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Chapter 1

Introduction

In this chapter we introduce the problem of regression function estimation and describe
important properties of regression estimates. Furthermore, provide an overview of vari-
ous approaches to nonparametric regression estimates.

1.1 Why to Estimate a Regression Function?
In regression analysis one considers a random vector (X, Y ), where X is Rd-valued and
Y is R-valued, and one is interested how the value of the so-called response variable Y
depends on the value of the observation vector X. This means that one wants to find a
(measurable) function f : Rd → R, such that f(X) is a “good approximation of Y ,” that
is, f(X) should be close to Y in some sense, which is equivalent to making |f(X) − Y |
“small.” Since X and Y are random vectors, |f(X) − Y | is random as well, therefore it
is not clear what “small |f(X)−Y |” means. We can resolve this problem by introducing
the so-called L2 risk or mean squared error of f ,

E|f(X)− Y |2,

and requiring it to be as small as possible.
There are two reasons for considering the L2 risk. First, as we will see in the sequel,

this simplifies the mathematical treatment of the whole problem. For example, as is
shown below, the function which minimizes the L2 risk can be derived explicitly. Second,
and more important, trying to minimize the L2 risk leads naturally to estimates which
can be computed rapidly.

So we are interested in a (measurable) function m∗ : Rd → R such that

E|m∗(X)− Y |2 = min
f :Rd→R

E|f(X)− Y |2.
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Such a function can be obtained explicitly as follows. Let

m(x) = E{Y |X = x}

be the regression function. We will show that the regression function minimizes the L2

risk. Indeed, for an arbitrary f : Rd → R, one has

E|f(X)− Y |2 = E|f(X)−m(X) +m(X)− Y |2

= E|f(X)−m(X)|2 + E|m(X)− Y |2,

where we have used

E {(f(X)−m(X))(m(X)− Y )}
= E

{
E
{

(f(X)−m(X))(m(X)− Y )
∣∣X}}

= E {(f(X)−m(X))E{m(X)− Y |X}}
= E {(f(X)−m(X))(m(X)−m(X))}
= 0.

Hence,

E|f(X)− Y |2 =

∫
Rd
|f(x)−m(x)|2µ(dx) + E|m(X)− Y |2, (1.1)

where µ denotes the distribution of X. The first term is called the L2 error of f . It
is always nonnegative and is zero if f(x) = m(x). Therefore, m∗(x) = m(x), i.e., the
optimal approximation (with respect to the L2 risk) of Y by a function of X is given by
m(X).

In applications the distribution of (X, Y ) (and hence also the regression function) is
usually unknown. Therefore it is impossible to predict Y using m(X). But it is often
possible to observe data according to the distribution of (X, Y ) and to estimate the
regression function from these data.

To be more precise, denote by (X, Y ), (X1, Y1), (X2, Y2), . . . independent and iden-
tically distributed (i.i.d.) random variables with EY 2 < ∞. Let Dn be the set of data
defined by

Dn = {(X1, Y1), . . . , (Xn, Yn)} .

In the regression function estimation problem one wants to use the data Dn in order
to construct an estimate mn : Rd → R of the regression function m. Here mn(x) =
mn(x, Dn) is a measurable function of x and the data. For simplicity, we will suppress
Dn in the notation and write mn(x) instead of mn(x, Dn).
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In general, estimates will not be equal to the regression function. To compare dif-
ferent estimates, we need an error criterion which measures the difference between the
regression function and an arbitrary estimate mn. One of the key points we would
like to make is that the motivation for introducing the regression function leads natu-
rally to an L2 error criterion for measuring the performance of the regression function
estimate. Recall that the main goal was to find a function f such that the L2 risk
E|f(X) − Y |2 is small. The minimal value of this L2 risk is E|m(X) − Y |2, and it is
achieved by the regression function m. Similarly to (1.1), one can show that the L2 risk
E{|mn(X)− Y |2|Dn} of an estimate mn satisfies

E
{
|mn(X)− Y |2|Dn

}
=

∫
Rd
|mn(x)−m(x)|2µ(dx) + E|m(X)− Y |2. (1.2)

Thus the L2 risk of an estimate mn is close to the optimal value if and only if the L2

error

‖mn −m‖2 =

∫
Rd
|mn(x)−m(x)|2µ(dx) (1.3)

is close to zero. Therefore we will use the L2 error (1.3) in order to measure the quality
of an estimate and we will study estimates for which this L2 error is small.

The classical approach for estimating a regression function is the so-called parametric
regression estimation. Here one assumes that the structure of the regression function is
known and depends only on finitely many parameters, and one uses the data to estimate
the (unknown) values of these parameters.

The linear regression estimate is an example of such an estimate. In linear regression
one assumes that the regression function is a linear combination of the components of
x = (x(1), . . . , x(d))T , i.e.,

m(x(1), . . . , x(d)) = a0 +
d∑
i=1

aix
(i) ((x(1), . . . , x(d))T ∈ Rd)

for some unknown a0, . . . , ad ∈ R. Then one uses the data to estimate these parame-
ters, e.g., by applying the principle of least squares, where one chooses the coefficients
a0, . . . , ad of the linear function such that it best fits the given data:

(â0, . . . , âd) = arg min
a0,...,ad∈Rd

 1

n

n∑
j=1

∣∣∣∣∣Yj − a0 −
d∑
i=1

aiX
(i)
j

∣∣∣∣∣
2
 .
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Figure 1.1: Simulated data points.

Here X(i)
j denotes the ith component of Xj and z = arg minx∈D f(x) is the abbreviation

for z ∈ D and f(z) = minx∈D f(x). Finally one defines the estimate by

m̂n(x) = â0 +
d∑
i=1

âix
(i).

Parametric estimates usually depend only on a few parameters, therefore they are suit-
able even for small sample sizes n, if the parametric model is appropriately chosen.
Furthermore, they are often easy to interpret. For instance in a linear model (when
m(x) is a linear function) the absolute value of the coefficient âi indicates how much
influence the ith component of X has on the value of Y , and the sign of âi describes the
nature of this influence (increasing or decreasing the value of Y ).

However, parametric estimates have a big drawback. Regardless of the data, a para-
metric estimate cannot approximate the regression function better than the best function
which has the assumed parametric structure. For example, a linear regression estimate
will produce a large error for every sample size if the true underlying regression function
is not linear and cannot be well approximated by linear functions.

For univariate X = X one can often use a plot of the data to choose a proper
parametric estimate. But this is not always possible, as we now illustrate using simulated
data. These data will be used throughout the book. They consist of n = 200 points such
that X is standard normal restricted to [−1, 1], i.e., the density of X is proportional to
the standard normal density on [−1, 1] and is zero elsewhere. The regression function is

4
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Figure 1.2: Data points and regression function.

piecewise polynomial:

m(x) =


(x+ 2)2/2 if − 1 ≤ x < −0.5,
x/2 + 0.875 if − 0.5 ≤ x < 0,
−5(x− 0.2)2 + 1.075 if 0 < x ≤ 0.5,
x+ 0.125 if 0.5 ≤ x < 1.

GivenX, the conditional distribution of Y−m(X) is normal with mean zero and standard
deviation

σ(X) = 0.2− 0.1 cos(2πX).

Figure 1.1 shows the data points. In this example the human eye is not able to see from
the data points what the regression function looks like. In Figure 1.2 the data points are
shown together with the regression function.

In Figure 1.3 a linear estimate is constructed for these simulated data. Obviously, a
linear function does not approximate the regression function well.

Furthermore, for multivariate X, there is no easy way to visualize the data. Thus,
especially for multivariate X, it is not clear how to choose a proper form of a parametric
estimate, and a wrong form will lead to a bad estimate. This inflexibility concerning
the structure of the regression function is avoided by so-called nonparametric regression
estimates.

We will now define the modes of convergence of the regression estimates that we will
study in this book.
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Figure 1.3: Linear regression estimate.

The first and weakest property an estimate should have is that, as the sample size
grows, it should converge to the estimated quantity, i.e., the error of the estimate should
converge to zero for a sample size tending to infinity. Estimates which have this property
are called consistent.

To measure the error of a regression estimate, we use the L2 error∫
|mn(x)−m(x)|2µ(dx).

The estimate mn depends on the data Dn, therefore the L2 error is a random variable.
We are interested in the convergence of the expectation of this random variable to zero
as well as in the almost sure (a.s.) convergence of this random variable to zero.

Definition 1.1. A sequence of regression function estimates {mn} is called weakly
consistent for a certain distribution of (X, Y ), if

lim
n→∞

E
{∫

(mn(x)−m(x))2µ(dx)

}
= 0.

Definition 1.2. A sequence of regression function estimates {mn} is called strongly
consistent for a certain distribution of (X, Y ), if

lim
n→∞

∫
(mn(x)−m(x))2µ(dx) = 0 with probability one.
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It may be that a regression function estimate is consistent for a certain class of
distributions of (X, Y ), but not consistent for others. It is clearly desirable to have
estimates that are consistent for a large class of distributions. In the next chapters we
are interested in properties of mn that are valid for all distributions of (X, Y ), that
is, in distribution-free or universal properties. The concept of universal consistency is
important in nonparametric regression because the mere use of a nonparametric estimate
is normally a consequence of the partial or total lack of information about the distribution
of (X, Y ). Since in many situations we do not have any prior information about the
distribution, it is essential to have estimates that perform well for all distributions. This
very strong requirement of universal goodness is formulated as follows:

Definition 1.3. A sequence of regression function estimates {mn} is called weakly
universally consistent if it is weakly consistent for all distributions of (X, Y ) with
E{Y 2} <∞.

Definition 1.4. A sequence of regression function estimates {mn} is called strongly
universally consistent if it is strongly consistent for all distributions of (X, Y ) with
E{Y 2} <∞.

We will later give many examples of estimates that are weakly and strongly universally
consistent.

If an estimate is universally consistent, then, regardless of the true underlying distri-
bution of (X, Y ), the L2 error of the estimate converges to zero for a sample size tending
to infinity. But this says nothing about how fast this happens. Clearly, it is desirable to
have estimates for which the L2 error converges to zero as fast as possible.

To decide about the rate of convergence of an estimate mn, we will look at the
expectation of the L2 error,

E
∫
|mn(x)−m(x)|2µ(dx). (1.4)

A natural question to ask is whether there exist estimates for which (1.4) converges
to zero at some fixed, nontrivial rate for all distributions of (X, Y ). Unfortunately, such
estimates do not exist, i.e., for any estimate the rate of convergence may be arbitrarily
slow. In order to get nontrivial rates of convergence, one has to restrict the class of
distributions, e.g., by imposing some smoothness assumptions on the regression function.

7



1.2 How to Estimate a Regression Function?
In this section we describe two principles of nonparametric regression: local averaging
and empirical error minimization.

Recall that the regression function is defined by a conditional expectation

m(x) = E{Y | X = x}.

If x is an atom of X, i.e., P{X = x} > 0 then the conditional expectation is defined
by the conventional way:

E{Y | X = x} =
E{Y I{X=x}}
P{X = x}

,

where IA denotes the indicator function of set A. In this definition one can estimate the
numerator by

1

n

n∑
i=1

Yi I{Xi=x},

while the denominator’s estimate is

1

n

n∑
i=1

I{Xi=x},

so the obvious regression estimate can be

mn(x) =

∑n
i=1 Yi I{Xi=x}∑n
i=1 I{Xi=x}

.

In the general case of P{X = x} = 0 we can refer to the measure theoretic definition
of conditional expectation (cf. Appendix of Devroye, Györfi, and Lugosi [?]). However,
this definition is useless from the point of view of statistics. One can derive an estimate
from the property

E{Y | X = x} = lim
h→0

E{Y I{‖X−x‖≤h}}
P{‖X− x‖ ≤ h}

so the following estimate can be introduced:

mn(x) =

∑n
i=1 Yi I{‖Xi−x‖≤h}∑n
i=1 I{‖Xi−x‖≤h}

.

This estimate is called naive kernel estimate.

8



We can generalize this idea by local averaging, i.e., estimation of m(x) is the average
of those Yi, where Xi is “close” to x. Such an estimate can be written as

mn(x) =
n∑
i=1

Wn,i(x) · Yi,

where the weights Wn,i(x) = Wn,i(x,X1, . . . ,Xn) ∈ R depend on X1, . . . ,Xn. Usually
the weights are nonnegative and Wn,i(x) is “small” if Xi is “far” from x.

Examples of such an estimates are the partitioning estimate, the kernel estimate and
the k-nearest neighbor estimate.

