

P r

3 εo

The resulting Eplug field then

Eplug = −gradϕ = − P

3 εo
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