For nonparametric regression estimation, the other principle is the empirical error
minimization estimates, where there is a class Fn of functions, and the estimate is defined
by.

mn(·) = arg min
f∈Fn

{
1

n

n∑
i=1

|f(Xi)− Yi|2
}
. (1.5)

Hence it minimizes the empirical L2 risk

1

n

n∑
i=1

|f(Xi)− Yi|2 (1.6)

over Fn. Observe that it doesn’t make sense to minimize (1.6) over all (measurable)
functions f , because this may lead to a function which interpolates the data and hence
is not a reasonable estimate. Thus one has to restrict the set of functions over which
one minimizes the empirical L2 risk. Examples of possible choices of the set Fn are sets
of piecewise polynomials or sets of smooth piecewise polynomials (splines). The use of
spline spaces ensures that the estimate is a smooth function. An important member of
least squares estimates is the generalized linear estimates. Let {φj}∞j=1 be real-valued
functions defined on Rd and let Fn be defined by

Fn =

{
f ; f =

`n∑
j=1

cjφj

}
.

Then the generalized linear estimate is defined by

mn(·) = arg min
f∈Fn

{
1

n

n∑
i=1

(f(Xi)− Yi)2
}

= arg min
c1,...,c`n

 1

n

n∑
i=1

(
`n∑
j=1

cjφj(Xi)− Yi

)2
 .
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Figure 1.4: The estimate on the right seems to be more reasonable than the estimate on
the left, which interpolates the data.

For least squares estimates, other example can be the neural networks or radial basis
functions or orthogonal series estimates.

Let mn be an arbitrary estimate. For any x ∈ Rd we can write the expected squared
error of mn at x as

E{|mn(x)−m(x)|2}
= E{|mn(x)− E{mn(x)}|2}+ |E{mn(x)} −m(x)|2

= Var(mn(x)) + |bias(mn(x))|2.

Here Var(mn(x)) is the variance of the random variable mn(x) and bias(mn(x)) is the
difference between the expectation of mn(x) and m(x). This also leads to a similar
decomposition of the expected L2 error:

E
{∫
|mn(x)−m(x)|2µ(dx)

}
=

∫
E{|mn(x)−m(x)|2}µ(dx)

=

∫
Var(mn(x))µ(dx) +

∫
|bias(mn(x))|2µ(dx).

The importance of these decompositions is that the integrated variance and the integrated
squared bias depend in opposite ways on the wiggliness of an estimate. If one increases
the wiggliness of an estimate, then usually the integrated bias will decrease, but the
integrated variance will increase (so-called bias–variance tradeoff).

In Figure 1.5 this is illustrated for the kernel estimate, where one has, under some
regularity conditions on the underlying distribution and for the naive kernel,∫

Rd
Var(mn(x))µ(dx) = c1

1

nhd
+ o

(
1

nhd

)
10
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Figure 1.5: Bias–variance tradeoff.

and ∫
Rd
|bias(mn(x))|2µ(dx) = c2h

2 + o
(
h2
)
.

Here h denotes the bandwidth of the kernel estimate which controls the wiggliness of
the estimate, c1 is some constant depending on the conditional variance Var{Y |X = x},
the regression function is assumed to be Lipschitz continuous, and c2 is some constant
depending on the Lipschitz constant.

The value h∗ of the bandwidth for which the sum of the integrated variance and the
squared bias is minimal depends on c1 and c2. Since the underlying distribution, and
hence also c1 and c2, are unknown in an application, it is important to have methods
which choose the bandwidth automatically using only the data Dn.
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Chapter 2

Partitioning Estimates

2.1 Introduction

In the next chapters we briefly review the most important local averaging regression
estimates. Concerning further details see Györfi et al. [?].

Let Pn = {An,1, An,2, . . .} be a partition of Rd and for each x ∈ Rd let An(x) denote
the cell of Pn containing x. The partitioning estimate (histogram) of the regression
function is defined as

mn(x) =

∑n
i=1 YiI{Xi∈An(x)}∑n
i=1 I{Xi∈An(x)}

with 0/0 = 0 by definition. This means that the partitioning estimate is a local averaging
estimate such for a given x we take the average of those Yi’s for which Xi belongs to the
same cell into which x falls.

The simplest version of this estimate is obtained for d = 1 and when the cells An,j
are intervals of size h = hn. Figures 2.1 – 2.3 show the estimates for various choices
of h for our simulated data introduced in Chapter 1. In the first figure h is too small
(undersmoothing, large variance), in the second choice it is about right, while in the
third it is too large (oversmoothing, large bias).

For d > 1 one can use, e.g., a cubic partition, where the cells An,j are cubes of
volume hdn, or a rectangle partition which consists of rectangles An,j with side lengths
hn1, . . . , hnd. For the sake of illustration we generated two-dimensional data when the
actual distribution is a correlated normal distribution. The partition in Figure 2.4 is
cubic, and the partition in Figure 2.5 is made of rectangles.

Cubic and rectangle partitions are particularly attractive from the computational
point of view, because the set An(x) can be determined for each x in constant time,

13
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Figure 2.1: Undersmoothing: h = 0.03, L2 error = 0.062433.

provided that we use an appropriate data structure. In most cases, partitioning estimates
are computationally superior to the other nonparametric estimates, particularly if the
search for An(x) is organized using binary decision trees (cf. Friedman [?]).

The partitions may depend on the data. Figure 2.6 shows such a partition, where each
cell contains an equal number of points. This partition consists of so-called statistically
equivalent blocks.

-

6
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0.5

Figure 2.2: Good choice: h = 0.1, L2 error = 0.003642.
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Figure 2.3: Oversmoothing: h = 0.5, L2 error = 0.013208.

Another advantage of the partitioning estimate is that it can be represented or com-
pressed very efficiently. Instead of storing all data Dn, one should only know the estimate
for each nonempty cell, i.e., for cells An,j for which µn(An,j) > 0, where µn denotes the
empirical distribution. The number of nonempty cells is much smaller than n.

Figure 2.4: Cubic partition.
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Figure 2.5: Rectangle partition.

2.2 Stone’s Theorem

In the next section we will prove the weak universal consistency of partitioning estimates.
In the proof we will use Stone’s theorem (Theorem 2.1 below) which is a powerful tool
for proving weak consistency for local averaging regression function estimates. It will
also be applied to prove the weak universal consistency of kernel and nearest neighbor
estimates in Chapters 3 and 4.

Figure 2.6: Statistically equivalent blocks.
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Local averaging regression function estimates take the form

mn(x) =
n∑
i=1

Wni(x) · Yi,

where the weights Wn,i(x) = Wn,i(x,X1, . . . ,Xn) ∈ R are depending on X1, . . . ,Xn.
Usually the weights are nonnegative and Wn,i(x) is “small” if Xi is “far” from x.

The next theorem states conditions on the weights which guarantee the weak universal
consistency of the local averaging estimates.

Theorem 2.1. (Stone’s theorem). Assume that the following conditions are satisfied
for any distribution of X:

(i) There is a constant c such that for every nonnegative measurable function f sat-
isfying Ef(X) <∞ and any n,

E

{
n∑
i=1

|Wn,i(X)|f(Xi)

}
≤ cEf(X).

(ii) There is a D ≥ 1 such that

P

{
n∑
i=1

|Wn,i(X)| ≤ D

}
= 1,

for all n.
(iii) For all a > 0,

lim
n→∞

E

{
n∑
i=1

|Wn,i(X)|I{‖Xi−X‖>a}

}
= 0.

(iv)

n∑
i=1

Wn,i(X)→ 1

in probability.
(v)

lim
n→∞

E

{
n∑
i=1

Wn,i(X)2

}
= 0.
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Then the corresponding regression function estimate mn is weakly universally consistent,
i.e.,

lim
n→∞

E
{∫

(mn(x)−m(x))2µ(dx)

}
= 0

for all distributions of (X, Y ) with EY 2 <∞.

For nonnegative weights and noiseless data (i.e., Y = m(X) ≥ 0) condition (i) says
that the mean value of the estimate is bounded above by some constant times the mean
value of the regression function. Conditions (ii) and (iv) state that the sum of the weights
is bounded and is asymptotically 1. Condition (iii) ensures that the estimate at a point
x is asymptotically influenced only by the data close to x. Condition (v) states that
asymptotically all weights become small.

One can verify that under conditions (ii), (iii), (iv), and (v) alone weak consistency
holds if the regression function is uniformly continuous and the conditional variance
function σ2(x) is bounded. Condition (i) makes the extension possible. For nonnegative
weights conditions (i), (iii), and (v) are necessary.

Definition 2.1. The weights {Wn,i} are called normal if
∑n

i=1Wn,i(x) = 1. The weights
{Wn,i} are called subprobability weights if they are nonnegative and sum up to ≤ 1. They
are called probability weights if they are nonnegative and sum up to 1.

Obviously for subprobability weights condition (ii) is satisfied, and for probability
weights conditions (ii) and (iv) are satisfied.

2.3 Consistency
The purpose of this section is to prove the weak universal consistency of the partitioning
estimates. This is the first such result that we mention. Later we will prove the same
property for other estimates, too. The next theorem provides sufficient conditions for
the weak universal consistency of the partitioning estimate. The first condition ensures
that the cells of the underlying partition shrink to zero inside a bounded set, so the
estimate is local in this sense. The second condition means that the number of cells
inside a bounded set is small with respect to n, which implies that with large probability
each cell contains many data points.

Theorem 2.2. If for each sphere S centered at the origin

lim
n→∞

max
j:An,j∩S 6=∅

diam(An,j) = 0 (2.1)

18



and
lim
n→∞

|{j : An,j ∩ S 6= ∅}|
n

= 0 (2.2)

then the partitioning regression function estimate is weakly universally consistent.

For cubic partitions,

lim
n→∞

hn = 0 and lim
n→∞

nhdn =∞

imply (2.1) and (2.2).
In order to prove Theorem 2.2 we will verify the conditions of Stone’s theorem. For

this we need the following technical lemma. An integer-valued random variable B(n, p)
is said to be binomially distributed with parameters n and 0 ≤ p ≤ 1 if

P{B(n, p) = k} =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

Lemma 2.1. Let the random variable B(n, p) be binomially distributed with parameters
n and p. Then:

(i)

E
{

1

1 +B(n, p)

}
≤ 1

(n+ 1)p
,

(ii)

E
{

1

B(n, p)
I{B(n,p)>0}

}
≤ 2

(n+ 1)p
.

Proof. Part (i) follows from the following simple calculation:

E
{

1

1 +B(n, p)

}
=

n∑
k=0

1

k + 1

(
n

k

)
pk(1− p)n−k

=
1

(n+ 1)p

n∑
k=0

(
n+ 1

k + 1

)
pk+1(1− p)n−k

≤ 1

(n+ 1)p

n+1∑
k=0

(
n+ 1

k

)
pk(1− p)n−k+1

=
1

(n+ 1)p
(p+ (1− p))n+1

=
1

(n+ 1)p
.
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For (ii) we have

E
{

1

B(n, p)
I{B(n,p)>0}

}
≤ E

{
2

1 +B(n, p)

}
≤ 2

(n+ 1)p

by (i). �

Proof of Theorem 2.2. The proof proceeds by checking the conditions of Stone’s
theorem (Theorem 2.1). Note that if 0/0 = 0 by definition, then

Wn,i(x) = I{Xi∈An(x)}/
n∑
l=1

I{Xl∈An(x)}.

To verify (i), it suffices to show that there is a constant c > 0, such that for any
nonnegative function f with Ef(X) <∞,

E

{
n∑
i=1

f(Xi)
I{Xi∈An(X)}∑n
l=1 I{Xl∈An(X)}

}
≤ cEf(X).

Observe that

E

{
n∑
i=1

f(Xi)
I{Xi∈An(X)}∑n
l=1 I{Xl∈An(X)}

}

=
n∑
i=1

E

{
f(Xi)

I{Xi∈An(X)}

1 +
∑

l 6=i I{Xl∈An(X)}

}

= nE

{
f(X1)I{X1∈An(X)}

1

1 +
∑

l 6=1 I{Xl∈An(X)}

}

= nE
{
E
{
f(X1)I{X1∈An(X)}

1

1 +
∑n

l=2 I{Xl∈An(X)}

∣∣∣∣X,X1

}}
= nE

{
f(X1)I{X1∈An(X)}E

{
1

1 +
∑n

l=2 I{Xl∈An(X)}

∣∣∣∣X,X1

}}
= nE

{
f(X1)I{X1∈An(X)}E

{
1

1 +
∑n

l=2 I{Xl∈An(X)}

∣∣∣∣X}}
20



by the independence of the random variables X,X1, . . . ,Xn. Using Lemma 2.1, the
expected value above can be bounded by

nE
{
f(X1)I{X1∈An(X)}

1

nµ(An(X))

}
=

∑
j

P{X ∈ Anj}
∫
Anj

f(u)µ(du)
1

µ(Anj)

=

∫
Rd
f(u)µ(du) = Ef(X).

Therefore, the condition is satisfied with c = 1. The weights are sub-probability weights,
so (ii) is satisfied. To see that condition (iii) is satisfied first choose a ball S centered
at the origin, and then by condition (2.1) a large n such that for An,j ∩ S 6= ∅ we have
diam(An,j) < a. Thus X ∈ S and ‖Xi −X‖ > a imply Xi /∈ An(X), therefore

I{X∈S}
n∑
i=1

Wn,i(X)I{‖Xi−X‖>a}

= I{X∈S}
∑n

i=1 I{Xi∈An(X),‖X−Xi‖>a}

nµn(An(X))

= I{X∈S}
∑n

i=1 I{Xi∈An(X),Xi /∈An(X),‖X−Xi‖>a}

nµn(An(X))

= 0.

Thus

lim sup
n

E
n∑
i=1

Wn,i(X)I{‖Xi−X‖>a} ≤ µ(Sc).
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Concerning (iv) note that

P

{
n∑
i=1

Wn,i(X) 6= 1

}
= P {µn(An(X)) = 0}

=
∑
j

P {X ∈ An,j, µn(An,j) = 0}

=
∑
j

µ(An,j)(1− µ(An,j))
n

≤
∑

j:An,j∩S=∅

µ(An,j) +
∑

j:An,j∩S 6=∅

µ(An,j)(1− µ(An,j))
n.

Elementary inequalities

x(1− x)n ≤ xe−nx ≤ 1

en
(0 ≤ x ≤ 1)

yield

P

{
n∑
i=1

Wn,i(X) 6= 1

}
≤ µ(Sc) +

1

en
|{j : An,j ∩ S 6= ∅}| .

The first term on the right-hand side can be made arbitrarily small by the choice of S,
while the second term goes to zero by (2.2). To prove that condition (v) holds, observe
that

n∑
i=1

Wn,i(x)2 =

{
1∑n

l=1 I{Xl∈An(x)}
if µn(An(x)) > 0,

0 if µn(An(x)) = 0.

Then we have

E

{
n∑
i=1

Wn,i(X)2

}

≤ P{X ∈ Sc}+
∑

j:An,j∩S 6=∅

E
{
I{X∈An,j}

1

nµn(An,j)
I{µn(An,j)>0}

}

≤ µ(Sc) +
∑

j:An,j∩S 6=∅

µ(An,j)
2

nµ(An,j)

(by Lemma 2.1)

= µ(Sc) +
2

n
|{j : An,j ∩ S 6= ∅}| .
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A similar argument to the previous one concludes the proof. �

2.4 Rate of Convergence

In this section we bound the rate of convergence of E‖mn−m‖2 for cubic partitions and
regression functions which are Lipschitz continuous.

Theorem 2.3. For a cubic partition with side length hn assume that

Var(Y |X = x) ≤ σ2, x ∈ Rd,

|m(x)−m(z)| ≤ C‖x− z‖, x, z ∈ Rd, (2.3)

and that X has a compact support S. Then

E‖mn −m‖2 ≤ ĉ
σ2 + supz∈S |m(z)|2

n · hdn
+ d · C2 · h2n,

where ĉ depends only on d and on the diameter of S, thus for

hn = c′
(
σ2 + supz∈S |m(z)|2

C2

)1/(d+2)

n−
1
d+2

we get

E‖mn −m‖2 ≤ c′′
(
σ2 + sup

z∈S
|m(z)|2

)2/(d+2)

C2d/(d+2)n−2/(d+2).

Proof. Set

m̂n(x) = E{mn(x)|X1, . . . ,Xn} =

∑n
i=1m(Xi)I{Xi∈An(x)}

nµn(An(x))
.

Then

E{(mn(x)−m(x))2|X1, . . . ,Xn}
= E{(mn(x)− m̂n(x))2|X1, . . . ,Xn}+ (m̂n(x)−m(x))2. (2.4)
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We have

E{(mn(x)− m̂n(x))2|X1, . . . ,Xn}

= E

{(∑n
i=1(Yi −m(Xi))I{Xi∈An(x)}

nµn(An(x))

)2 ∣∣∣X1, . . . ,Xn

}

=

∑n
i=1Var(Yi|Xi)I{Xi∈An(x)}

(nµn(An(x)))2

≤ σ2

nµn(An(x))
I{nµn(An(x))>0}.

By Jensen’s inequality

(m̂n(x)−m(x))2 =

(∑n
i=1(m(Xi)−m(x))I{Xi∈An(x)}

nµn(An(x))

)2

I{nµn(An(x))>0}

+m(x)2I{nµn(An(x))=0}

≤
∑n

i=1(m(Xi)−m(x))2I{Xi∈An(x)}

nµn(An(x))
I{nµn(An(x))>0}

+m(x)2I{nµn(An(x))=0}

≤ d · C2h2nI{nµn(An(x))>0} +m(x)2I{nµn(An(x))=0}

(by (2.3) and max
z∈An(x)

‖x− z‖2 ≤ d · h2n)

≤ d · C2h2n +m(x)2I{nµn(An(x))=0}.

Without loss of generality assume that S is a cube and the union of An,1, . . . , An,ln is S.
Then

ln ≤
c̃

hdn
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for some constant c̃ proportional to the volume of S and, by Lemma 2.1 and (2.4),

E
{∫

(mn(x)−m(x))2µ(dx)

}
= E

{∫
(mn(x)− m̂n(x))2µ(dx)

}
+ E

{∫
(m̂n(x)−m(x))2µ(dx)

}

=
ln∑
j=1

E

{∫
An,j

(mn(x)− m̂n(x))2µ(dx)

}

+
ln∑
j=1

E

{∫
An,j

(m̂n(x)−m(x))2µ(dx)

}

≤
ln∑
j=1

E
{
σ2µ(An,j)

nµn(An,j)
I{µn(An,j)>0}

}
+ dC2h2n

+
ln∑
j=1

E

{∫
An,j

m(x)2µ(dx)I{µn(An,j)=0}

}

≤
ln∑
j=1

2σ2µ(An,j)

nµ(An,j)
+ dC2h2n +

ln∑
j=1

∫
An,j

m(x)2µ(dx)P{µn(An,j) = 0}

≤ ln
2σ2

n
+ dC2h2n + sup

z∈S

{
m(z)2

} ln∑
j=1

µ(An,j)(1− µ(An,j))
n

≤ ln
2σ2

n
+ dC2h2n + ln

supz∈Sm(z)2

n
sup
j
nµ(An,j)e

−nµ(An,j)

≤ ln
2σ2

n
+ dC2h2n + ln

supz∈Sm(z)2e−1

n

(since supz ze
−z = e−1)

≤ (2σ2 + supz∈Sm(z)2e−1)c̃

nhdn
+ dC2h2n.

�
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Chapter 3

Kernel Estimates

3.1 Introduction

The kernel estimate of a regression function takes the form

mn(x) =

∑n
i=1 YiK

(
x−Xi

hn

)
∑n

i=1K
(

x−Xi

hn

) ,

if the denominator is nonzero, and 0 otherwise. Here the bandwidth hn > 0 depends
only on the sample size n, and the function K : Rd → [0,∞) is called a kernel. (See
Figure 3.1 for some examples.) Usually K(x) is “large” if ‖x‖ is “small,” therefore the
kernel estimate again is a local averaging estimate.

Figures 3.2–3.5 show the kernel estimate for the naive kernel (K(x) = I{‖x‖≤1}) and
for the Epanechnikov kernel (K(x) = (1 − ‖x‖2)+) using various choices for hn for our
simulated data introduced in Chapter 1.

Figure 3.6 shows the L2 error as a function of h.

-

6
K(x) = I{||x||≤1}

x
-

6K(x) = (1− x2)+

x
-

6K(x) = e−x
2

x

Figure 3.1: Examples for univariate kernels.
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-

6

−1 −0.5 0.5 1

0.5

Figure 3.2: Kernel estimate for the naive kernel: h = 0.1, L2 error = 0.004066.

3.2 Consistency

In this section we use Stone’s theorem (Theorem 2.1) in order to prove the weak universal
consistency of kernel estimates under general conditions on h and K.

Theorem 3.1. Assume that there are balls S0,r of radius r and balls S0,R of radius R

-

6

−1 −0.5 0.5 1

0.5

Figure 3.3: Undersmoothing for the Epanechnikov kernel: h = 0.03, L2 error = 0.031560.
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-

6

−1 −0.5 0.5 1

0.5

Figure 3.4: Kernel estimate for the Epanechnikov kernel: h = 0.1, L2 error = 0.003608.

centered at the origin (0 < r ≤ R), and constant b > 0 such that

I{x∈S0,R} ≥ K(x) ≥ bI{x∈S0,r}

(boxed kernel), and consider the kernel estimate mn. If hn → 0 and nhdn →∞, then the
kernel estimate is weakly universally consistent.

As one can see in Figure 3.7, the weak consistency holds for a bounded kernel with
compact support such that it is bounded away from zero at the origin. The bandwidth
must converge to zero but not too fast.

Proof. Put
Kh(x) = K(x/h).

We check the conditions of Theorem 2.1 for the weights

Wn,i(x) =
Kh(x−Xi)∑n
j=1Kh(x−Xj)

.

Condition (i) means that

E

{∑n
i=1Kh(X−Xi)f(Xi)∑n

j=1Kh(X−Xj)

}
≤ cE{f(X)}
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with c > 0. Because of

E

{∑n
i=1Kh(X−Xi)f(Xi)∑n

j=1Kh(X−Xj)

}

= nE

{
Kh(X−X1)f(X1)∑n

j=1Kh(X−Xj)

}

= nE

{
Kh(X−X1)f(X1)

Kh(X−X1) +
∑n

j=2Kh(X−Xj)

}

= n

∫
f(u)

[
E

{∫
Kh(x− u)

Kh(x− u) +
∑n

j=2Kh(x−Xj)
µ(dx)

}]
µ(du)

it suffices to show that, for all u and n,

E

{∫
Kh(x− u)

Kh(x− u) +
∑n

j=2Kh(x−Xj)
µ(dx)

}
≤ c

n
.

The compact support of K can be covered by finitely many balls, with translates of
S0,r/2, where r > 0 is the constant appearing in the condition on the kernel K, and with

-

6

−1 −0.5 0.5 1

0.5

Figure 3.5: Oversmoothing for the Epanechnikov kernel: h = 0.5, L2 error = 0.012551.
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6

0.1

0.2

0.1 0.25 h

Error

Figure 3.6: The L2 error for the Epanechnikov kernel as a function of h.

centers xi, i = 1, 2, . . . ,M . Then, for all x and u,

Kh(x− u) ≤
M∑
k=1

I{x∈u+hxk+S0,rh/2}.

Furthermore, x ∈ u + hxk + S0,rh/2 implies that

u + hxk + S0,rh/2 ⊂ x + S0,rh

-

6K(x)

x

1

b

−r r−R R

Figure 3.7: Boxed kernel.
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x

r

z

r
2

Figure 3.8: If x ∈ Sz,r/2, then Sz,r/2 ⊆ Sx,r.

(cf. Figure 3.8). Now, by these two inequalities,

E

{∫
Kh(x− u)

Kh(x− u) +
∑n

j=2Kh(x−Xj)
µ(dx)

}

≤
M∑
k=1

E

{∫
u+hxk+S0,rh/2

Kh(x− u)

Kh(x− u) +
∑n

j=2Kh(x−Xj)
µ(dx)

}

≤
M∑
k=1

E

{∫
u+hxk+S0,rh/2

1

1 +
∑n

j=2Kh(x−Xj)
µ(dx)

}

≤ 1

b

M∑
k=1

E

{∫
u+hxk+S0,rh/2

1

1 +
∑n

j=2 I{Xj∈x+S0,rh}
µ(dx)

}

≤ 1

b

M∑
k=1

E

{∫
u+hxk+S0,rh/2

1

1 +
∑n

j=2 I{Xj∈u+hxk+S0,rh/2}
µ(dx)

}

=
1

b

M∑
k=1

E

{
µ(u + hxk + S0,rh/2)

1 +
∑n

j=2 I{Xj∈u+hxk+S0,rh/2}

}

≤ 1

b

M∑
k=1

µ(u + hxk + S0,rh/2)

nµ(u + hxk + S0,rh/2)

(by Lemma 2.1)

≤ M

nb
.
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The condition (ii) holds since the weights are subprobability weights.
Concerning (iii) notice that, for hnR < a,

n∑
i=1

|Wn,i(X)|I{‖Xi−X‖>a} =

∑n
i=1Khn(X−Xi)I{‖Xi−X‖>a}∑n

i=1Khn(X−Xi)
= 0.

In order to show (iv), mention that

1−
n∑
i=1

Wn,i(X) = I{∑n
i=1Khn (X−Xi)=0},

therefore,

P

{
1 6=

n∑
i=1

Wn,i(X)

}
= P

{
n∑
i=1

Khn(X−Xi) = 0

}

≤ P

{
n∑
i=1

I{Xi 6∈SX,rhn} = 0

}
= P {µn(SX,rhn) = 0}

=

∫
(1− µ(Sx,rhn))nµ(dx).

Choose a sphere S centered at the origin, then

P

{
1 6=

n∑
i=1

Wn,i(X)

}

≤
∫
S

e−nµ(Sx,rhn )µ(dx) + µ(Sc)

=

∫
S

nµ(Sx,rhn)e−nµ(Sx,rhn )
1

nµ(Sx,rhn)
µ(dx) + µ(Sc)

= max
u

ue−u
∫
S

1

nµ(Sx,rhn)
µ(dx) + µ(Sc).

By the choice of S, the second term can be small. For the first term we can find
z1, . . . , zMn such that the union of Sz1,rhn/2, . . . , SzMn ,rhn/2

covers S, and

Mn ≤
c̃

hdn
.
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Then

∫
S

1

nµ(Sx,rhn)
µ(dx) ≤

Mn∑
j=1

∫ I{x∈Szj ,rhn/2
}

nµ(Sx,rhn)
µ(dx)

≤
Mn∑
j=1

∫ I{x∈Szj ,rhn/2
}

nµ(Szj ,rhn/2)
µ(dx)

≤ Mn

n

≤ c̃

nhdn
→ 0. (3.1)

Concerning (v), since K(x) ≤ 1 we get that, for any δ > 0,

n∑
i=1

Wn,i(X)2 =

∑n
i=1Khn(X−Xi)

2

(
∑n

i=1Khn(X−Xi))2

≤
∑n

i=1Khn(X−Xi)

(
∑n

i=1Khn(X−Xi))2

≤ min

{
δ,

1∑n
i=1Khn(X−Xi)

}
≤ min

{
δ,

1∑n
i=1 bI{Xi∈SX,rhn}

}
≤ δ +

1∑n
i=1 bI{Xi∈SX,rhn}

I{∑n
i=1 I{Xi∈SX,rhn}>0

},

therefore it is enough to show that

E
{

1∑n
i=1 I{Xi∈SX,rhn}

I{∑n
i=1 I{Xi∈SX,rhn}>0

}}→ 0.
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Let S be as above, then

E
{

1∑n
i=1 I{Xi∈SX,rhn}

I{∑n
i=1 I{Xi∈SX,rhn}>0

}}
≤ E

{
1∑n

i=1 I{Xi∈SX,rhn}
I{∑n

i=1 I{Xi∈SX,rhn}>0
}I{X∈S}

}
+ µ(Sc)

≤ 2E
{

1

(n+ 1)µ(SX,hn)
I{X∈S}

}
+ µ(Sc)

(by Lemma 2.1)

→ µ(Sc)

as above. �

3.3 Rate of Convergence
In this section we bound the rate of convergence of E‖mn −m‖2 for a naive kernel and
a Lipschitz continuous regression function.

Theorem 3.2. For a kernel estimate with a naive kernel assume that

Var(Y |X = x) ≤ σ2, x ∈ Rd,

and
|m(x)−m(z)| ≤ C‖x− z‖, x, z ∈ Rd,

and X has a compact support S∗. Then

E‖mn −m‖2 ≤ ĉ
σ2 + supz∈S∗ |m(z)|2

n · hdn
+ C2h2n,

where ĉ depends only on the diameter of S∗ and on d, thus for

hn = c′
(
σ2 + supz∈S∗ |m(z)|2

C2

)1/(d+2)

n−
1
d+2

we have

E‖mn −m‖2 ≤ c′′
(
σ2 + sup

z∈S∗
|m(z)|2

)2/(d+2)

C2d/(d+2)n−2/(d+2).
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Proof. We proceed similarly to Theorem 2.3. Put

m̂n(x) =

∑n
i=1m(Xi)I{Xi∈Sx,hn}

nµn(Sx,hn)
,

then we have the decomposition (2.4). If Bn(x) = {nµn(Sx,hn) > 0}, then

E{(mn(x)− m̂n(x))2|X1, . . . ,Xn}

= E

{(∑n
i=1(Yi −m(Xi))I{Xi∈Sx,hn}

nµn(Sx,hn)

)2

|X1, . . . ,Xn

}

=

∑n
i=1Var(Yi|Xi)I{Xi∈Sx,hn}

(nµn(Sx,hn))2

≤ σ2

nµn(Sx,hn)
IBn(x).

By Jensen’s inequality and the Lipschitz property of m,

(m̂n(x)−m(x))2

=

(∑n
i=1(m(Xi)−m(x))I{Xi∈Sx,hn}

nµn(Sx,hn)

)2

IBn(x) +m(x)2IBn(x)c

≤
∑n

i=1(m(Xi)−m(x))2I{Xi∈Sx,hn}

nµn(Sx,hn)
IBn(x) +m(x)2IBn(x)c

≤ C2h2nIBn(x) +m(x)2IBn(x)c
≤ C2h2n +m(x)2IBn(x)c .
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Using this, together with Lemma 2.1,

E
{∫

(mn(x)−m(x))2µ(dx)

}
= E

{∫
(mn(x)− m̂n(x))2µ(dx)

}
+ E

{∫
(m̂n(x)−m(x))2µ(dx)

}
≤

∫
S∗

E
{

σ2

nµn(Sx,hn)
I{µn(Sx,hn )>0}

}
µ(dx) + C2h2n

+

∫
S∗

E
{
m(x)2I{µn(Sx,hn )=0}

}
µ(dx)

≤
∫
S∗

2σ2

nµ(Sx,hn)
µ(dx) + C2h2n +

∫
S∗
m(x)2(1− µ(Sx,hn))nµ(dx)

≤
∫
S∗

2σ2

nµ(Sx,hn)
µ(dx) + C2h2n + sup

z∈S∗
m(z)2

∫
S∗
e−nµ(Sx,hn )µ(dx)

≤ 2σ2

∫
S∗

1

nµ(Sx,hn)
µ(dx) + C2h2n

+ sup
z∈S∗

m(z)2 max
u

ue−u
∫
S∗

1

nµ(Sx,hn)
µ(dx).

Now we refer to (3.1) such that there the set S is a sphere containing S∗. Combining
these inequalities the proof is complete. �
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Chapter 4

k-NN Estimates

4.1 Introduction
We fix x ∈ Rd, and reorder the data (X1, Y1), . . . , (Xn, Yn) according to increasing values
of ‖Xi − x‖. The reordered data sequence is denoted by

(X(1,n)(x), Y(1,n)(x)), . . . , (X(n,n)(x), Y(n,n)(x))

or by
(X(1,n), Y(1,n)), . . . , (X(n,n), Y(n,n))

if no confusion is possible. X(k,n)(x) is called the kth nearest neighbor (k-NN) of x.
The kn-NN regression function estimate is defined by

mn(x) =
1

kn

kn∑
i=1

Y(i,n)(x).

If Xi and Xj are equidistant from x, i.e., ‖Xi − x‖ = ‖Xj − x‖, then we have a tie.
There are several rules for tie breaking. For example, Xi might be declared “closer” if
i < j, i.e., the tie breaking is done by indices. For the sake of simplicity we assume that
ties occur with probability 0. In principle, this is an assumption on µ, so the statements
are formally not universal, but adding a component to the observation vector X we can
automatically satisfy this condition as follows: Let (X, Z) be a random vector, where Z
is independent of (X, Y ) and uniformly distributed on [0, 1]. We also artificially enlarge
the data set by introducing Z1, Z2, . . . , Zn, where the Zi’s are i.i.d. uniform [0, 1] as well.
Thus, each (Xi, Zi) is distributed as (X, Z). Then ties occur with probability 0. In
the sequel we shall assume that X has such a component and, therefore, for each x the
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x
X(1,6)(x)

X(2,6)(x)
X(3,6)(x)

X(4,6)(x)
X(5,6)(x)

X(6,6)(x)

Figure 4.1: Illustration of nearest neighbors.

random variable ‖X−x‖2 is absolutely continuous, since it is a sum of two independent
random variables such that one of the two is absolutely continuous.

Figures 4.2 – 4.4 show kn-NN estimates for various choices of kn for our simulated
data introduced in Chapter 1. Figure 4.5 shows the L2 error as a function of kn.

-

6

−1 −0.5 0.5 1

0.5

Figure 4.2: Undersmoothing: kn = 3, L2 error =0.011703.
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6

−1 −0.5 0.5 1

0.5

Figure 4.3: Good choice: kn = 12, L2 error =0.004247.

4.2 Consistency

In this section we use Stone’s theorem (Theorem 2.1) in order to prove weak universal
consistency of the k-NN estimate. The main result is the following theorem:

Theorem 4.1. If kn → ∞, kn/n → 0, then the kn-NN regression function estimate is

-

6

−1 −0.5 0.5 1

0.5

Figure 4.4: Oversmoothing: kn = 50, L2 error =0.009931.
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Figure 4.5: L2 error of the k-NN estimate as a function of k.

weakly consistent for all distributions of (X, Y ) where ties occur with probability zero and
EY 2 <∞.

According to Theorem 4.1 the number of nearest neighbors (kn), over which one
averages in order to estimate the regression function, should on the one hand converge
to infinity but should, on the other hand, be small with respect to the sample size n. To
verify the conditions of Stone’s theorem we need several lemmas.

We will use Lemma 4.1 to verify condition (iii) of Stone’s theorem. Denote the
probability measure for X by µ, and let Sx,ε be the closed ball centered at x of radius
ε > 0. The collection of all x with µ(Sx,ε) > 0 for all ε > 0 is called the support of X or
µ. This set plays a key role because of the following property:

Lemma 4.1. If x ∈ support(µ) and limn→∞ kn/n = 0, then

‖X(kn,n)(x)− x‖ → 0

with probability one.

Proof. Take ε > 0. By definition, x ∈ support(µ) implies that µ(Sx,ε) > 0. Observe
that

{‖X(kn,n)(x)− x‖ > ε} =

{
1

n

n∑
i=1

I{Xi∈Sx,ε} <
kn
n

}
.

By the strong law of large numbers,

1

n

n∑
i=1

I{Xi∈Sx,ε} → µ(Sx,ε) > 0
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with probability one, while, by assumption,

kn
n
→ 0.

Therefore, ‖X(kn,n)(x)− x‖ → 0 with probability one. �

The next two lemmas will enable us to establish condition (i) of Stone’s theorem.

Lemma 4.2. Let
Ba(x

′) =
{
x : µ(Sx,‖x−x′‖) ≤ a

}
.

Then, for all x′ ∈ Rd,
µ(Ba(x

′)) ≤ γda,

where γd depends on the dimension d only.

Proof. Let Cj ⊂ Rd be a cone of angle π/3 and centered at 0. It is a property of cones
that if u,u′ ∈ Cj and ‖u‖ < ‖u′‖, then ‖u−u′‖ < ‖u′‖ (cf. Figure 4.6). Let C1, . . . , Cγd
be a collection of such cones with different central directions such that their union covers
Rd:

γd⋃
j=1

Cj = Rd.

O

u

u′
‖u− u′‖

‖u′‖

‖u‖

Figure 4.6: The cone property.
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Then

µ(Ba(x
′)) ≤

γd∑
i=1

µ({x′ + Ci} ∩Ba(x
′)).

Let x∗ ∈ {x′ + Ci} ∩Ba(x
′). Then, by the property of cones mentioned above, we have

µ({x′ + Ci} ∩ Sx′,‖x′−x∗‖ ∩Ba(x
′)) ≤ µ(Sx∗,‖x′−x∗‖) ≤ a,

where we use the fact that x∗ ∈ Ba(x
′). Since x∗ is arbitrary,

µ({x′ + Ci} ∩Ba(x
′)) ≤ a,

which completes the proof of the lemma. �
An immediate consequence of the lemma is that the number of points amongX1, . . . ,Xn,

such that X is one of their k nearest neighbors, is not more than a constant times k.

Corollary 4.1. Assume that ties occur with probability zero. Then
n∑
i=1

I{X is among the k NNs of Xi in {X1,...,Xi−1,X,Xi+1,...,Xn}} ≤ kγd

a.s.

Proof. Apply Lemma 4.2 with a = k/n and let µ be the empirical measure µn of
X1, . . . ,Xn, i.e., for each Borel set A ⊆ Rd, µn(A) = (1/n)

∑n
i=1 I{Xi∈A}. Then

Bk/n(X) =
{
x : µn(Sx,‖x−X‖) ≤ k/n

}
and

Xi ∈ Bk/n(X)

⇔ µn(SXi,‖Xi−X‖) ≤ k/n

⇔ X is among the k NNs of Xi in {X1, . . . ,Xi−1,X,Xi+1, . . . ,Xn}

a.s., where for the second ⇔ we applied the condition that ties occur with probability
zero. This, together with Lemma 4.2, yields

n∑
i=1

I{X is among the k NNs of Xi in {X1,...,Xi−1,X,Xi+1,...,Xn}}

=
n∑
i=1

I{Xi∈Bk/n(X)}

= n · µn(Bk/n(X))

≤ kγd

44



a.s. �

Lemma 4.3. Assume that ties occur with probability zero. Then for any integrable func-
tion f , any n, and any k ≤ n,

k∑
i=1

E
{
|f(X(i,n)(X))|

}
≤ kγdE{|f(X)|},

where γd depends upon the dimension only.

Proof. If f is a nonnegative function,
k∑
i=1

E
{
f(X(i,n)(X))

}
= E

{
n∑
i=1

I{Xi is among the k NNs of X in {X1,...,Xn}}f(Xi)

}

= E

{
f(X)

n∑
i=1

I{X is among the k NNs of Xi in {X1,...,Xi−1,X,Xi+1,...,Xn}}

}
(by exchanging X and Xi)

≤ E{f(X)kγd},

by Corollary 4.1. This concludes the proof of the lemma. �

Proof of Theorem 4.1. We proceed by checking the conditions of Stone’s weak
convergence theorem (Theorem 2.1) under the condition that ties occur with probability
zero. The weight Wn,i(X) in Theorem 2.1 equals 1/kn if Xi is among the kn nearest
neighbors of X, and equals 0 otherwise, thus the weights are probability weights, and
(ii) and (iv) are automatically satisfied. Condition (v) is obvious since kn → ∞. For
condition (iii) observe that, for each ε > 0,

E

{
n∑
i=1

Wn,i(X)I{‖Xi−X‖>ε}

}

=

∫
E

{
n∑
i=1

Wn,i(x)I{‖Xi−x‖>ε}

}
µ(dx)

=

∫
E

{
1

kn

kn∑
i=1

I{‖X(i,n)(x)−x‖>ε}

}
µ(dx)→ 0
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holds whenever ∫
P
{
‖X(kn,n)(x)− x‖ > ε

}
µ(dx)→ 0, (4.1)

where X(kn,n)(x) denotes the knth nearest neighbor of x among X1, . . . ,Xn. For x ∈
support(µ), kn/n→ 0, together with Lemma 4.1, implies

P
{
‖X(kn,n)(x)− x‖ > ε

}
→ 0 (n→∞).

This together with the dominated convergence theorem implies (4.1). Finally, we consider
condition (i). It suffices to show that for any nonnegative measurable function f with
E{f(X)} <∞, and any n,

E

{
n∑
i=1

1

kn
I{Xi is among the kn NNs of X}f(Xi)

}
≤ c · E {f(X)}

for some constant c. But we have shown in Lemma 4.3 that this inequality always holds
with c = γd. Thus, condition (i) is verified. �

4.3 Rate of Convergence
In this section we bound the rate of convergence of E‖mn−m‖2 for a kn-nearest neighbor
estimate.

Theorem 4.2. Assume that X is bounded,

σ2(x) = Var(Y |X = x) ≤ σ2 (x ∈ Rd)

and
|m(x)−m(z)| ≤ C‖x− z‖ (x, z ∈ Rd).

Assume that d ≥ 3. Let mn be the kn-NN estimate. Then

E‖mn −m‖2 ≤
σ2

kn
+ c1 · C2

(
kn
n

)2/d

,

thus for kn = c′ (σ2/C2)
d/(2+d)

n
2
d+2 ,

E‖mn −m‖2 ≤ c′′σ
4
d+2C

2d
2+dn−

2
d+2 .
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For the proof of Theorem 4.2 we need the rate of convergence of nearest neighbor
distances.

Lemma 4.4. Assume that X is bounded. If d ≥ 3, then

E{‖X(1,n)(X)−X‖2} ≤ c̃

n2/d
.

Proof. For fixed ε > 0,

P{‖X(1,n)(X)−X‖ > ε} = E{(1− µ(SX,ε))
n}.

Let A1, . . . , AN(ε) be a cubic partition of the bounded support of µ such that the Aj’s
have diameter ε and

N(ε) ≤ c

εd
.

If x ∈ Aj, then Aj ⊂ Sx,ε, therefore

E{(1− µ(SX,ε))
n} =

N(ε)∑
j=1

∫
Aj

(1− µ(Sx,ε))
nµ(dx)

≤
N(ε)∑
j=1

∫
Aj

(1− µ(Aj))
nµ(dx)

=

N(ε)∑
j=1

µ(Aj)(1− µ(Aj))
n.

Obviously,

N(ε)∑
j=1

µ(Aj)(1− µ(Aj))
n ≤

N(ε)∑
j=1

max
z
z(1− z)n

≤
N(ε)∑
j=1

max
z
ze−nz

=
e−1N(ε)

n
.
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If L stands for the diameter of the support of µ, then

E{‖X(1,n)(X)−X‖2} =

∫ ∞
0

P{‖X(1,n)(X)−X‖2 > ε} dε

=

∫ L2

0

P{‖X(1,n)(X)−X‖ >
√
ε} dε

≤
∫ L2

0

min

{
1,
e−1N(

√
ε)

n

}
dε

≤
∫ L2

0

min
{

1,
c

en
ε−d/2

}
dε

=

∫ (c/(en))2/d

0

1 dε+
c

en

∫ L2

(c/(en))2/d
ε−d/2dε

≤ c̃

n2/d

for d ≥ 3. �

Proof of Theorem 4.2. We have the decomposition

E{(mn(x)−m(x))2} = E{(mn(x)− E{mn(x)|X1, . . . ,Xn})2}
+E{(E{mn(x)|X1, . . . ,Xn} −m(x))2}

= I1(x) + I2(x).

The first term is easier:

I1(x) = E


(

1

kn

kn∑
i=1

(
Y(i,n)(x)−m(X(i,n)(x))

))2


= E

{
1

k2n

kn∑
i=1

σ2(X(i,n)(x))

}

≤ σ2

kn
.
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For the second term

I2(x) = E


(

1

kn

kn∑
i=1

(m(X(i,n)(x))−m(x))

)2


≤ E


(

1

kn

kn∑
i=1

|m(X(i,n)(x))−m(x)|

)2


≤ E


(

1

kn

kn∑
i=1

C‖X(i,n)(x)− x‖

)2
 .

Put N = knb nkn c. Split the data X1, . . . ,Xn into kn + 1 segments such that the first kn
segments have length b n

kn
c, and let X̃x

j be the first nearest neighbor of x from the jth
segment. Then X̃x

1 , . . . , X̃x
kn

are kn different elements of {X1, . . . ,Xn}, which implies

kn∑
i=1

‖X(i,n)(x)− x‖ ≤
kn∑
j=1

‖X̃x
j − x‖,

therefore, by Jensen’s inequality,

I2(x) ≤ C2E


(

1

kn

kn∑
j=1

‖X̃x
j − x‖

)2


≤ C2 1

kn

kn∑
j=1

E
{
‖X̃x

j − x‖2
}

= C2E
{
‖X̃x

1 − x‖2
}

= C2E
{
‖X(1,b n

kn
c)(x)− x‖2

}
.

Thus, by Lemma 4.4,

1

C2

⌊ n
kn

⌋2/d ∫
I2(x)µ(dx) ≤

⌊ n
kn

⌋2/d
E
{
‖X(1,b n

kn
c)(X)−X‖2

}
≤ const.

�
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Chapter 5

Prediction of time series

5.1 The prediction problem

We study the problem of sequential prediction of a real valued sequence. At each time
instant t = 1, 2, . . ., the predictor is asked to guess the value of the next outcome yt of
a sequence of real numbers y1, y2, . . . with knowledge of the pasts yt−11 = (y1, . . . , yt−1)
(where y01 denotes the empty string) and the side information vectors xt1 = (x1, . . . ,xt),
where xt ∈ Rd . Thus, the predictor’s estimate, at time t, is based on the value of xt1
and yt−11 . A prediction strategy is a sequence g = {gt}∞t=1 of functions

gt :
(
Rd
)t × Rt−1 → R

so that the prediction formed at time t is gt(xt1, y
t−1
1 ).

In this study we assume that (x1, y1), (x2, y2), . . . are realizations of the random vari-
ables (X1, Y1), (X2, Y2), . . . such that {(Xn, Yn)}∞−∞ is a stationary and ergodic process.

After n time instants, the normalized cumulative prediction error is

Ln(g) =
1

n

n∑
t=1

(gt(X
t
1, Y

t−1
1 )− Yt)2.

Our aim to achieve small Ln(g) when n is large.
For this prediction problem, an example can be the forecasting daily relative prices yt

of an asset, while the side information vector xt may contain some information on other
assets in the past days or the trading volume in the previous day or some news related
to the actual assets, etc. This is a widely investigated research problem. However, in the
vast majority of the corresponding literature the side information is not included in the
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model, moreover, a parametric model (AR, MA, ARMA, ARIMA, ARCH, GARCH, etc.)
is fitted to the stochastic process {Yt}, its parameters are estimated, and a prediction
is derived from the parameter estimates. Formally, this approach means that there is a
parameter θ such that the best predictor has the form

E{Yt | Y t−1
1 } = gt(θ, Y

t−1
1 ),

for a function gt. The parameter θ is estimated from the past data Y t−1
1 , and the estimate

is denoted by θ̂. Then the data-driven predictor is

gt(θ̂, Y
t−1
1 ).

Here we don’t assume any parametric model, so our results are fully nonparametric.
This modelling is important for financial data when the process is only approximately
governed by stochastic differential equations, so the parametric modelling can be weak,
moreover the error criterion of the parameter estimate (usually the maximum likelihood
estimate) has no relation to the mean square error of the prediction derived. The main
aim of this research is to construct predictors, called universally consistent predictors,
which are consistent for all stationary time series. Such universal feature can be proven
using the recent principles of nonparametric statistics and machine learning algorithms.

The results below are given in an autoregressive framework, that is, the value Yt is
predicted based on Xt

1 and Y t−1
1 . The fundamental limit for the predictability of the

sequence can be determined based on a result of Algoet [?], who showed that for any
prediction strategy g and stationary ergodic process {(Xn, Yn)}∞−∞,

lim inf
n→∞

Ln(g) ≥ L∗ almost surely, (5.1)

where
L∗ = E

(
Y0 − EY0

∣∣X0
−∞, Y

−1
−∞
)2

is the minimal mean squared error of any prediction for the value of Y0 based on the
infinite past X0

−∞, Y
−1
−∞.

This lower bound gives sense to the following definition:

Definition 5.1. A prediction strategy g is called universally consistent with respect to a
class C of stationary and ergodic processes {(Xn, Yn)}∞−∞, if for each process in the class,

lim
n→∞

Ln(g) = L∗ almost surely.

Next we introduce several simple prediction strategies which build on a methodology
worked out in recent years for prediction of individual sequences, see Cesa-Bianchi and
Lugosi [?] for a survey.
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5.2 Universally consistent predictions: bounded Y

5.2.1 Partition-based prediction strategies

In this section we introduce our first prediction strategy for bounded ergodic processes.
We assume throughout the section that |Y0| is bounded by a constant B > 0, with
probability one, and the bound B is known.

The prediction strategy is defined, at each time instant, as a convex combination of
elementary predictors, where the weighting coefficients depend on the past performance
of each elementary predictor.

We define an infinite array of elementary predictors h(k,`), k, ` = 1, 2, . . . as fol-
lows. Let P` = {A`,j, j = 1, 2, . . . ,m`} be a sequence of finite partitions of R, and let
Q` = {B`,j, j = 1, 2, . . . ,m′`} be a sequence of finite partitions of Rd. Introduce the
corresponding quantizers:

F`(y) = j, if y ∈ A`,j
and

G`(x) = j, if x ∈ B`,j .

With some abuse of notation, for any n and yn1 ∈ Rn, we write F`(yn1 ) for the se-
quence F`(y1), . . . , F`(yn), and similarly, for xn1 ∈ (Rd)n, we write G`(x

n
1 ) for the sequence

G`(x1), . . . , G`(xn).
Fix positive integers k, `, and for each k + 1-long string z of positive integers, and

for each k-long string s of positive integers, define the partitioning regression function
estimate

Ê(k,`)
n (xn1 , y

n−1
1 , z, s) =

∑
{k<t<n:G`(xtt−k)=z, F`(y

t−1
t−k)=s}

yt∣∣{k < t < n : G`(xtt−k) = z, F`(y
t−1
t−k) = s}

∣∣ ,
for all n > k + 1 where 0/0 is defined to be 0.

Define the elementary predictor h(k,`) by

h(k,`)n (xn1 , y
n−1
1 ) = Ê(k,`)

n (xn1 , y
n−1
1 , G`(x

n
n−k), F`(y

n−1
n−k)),

for n = 1, 2, . . . . That is, h(k,`)n quantizes the sequence xn1 , y
n−1
1 according to the partitions

Q` and P`, and looks for all appearances of the last seen quantized strings G`(x
n
n−k) of

length k + 1 and F`(y
n−1
n−k) of length k in the past. Then it predicts according to the

average of the yt’s following the string.
In contrast to the nonparametric regression estimation problem from i.i.d. data, for

ergodic observations, it is impossible to choose k = kn and ` = `n such that the corre-
sponding predictor is universally consistent for the class of bounded ergodic processes.
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The very important new principle is the combination or aggregation of elementary pre-
dictors (cf. Cesa-Bianchi and Lugosi [?]). The proposed prediction algorithm proceeds
as follows: let {qk,`} be a probability distribution on the set of all pairs (k, `) of positive
integers such that for all k, `, qk,` > 0. Put c = 8B2, and define the weights

wt,k,` = qk,`e
−(t−1)Lt−1(h(k,`))/c (5.2)

and their normalized values
pt,k,` =

wt,k,`
Wt

, (5.3)

where

Wt =
∞∑

i,j=1

wt,i,j . (5.4)

The prediction strategy g is defined by

gt(x
t
1, y

t−1
1 ) =

∞∑
k,`=1

pt,k,`h
(k,`)(xt1, y

t−1
1 ) , t = 1, 2, . . . (5.5)

i.e., the prediction gt is the convex linear combination of the elementary predictors such
that an elementary predictor has non-negligible weight in the combination if it has good
performance until time t− 1.

Theorem 5.1. (Györfi and Lugosi [?]) Assume that
(a) the sequences of partition P` is nested, that is, any cell of P`+1 is a subset of a cell
of P`, ` = 1, 2, . . .;
(b) the sequences of partition Q` is nested;
(c) the sequences of partition P` is asymptotically fine, that is, for each sphere S centered
at the origin

lim
`→∞

max
A∈P`, A∩S 6=∅

diam(A) = 0;

(d) the sequences of partition Q` is asymptotically fine;
Then the prediction scheme g defined above is universal with respect to the class of all
stationary and ergodic processes {(Xn, Yn)}∞−∞ such that |Y0| ≤ B.

One of the main ingredients of the proof is the following lemma, whose proof is a
straightforward extension of standard arguments in the prediction theory of individual
sequences, see, for example, Kivinen and Warmuth [?].
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Lemma 5.1. Let h̃1, h̃2, . . . be a sequence of prediction strategies (experts), and let {qk}
be a probability distribution on the set of positive integers. Assume that h̃i(xn1 , y

n−1
1 ) ∈

[−B,B] and yn1 ∈ [−B,B]n. Define

wt,k = qke
−(t−1)Lt−1(h̃k)/c

with c ≥ 8B2, and
vt,k =

wt,k∑∞
i=1wt,i

.

If the prediction strategy g̃ is defined by

g̃t(x
t
1, y

t−1
1 ) =

∞∑
k=1

vt,kh̃k(x
t
1, y

t−1
1 ) t = 1, 2, . . .

then for every n ≥ 1,

Ln(g̃) ≤ inf
k

(
Ln(h̃k)−

c ln qk
n

)
.

Here − ln 0 is treated as ∞.

Proof. Introduce
W1 = 1

and

Wt =
∞∑
k=1

wt,k

for t > 1. Note that

Wt+1 =
∞∑
k=1

wt,ke
−(yt−h̃k(xt1,y

t−1
1 ))

2
/c = Wt

∞∑
k=1

vt,ke
−(yt−h̃k(xt1,y

t−1
1 ))

2
/c,

so that

−c ln
Wt+1

Wt

= −c ln

(
∞∑
k=1

vt,ke
−(yt−h̃k(xt1,y

t−1
1 ))

2
/c

)
.

Introduce the function
Ft(z) = e−(yt−z)

2/c
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Because of c ≥ 8B2, the function Ft is concave on [−B,B], therefore Jensen’s inequality
implies that [

∞∑
k=1

vt,k

(
yt − h̃k(xt1, yt−11 )

)]2
≤ −c ln

Wt+1

Wt

(5.6)

Thus,

nLn(g̃) =
n∑
t=1

(
yt − g̃(xt1, y

t−1
1 )

)2
=

n∑
t=1

[
∞∑
k=1

vt,k

(
yt − h̃k(xt1, yt−11 )

)]2

≤ −c
n∑
t=1

ln
Wt+1

Wt

= −c lnWn+1

and therefore

nLn(g̃) ≤ −c ln

(
∞∑
k=1

wn+1,k

)

= −c ln

(
∞∑
k=1

qke
−nLn(h̃k)/c

)

≤ −c ln

(
sup
k
qke
−nLn(h̃k)/c

)
= inf

k

(
−c ln qk + nLn(h̃k)

)
,

which concludes the proof. �
Another main ingredient of the proof of Theorem 5.1 is known as Breiman’s general-

ized ergodic theorem, see also Algoet [?] and Györfi et al. [?].

Lemma 5.2. (Breiman [?]). Let Z = {Zi}∞−∞ be a stationary and ergodic process. Let
T denote the left shift operator. Let fi be a sequence of real-valued functions such that
for some function f , fi(Z) → f(Z) almost surely. Assume that E{supi |fi(Z)|} < ∞.
Then

lim
t→∞

1

n

n∑
i=1

fi(T
iZ) = E{f(Z)} almost surely.
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Proof of Theorem 5.1. Because of (5.1), it is enough to show that

lim sup
n→∞

Ln(g) ≤ L∗ a.s.

By a double application of the ergodic theorem, as n→∞, almost surely,

Ê(k,`)
n (Xn

1 , Y
n−1
1 , z, s) =

1
n

∑
{k<i<n:G`(Xt

t−k)=z, F`(Y
t−1
t−k )=s}

Yi
1
n

∣∣{k < i < n : G`(Xt
t−k) = z, F`(Y

t−1
t−k ) = s}

∣∣
→

E{Y0I{G`(X0
−k)=z, F`(Y

−1
−k )=s}

}
P{G`(X0

−k) = z, F`(Y
−1
−k ) = s}

= E{Y0|G`(X
0
−k) = z, F`(Y

−1
−k ) = s},

and therefore

lim
n→∞

sup
z

sup
s
|Ê(k,`)

n (Xn
1 , Y

n−1
1 , z, s)− E{Y0|G`(X

0
−k) = z, F`(Y

−1
−k ) = s}| = 0

almost surely. Thus, by Lemma 5.2, as n→∞, almost surely,

Ln(h(k,`)) =
1

n

n∑
i=1

(h(k,`)(Xi
1, Y

i−1
1 )− Yi)2

=
1

n

n∑
i=1

(Ê(k,`)
n (Xi

1, Y
i−1
1 , G`(X

i
i−k), F`(Y

i−1
i−k ))− Yi)2

→ E{(Y0 − E{Y0|G`(X
0
−k), F`(Y

−1
−k )})2}

def
= εk,`.

Since the partitions P` and Q` are nested, E
{
Y0|G`(X

0
−k), F`(Y

−1
−k )
}

is a martingale
indexed by the pair (k, `). Thus, the martingale convergence theorem (see, e.g., Stout
[?]) and assumption (c) and (d) for the sequence of partitions implies that

inf εk,` = lim
k,`→∞

εk,` = E
{(
Y0 − E{Y0|X0

−∞, Y
−1
−∞}

)2}
= L∗.

Now by Lemma 5.1,

Ln(g) ≤ inf
k,`

(
Ln(h(k,`))− c ln qk,`

n

)
, (5.7)
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and therefore, almost surely,

lim sup
n→∞

Ln(g) ≤ lim sup
n→∞

inf
k,`

(
Ln(h(k,`))− c ln qk,`

n

)
≤ inf

k,`
lim sup
n→∞

(
Ln(h(k,`))− c ln qk,`

n

)
≤ inf

k,`
lim sup
n→∞

Ln(h(k,`))

= inf
k,`
εk,`

= lim
k,`→∞

εk,`

= L∗

and the proof of the theorem is finished. �

5.2.2 Kernel-based prediction strategies

We introduce in this section a class of kernel-based prediction strategies for stationary
and ergodic sequences. The main advantage of this approach in contrast to the partition-
based strategy is that it replaces the rigid discretization of the past appearances by more
flexible rules. This also often leads to faster algorithms in practical applications.

To simplify the notation, we start with the simple “moving-window” scheme, corre-
sponding to a naiv kernel function. Just like before, we define an array of experts h(k,`),
where k and ` are positive integers. We associate to each pair (k, `) two radii rk,` > 0
and r′k,` > 0 such that, for any fixed k

lim
`→∞

rk,` = 0, (5.8)

and
lim
`→∞

r′k,` = 0. (5.9)

Finally, let the location of the matches be

J (k,`)
n =

{
k < t < n : ‖xtt−k − xnn−k‖ ≤ rk,`, ‖yt−1t−k − y

n−1
n−k‖ ≤ r′k,`

}
Then the elementary expert h(k,`)n at time n is defined by

h(k,`)n (xn1 , y
n−1
1 ) =

∑
{t∈J(k,`)

n } yt

|J (k,`)
n |

, n > k + 1, (5.10)
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where 0/0 is defined to be 0. The pool of experts is mixed the same way as in the case
of the partition-based strategy (cf. (5.2), (5.3), (5.4) and (5.5)).

Theorem 5.2. Suppose that (5.8) and (5.9) are verified. Then the kernel-based strategy
defined above is universally consistent with respect to the class of all stationary and
ergodic processes {(Xn, Yn)}∞−∞ such that |Y0| ≤ B.

5.2.3 Nearest neighbor-based prediction strategy

This strategy is yet more robust with respect to the kernel strategy and thus also with
respect to the partition strategy. Since it does not suffer from scaling problem as partition
and kernel-based strategies where the quantizer and the radius has to be carefully chosen
to obtain “good” performance. As well as this, in practical applications it runs extremely
fast compared with the kernel and partition schemes as it is much less likely to get bogged
down in calculations for certain experts.

To introduce the strategy, we start again by defining an infinite array of experts h(k,`),
where k and ` are positive integers. Just like before, k is the length of the past observation
vectors being scanned by the elementary expert and, for each `, choose p` ∈ (0, 1) such
that

lim
`→∞

p` = 0 , (5.11)

and set
¯̀= bp`nc

(where b.c is the floor function). At time n, for fixed k and ` (n > k+ ¯̀+ 1), the expert
searches for the ¯̀ nearest neighbors (NN) of the last seen observation xnn−k and yn−1n−k in
the past and predicts accordingly. More precisely, let

J (k,`)
n =

{
k < t < n : (xtt−k, y

t−1
t−k) is among the ¯̀NN of (xnn−k, y

n−1
n−k) in

(xk+1
1 , yk1), . . . , (xn−1n−k−1, y

n−2
n−k−1)

}
and introduce the elementary predictor

h(k,`)n (xn1 , y
n−1
1 ) =

∑
{t∈J(k,`)

n } yt

|J (k,`)
n |

if the sum is nonvoid, and 0 otherwise. Finally, the experts are mixed as before (cf.
(5.2), (5.3), (5.4) and (5.5)).
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Theorem 5.3. Suppose that (5.11) is verified and that for each vector s the random
variable

‖(Xk+1
1 , Y k

1 )− s‖

has a continuous distribution function. Then the nearest neighbor strategy defined above
is universally consistent with respect to the class of all stationary and ergodic processes
{(Xn, Yn)}∞−∞ such that |Y0| ≤ B.

5.2.4 Generalized linear estimates

This section is devoted to an alternative way of defining a universal predictor for sta-
tionary and ergodic processes. It is in effect an extension of the approach presented in
Györfi and Lugosi [?]. Once again, we apply the method described in the previous sec-
tions to combine elementary predictors, but now we use elementary predictors which are
generalized linear predictors. More precisely, we define an infinite array of elementary
experts h(k,`), k, ` = 1, 2, . . . as follows. Let {φ(k)

j }`j=1 be real-valued functions defined on
(Rd)

(k+1) × Rk. The elementary predictor h(k,`)n generates a prediction of form

h(k,`)n (xn1 , y
n−1
1 ) =

∑̀
j=1

cn,jφ
(k)
j (xnn−k, y

n−1
n−k) ,

where the coefficients cn,j are calculated according to the past observations xn1 , y
n−1
1 .

More precisely, the coefficients cn,j are defined as the real numbers which minimize the
criterion

n−1∑
t=k+1

(∑̀
j=1

cjφ
(k)
j (xtt−k, y

t−1
t−k)− yt

)2

(5.12)

if n > k+1, and the all-zero vector otherwise. It can be shown using a recursive technique
(see e.g., Tsypkin [?], Györfi [?] and Györfi and Lugosi [?]) that the cn,j can be calculated
with small computational complexity.

The experts are mixed via an exponential weighting, which is defined the same way
as earlier (cf. (5.2), (5.3), (5.4) and (5.5)).

Theorem 5.4. (Györfi and Lugosi [?]) Suppose that |φ(k)
j | ≤ 1 and, for any fixed k,

suppose that the set {∑̀
j=1

cjφ
(k)
j ; (c1, . . . , c`), ` = 1, 2, . . .

}
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is dense in the set of continuous functions of d(k + 1) + k variables. Then the general-
ized linear strategy defined above is universally consistent with respect to the class of all
stationary and ergodic processes {(Xn, Yn)}∞−∞ such that |Y0| ≤ B.

5.3 Universally consistent predictions: unbounded Y

5.3.1 Partition-based prediction strategies

Let Ê(k,`)
n (xn1 , y

n−1
1 , z, s) be defined as in Section 5.2.1. Introduce the truncation function

Tm(z) =


m if z > m
z if |z| < m
−m if z < −m,

Define the elementary predictor h(k,`) by

h(k,`)n (xn1 , y
n−1
1 ) = Tnδ

(
Ê(k,`)
n (xn1 , y

n−1
1 , G`(x

n
n−k), F`(y

n−1
n−k))

)
,

where
0 < δ < 1/8,

for n = 1, 2, . . . . That is, h(k,`)n is the truncation of the elementary predictor introduced
in Section 5.2.1.

The proposed prediction algorithm proceeds as follows: let {qk,`} be a probability
distribution on the set of all pairs (k, `) of positive integers such that for all k, `, qk,` > 0.
For a time dependent learning parameter ηt > 0, define the weights

wt,k,` = qk,`e
−(t−1)Lt−1(h(k,`))/

√
t (5.13)

and their normalized values
pt,k,` =

wt,k,`
Wt

, (5.14)

where

Wt =
∞∑

i,j=1

wt,i,j . (5.15)

The prediction strategy g is defined by

gt(x
t
1, y

t−1
1 ) =

∞∑
k,`=1

pt,k,`h
(k,`)(xt1, y

t−1
1 ) , t = 1, 2, . . . (5.16)
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Theorem 5.5. (Györfi and Ottucsák [?]) Assume that the conditions (a), (b), (c)
and (d) of Theorem 5.1 are satisfied. Then the prediction scheme g defined above is
universally consistent with respect to the class of all stationary and ergodic processes
{(Xn, Yn)}∞−∞ such that

E{Y 4
1 } <∞.

Here we describe a result, which is used in the analysis.

Lemma 5.3. (Györfi and Ottucsák [?]) Let h(1), h(2), . . . be a sequence of predic-
tion strategies (experts). Let {qk} be a probability distribution on the set of positive
integers. Denote the normalized loss of the expert h = (h1, h2, . . . ) by

Ln(h) =
1

n

n∑
t=1

λt(h),

where
λt(h) = λ(ht, Yt)

and the loss function λ is convex in its first argument h. Define

wt,k = qke
−ηt(t−1)Lt−1(h(k))

where ηt > 0 is monotonically decreasing, and

pt,k =
wt,k
Wt

where

Wt =
∞∑
k=1

wt,k .

If the prediction strategy g = (g1, g2, . . . ) is defined by

gt =
∞∑
k=1

pt,kh
(k)
t t = 1, 2, . . .

then for every n ≥ 1,

Ln(g) ≤ inf
k

(
Ln(h(k))− ln qk

nηn+1

)
+

1

2n

n∑
t=1

ηt

∞∑
k=1

pt,kλ
2
t (h

(k)).
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Proof. Introduce some notations:

w′t,k = qke
−ηt−1(t−1)Lt−1(h(k)),

which is the weight wt,k, where ηt is replaced by ηt−1 and the sum of these are

W ′
t =

∞∑
k=1

w′t,k.

We start the proof with the following chain of bounds:

1

ηt
ln
W ′
t+1

Wt

=
1

ηt
ln

∑∞
k=1wt,ke

−ηtλt(h(k))

Wt

=
1

ηt
ln
∞∑
k=1

pt,ke
−ηtλt(h(k))

≤ 1

ηt
ln
∞∑
k=1

pt,k

(
1− ηtλt(h(k)) +

η2t
2
λ2t (h

(k))

)

because of e−x ≤ 1− x+ x2/2 for x ≥ 0. Moreover,

1

ηt
ln
W ′
t+1

Wt

≤ 1

ηt
ln

(
1− ηt

∞∑
k=1

pt,kλt(h
(k)) +

η2t
2

∞∑
k=1

pt,kλ
2
t (h

(k))

)

≤ −
∞∑
k=1

pt,kλt(h
(k)) +

ηt
2

∞∑
k=1

pt,kλ
2
t (h

(k)) (5.17)

= −
∞∑
k=1

pt,kλ(h
(k)
t , Yt) +

ηt
2

∞∑
k=1

pt,kλ
2
t (h

(k))

≤ −λ

(
∞∑
k=1

pt,kh
(k)
t , Yt

)
+
ηt
2

∞∑
k=1

pt,kλ
2
t (h

(k)) (5.18)

= −λt(g) +
ηt
2

∞∑
k=1

pt,kλ
2
t (h

(k)) (5.19)
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where (5.17) follows from the fact that ln(1+x) ≤ x for all x > −1 and in (5.18) we used
the convexity of the loss λ(h, y) in its first argument h. From (5.19) after rearranging
we obtain

λt(g) ≤ − 1

ηt
ln
W ′
t+1

Wt

+
ηt
2

∞∑
k=1

pt,kλ
2
t (h

(k)) .

Then write a telescope formula:

1

ηt
lnWt −

1

ηt
lnW ′

t+1 =

(
1

ηt
lnWt −

1

ηt+1

lnWt+1

)
+

(
1

ηt+1

lnWt+1 −
1

ηt
lnW ′

t+1

)
= (At) + (Bt).

We have that

n∑
t=1

At =
n∑
t=1

(
1

ηt
lnWt −

1

ηt+1

lnWt+1

)
=

1

η1
lnW1 −

1

ηn+1

lnWn+1

= − 1

ηn+1

ln
∞∑
k=1

qke
−ηn+1nLn(h(k))

≤ − 1

ηn+1

ln sup
k
qke
−ηn+1nLn(h(k))

= − 1

ηn+1

sup
k

(
ln qk − ηn+1nLn(h(k))

)
= inf

k

(
nLn(h(k))− ln qk

ηn+1

)
.
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ηt+1

ηt
≤ 1, therefore applying Jensen’s inequality for concave function, we get that

Wt+1 =
∞∑
i=1

qie
−ηt+1tLt(h(i))

=
∞∑
i=1

qi

(
e−ηttLt(h

(i))
) ηt+1

ηt

≤

(
∞∑
i=1

qie
−ηttLt(h(i))

) ηt+1
ηt

=
(
W ′
t+1

) ηt+1
ηt .

Thus,

Bt =
1

ηt+1

lnWt+1 −
1

ηt
lnW ′

t+1

≤ 1

ηt+1

ηt+1

ηt
lnW ′

t+1 −
1

ηt
lnW ′

t+1

= 0.

We can summarize the bounds:

Ln(g) ≤ inf
k

(
Ln(h(k))− ln qk

nηn+1

)
+

1

2n

n∑
t=1

ηt

∞∑
k=1

pt,kλ
2
t (h

(k)) .

�

Proof of Theorem 5.5. Because of (5.1), it is enough to show that

lim sup
n→∞

Ln(g) ≤ L∗ a.s.

Because of the proof of Theorem 5.1, as n→∞, a.s.,

Ê(k,`)
n (Xn

1 , Y
n−1
1 , z, s)→ E{Y0 | G`(X

0
−k) = z, F`(Y

−1
−k ) = s},

and therefore for all z and s

Tnδ
(
Ê(k,`)
n (Xn

1 , Y
n−1
1 , z, s)

)
→ E{Y0 | G`(X

0
−k) = z, F`(Y

−1
−k ) = s}.
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By Lemma 5.2, as n→∞, almost surely,

Ln(h(k,`))

=
1

n

n∑
t=1

(h(k,`)(Xt
1, Y

t−1
1 )− Yt)2

=
1

n

n∑
t=1

(
Ttδ
(
Ê

(k,`)
t (Xt

1, Y
t−1
1 , G`(X

t
t−k), F`(Y

t−1
t−k ))

)
−Yt

)2
→E{(Y0 − E{Y0 | G`(X

0
−k), F`(Y

−1
−k )})2}

def
= εk,`.

In the same way as in the proof of Theorem 5.1, we get that

inf
k,l
εk,l = lim

k,`→∞
εk,` = E

{(
Y0 − E{Y0|X0

−∞, Y
−1
−∞}

)2}
= L∗.

Apply Lemma 5.3 with choice ηt = 1√
t
and for the squared loss λt(h) = (ht − Yt)2, then

the square loss is convex in its first argument h, so

Ln(g) ≤ inf
k,`

(
Ln(h(k,`))− 2 ln qk,`√

n

)
+

1

2n

n∑
t=1

1√
t

∞∑
k,`=1

pt,k,`
(
h(k,`)(Xt

1, Y
t−1
1 )− Yt

)4
. (5.20)

On the one hand, almost surely,

lim sup
n→∞

inf
k,`

(
Ln(h(k,`))− 2 ln qk,`√

n

)
≤ inf

k,`
lim sup
n→∞

(
Ln(h(k,`))− 2 ln qk,`√

n

)
= inf

k,`
lim sup
n→∞

Ln(h(k,`))

= inf
k,`
εk,`

= lim
k,`→∞

εk,`

= L∗.
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On the other hand,

1

n

n∑
t=1

1√
t

∑
k,`

pt,k,`(h
(k,`)(Xt

1, Y
t−1
1 )− Yt)4

≤ 8

n

n∑
t=1

1√
t

∑
k,`

pt,k,`
(
h(k,`)(Xt

1, Y
t−1
1 )4 + Y 4

t

)
≤ 8

n

n∑
t=1

1√
t

∑
k,`

pt,k,`
(
t4δ + Y 4

t

)
=

8

n

n∑
t=1

t4δ + Y 4
t√

t
,

therefore, almost surely,

lim sup
n→∞

1

n

n∑
t=1

1√
t

∑
k,`

pt,k,`(h
(k,`)(Xt

1, Y
t−1
1 )− Yt)4

≤ lim sup
n→∞

8

n

n∑
t=1

Y 4
t√
t

= 0,

where we applied that E{Y 4
1 } < ∞ and 0 < δ < 1

8
. Summarizing these bounds, we get

that, almost surely,
lim sup
n→∞

Ln(g) ≤ L∗

and the proof of the theorem is finished. �

5.3.2 Kernel-based prediction strategies

Apply the notations of Section 5.2.2. Then the elementary expert h(k,`)n at time n is
defined by

h(k,`)n (xn1 , y
n−1
1 ) = Tmin{nδ,`}

(∑
{t∈J(k,`)

n } yt

|J (k,`)
n |

)
, n > k + 1,

where 0/0 is defined to be 0 and 0 < δ < 1/8. The pool of experts is mixed the same
way as in the case of the partition-based strategy (cf. (5.13), (5.14), (5.15) and (5.16)).
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Theorem 5.6. (Biau et al [?]) Suppose that (5.8) and (5.9) are verified. Then the
kernel-based strategy defined above is universally consistent with respect to the class of
all stationary and ergodic processes {(Xn, Yn)}∞−∞ such that

E{Y 4
0 } <∞.

5.3.3 Nearest neighbor-based prediction strategy

Apply the notations of Section 5.2.3. Then the elementary expert h(k,`)n at time n is
defined by

h(k,`)n (xn1 , y
n−1
1 ) = Tmin{nδ,`}

(∑
{t∈J(k,`)

n } yt

|J (k,`)
n |

)
, n > k + 1,

if the sum is nonvoid, and 0 otherwise and 0 < δ < 1/8. The pool of experts is mixed
the same way as in the case of the histogram-based strategy (cf. (5.13), (5.14), (5.15)
and (5.16)).

Theorem 5.7. (Biau et al [?]) Suppose that (5.11) is verified, and that for each vector
s the random variable

‖(Xk+1
1 , Y k

1 )− s‖

has a continuous distribution function. Then the nearest neighbor strategy defined above
is universally consistent with respect to the class of all stationary and ergodic processes
{(Xn, Yn)}∞−∞ such that

E{Y 4
0 } <∞.

5.3.4 Generalized linear estimates

Apply the notations of Section 5.2.4. The elementary predictor h(k,`)n generates a predic-
tion of form

h(k,`)n (xn1 , y
n−1
1 ) = Tmin{nδ,`}

(∑̀
j=1

cn,jφ
(k)
j (xnn−k, y

n−1
n−k)

)
,

with 0 < δ < 1/8. The pool of experts is mixed the same way as in the case of the
histogram-based strategy (cf. (5.13), (5.14), (5.15) and (5.16)).
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Theorem 5.8. (Biau et al [?]) Suppose that |φ(k)
j | ≤ 1 and, for any fixed k, suppose

that the set {∑̀
j=1

cjφ
(k)
j ; (c1, . . . , c`), ` = 1, 2, . . .

}
is dense in the set of continuous functions of d(k + 1) + k variables. Then the general-
ized linear strategy defined above is universally consistent with respect to the class of all
stationary and ergodic processes {(Xn, Yn)}∞−∞ such that

E{Y 4
0 } <∞.

5.3.5 Prediction of gaussian processes

We consider in this section the classical problem of gaussian time series prediction. In
this context, parametric models based on distribution assumptions and structural con-
ditions such as AR(p), MA(q), ARMA(p,q) and ARIMA(p,d,q) are usually fitted to the
data. However, in the spirit of modern nonparametric inference, we try to avoid such
restrictions on the process structure. Thus, we only assume that we observe a string re-
alization yn−11 of a zero mean, stationary and ergodic, gaussian process {Yn}∞−∞, and try
to predict yn, the value of the process at time n. Note that there is no side information
vectors xn1 in this purely time series prediction framework.

It is well known for gaussian time series that the best predictor is a linear function
of the past:

E{Yn | Yn−1, Yn−2, . . .} =
∞∑
j=1

c∗jYn−j,

where the c∗j minimize the criterion

E


(
∞∑
j=1

cjYn−j − Yn

)2
 .

We apply the principle of generalized linear estimates to the prediction of gaussian
time series by considering the special case

φ
(k)
j (yn−1n−k) = yn−jI{1≤j≤k},

i.e.,

h̃(k)n (yn−11 ) =
k∑
j=1

cn,jyn−j.
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Once again, the coefficients cn,j are calculated according to the past observations yn−11

by minimizing the criterion:

n−1∑
t=k+1

(
k∑
j=1

cjyt−j − yt

)2

if n > k, and the all-zero vector otherwise.
We set

h(k)n (yn−11 ) = Tmin{nδ,k}

(
h̃(k)n (yn−11 )

)
,

where 0 < δ < 1
8
, and combine these experts as before. Precisely, let {qk} be an arbitrarily

probability distribution over the positive integers such that for all k, qk > 0, define the
weights

wk,n = qke
−(n−1)Ln−1(h

(k)
n )/

√
n

and their normalized values
pk,n =

wk,n∑∞
i=1wi,n

.

The prediction strategy g at time n is defined by

gn(yn−11 ) =
∞∑
k=1

pk,nh
(k)
n (yn−11 ), n = 1, 2, . . .

Theorem 5.9. (Biau et al [?]) The prediction strategy g defined above is universally
consistent with respect to the class of all stationary and ergodic zero-mean gaussian pro-
cesses {Yn}∞−∞.

The following corollary shows that the strategy g provides asymptotically a good
estimate of the regression function in the following sense:

Corollary 5.1. (Biau et al [?]) Under the conditions of Theorem 5.9,

lim
n→∞

1

n

n∑
t=1

(
E{Yt | Y t−1

1 } − g(Y t−1
1 )

)2
= 0 almost surely.

Corollary 5.1 is expressed in terms of an almost sure Cesáro consistency. It is an
open problem to know whether there exists a prediction rule g such that

lim
n→∞

(
E{Yn|Y n−1

1 } − g(Y n−1
1 )

)
= 0 almost surely (5.21)

for all stationary and ergodic gaussian processes.
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Chapter 6

Pattern Recognition

6.1 Bayes decision

For the statistical inference, a d-dimensional observation vector X is given, and based on
X, the statistician has to make an inference on a random variable Y , which takes finitely
many values, i.e., it takes values from the set {1, 2, . . . ,M}. In fact, the inference is a
decision formulated by a decision function

g : Rd → {1, 2, . . . ,M}.

If g(X) 6= Y then the decision makes error.
In the formulation of the Bayes decision problem, introduce a cost function C(y, y′) ≥

0, which is the cost if the label Y = y and the decision g(X) = y′. For a decision function
g, the risk is the expectation of the cost:

R(g) = E{C(Y, g(X))}.

In Bayes decision problem, the aim is to minimize the risk, i.e., the goal is to find a
function g∗ : Rd → {1, 2, . . . ,M} such that

R(g∗) = min
g:Rd→{1,2,...,M}

R(g), (6.1)

where g∗ is called the Bayes decision function, and R∗ = R(g∗) is the Bayes risk.
For the posteriori probabilities, introduce the notations:

Py(X) = P{Y = y | X}.
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Let the decision function g∗ be defined by

g∗(X) = arg min
y′

M∑
y=1

C(y, y′)Py(X).

If arg min is not unique then choose the smallest y′, which minimizes∑m
y=1C(y, y′)Py(X). This definition implies that for any decision function g,

m∑
y=1

C(y, g∗(X))Py(X) ≤
M∑
y=1

C(y, g(X))Py(X). (6.2)

Theorem 6.1. For any decision function g, we have that

R(g∗) ≤ R(g).

Proof. For a decision function g, let’s calculate the risk.

R(g) = E{C(Y, g(X))}
= E{E{C(Y, g(X)) | X}}

= E

{
m∑
y=1

M∑
y′=1

C(y, y′)P{Y = y, g(X) = y′ | X}

}

= E

{
m∑
y=1

M∑
y′=1

C(y, y′)I{g(X)=y′}P{Y = y | X}

}

= E

{
M∑
y=1

C(y, g(X))Py(X)

}
.

(6.2) implies that

R(g) = E

{
M∑
y=1

C(y, g(X))Py(X)

}

≥ E

{
M∑
y=1

C(y, g∗(X))Py(X)

}
= R(g∗).
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Concerning the cost function, the most frequently studied example is the so called
0− 1 loss:

C(y, y′) =

{
1 if y 6= y′,
0 if y = y′.

For the 0− 1 loss, the corresponding risk is the error probability:

R(g) = E{C(Y, g(X))} = E{I{Y 6=g(X)}} = P{Y 6= g(X)},
and the Bayes decision is of form

g∗(X) = arg min
y′

M∑
y=1

C(y, y′)Py(X) = arg min
y′

∑
y 6=y′

Py(X) = arg max
y′

Py′(X),

which is called maximum posteriori decision, too.

If the distribution of the observation vector X has density, then the Bayes decision
has an equivalent formulation. Introduce the notations for density of X by

P{X ∈ B} =

∫
B

f(x)dx

and for the conditional densities by

P{X ∈ B | Y = y} =

∫
B

fy(x)dx

and for a priori probabilities
qy = P{Y = y},

then it is easy to check that

Py(X) = P{Y = y | X = x} =
qyfy(x)

f(x)

and therefore

g∗(x) = arg min
y′

M∑
y=1

C(y, y′)Py(x)

= arg min
y′

M∑
y=1

C(y, y′)
qyfy(x)

f(x)

= arg min
y′

M∑
y=1

C(y, y′)qyfy(x).
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From the proof of Theorem 6.1 we may derive a formula for the optimal risk:

R(g∗) = E

{
min
y′

M∑
y=1

C(y, y′)Py(X)

}
.

If X has density then

R(g∗) = E

{
min
y′

M∑
y=1

C(y, y′)
qyfy(X)

f(X)

}

=

∫
Rd

min
y′

M∑
y=1

C(y, y′)
qyfy(x)

f(x)
f(x)dx

=

∫
Rd

min
y′

M∑
y=1

C(y, y′)qyfy(x)dx.

For the 0− 1 loss, we get that

R(g∗) = E
{

min
y′

(1− Py′(X))

}
,

which has the form, for densities,

R(g∗) =

∫
Rd

min
y′

(f(x)− qy′fy′(x))dx = 1−
∫
Rd

max
y′

qy′fy′(x)dx.

For M = 2, we have that

R(g∗) = E {min(P1(X), P2(X))} ,

and, for densities,

R(g∗) =

∫
Rd

min(q1f1(x), q2f2(x))dx.

Figure 6.1 illustrates the Bayes decision, while the red area in Figure 6.2 is equal to the
Bayes error probability.
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Figure 6.1: Bayes decision.

Figure 6.2: Bayes error probability.

6.2 Approximation of Bayes decision
In practice, the posteriori probabilities {Py(X)} are unknown. If we are given some
approximations {P̂y(X)}, from which one may derive some approximate decision

ĝ(X) = arg min
y′

M∑
y=1

C(y, y′)P̂y(X)

then the question is how well R(ĝ) approximates R∗.

Lemma 6.1. Put Cmax = maxy,y′ C(y, y′), then

0 ≤ R(ĝ)−R(g∗) ≤ 2Cmax

M∑
y=1

E
{
|Py(X)− P̂y(X)|

}
.
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Proof. We have that

R(ĝ)−R(g∗) = E

{
M∑
y=1

C(y, ĝ(X))Py(X)

}
− E

{
M∑
y=1

C(y, g∗(X))Py(X)

}

= E

{
M∑
y=1

C(y, ĝ(X))Py(X)−
M∑
y=1

C(y, ĝ(X))P̂y(X)

}

+E

{
M∑
y=1

C(y, ĝ(X))P̂y(X)−
M∑
y=1

C(y, g∗(X))P̂y(X)

}

+E

{
M∑
y=1

C(y, g∗(X))P̂y(X)−
M∑
y=1

C(y, g∗(X))Py(X)

}
.

The definition of ĝ implies that

M∑
y=1

C(y, ĝ(X))P̂y(X)−
M∑
y=1

C(y, g∗(X))P̂y(X) ≤ 0,

therefore

R(ĝ)−R(g∗) ≤ E

{
M∑
y=1

C(y, ĝ(X))|Py(X)− P̂y(X)|

}

+E

{
M∑
y=1

C(y, g∗(X))|P̂y(X)− Py(X)|

}

≤ 2Cmax

M∑
y=1

E
{
|Py(X)− P̂y(X)|

}
.

�

In the special case of the approximate maximum posteriori decision the inequality in
Lemma 6.1 can be slightly improved:

0 ≤ R(ĝ)−R(g∗) ≤
M∑
y=1

E
{
|Py(X)− P̂y(X)|

}
.
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Based on this relation, one can introduce efficient pattern recognition rules. The a
posteriori probabilities are the regression functions

P{Y = y|X = x} = E{I{Y=y}|X = x} = m(y)(x).

Given data Dn = {(X1, Y1), . . . , (Xn, Yn)}, estimates m(y)
n of m(y) can be constructed

from the data set
D(y)
n = {(X1, I{Y1=y}), . . . , (Xn, I{Yn=y})},

and one can use a plug-in estimate

gn(x) = arg max
1≤y≤M

m(y)
n (x) (6.3)

to estimate g∗. If the estimates m(y)
n are close to the a posteriori probabilities, then

again the error of the plug-in estimate is close to the optimal error. (For the details, see
Devroye, Györfi, and Lugosi [?].)

6.3 Pattern recognition for time series
In this section we apply the ideas of Chapter 5 to the seemingly more difficult pattern
recognition problem for time series. The setup is the following: let {(Xn, Yn)}∞−∞ be a
stationary and ergodic sequence of pairs taking values in Rd×{0, 1}. The problem is to
predict the value of Yn given the data (Xn

1 , Y
n−1
1 ).

We may formalize the prediction (classification) problem as follows. The strategy of
the classifier is a sequence f = {ft}∞t=1 of decision functions

ft :
(
Rd
)t × {0, 1}t−1 → {0, 1}

so that the classification formed at time t is ft(Xt
1, Y

t−1
1 ). The normalized cumulative

0− 1 loss for any fixed pair of sequences Xn
1 , Y

n
1 is now

Rn(f) =
1

n

n∑
t=1

I{ft(Xt
1,Y

t−1
1 )6=Yt}.

In this case there is a fundamental limit for the predictability of the sequence, i.e.,
Algoet [?] proved that for any classification strategy f and stationary ergodic process
{(Xn, Yn)}∞n=−∞,

lim inf
n→∞

Rn(f) ≥ R∗ a.s., (6.4)
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where
R∗= E

{
min

(
P{Y0 = 1|X0

−∞, Y
−1
−∞},P{Y0 = 0|X0

−∞, Y
−1
−∞}

)}
,

therefore the following definition is meaningful:

Definition 6.1. A classification strategy f is called universally consistent if for all sta-
tionary and ergodic processes {Xn, Yn}∞−∞,

lim
n→∞

Rn(f) = R∗ almost surely.

Therefore, universally consistent strategies asymptotically achieve the best possible
loss for all ergodic processes. We present a simple (non-randomized) on-line classifi-
cation strategy, and prove its universal consistency. Consider the prediction scheme
gt(X

t
1, Y

t−1
1 ) introduced in Sections 5.2.1 or 5.2.2 or 5.2.3 or 5.2.4, and then introduce

the corresponding classification scheme:

ft(X
t
1, Y

t−1
1 ) =

{
1 if gt(Xt

1, Y
t−1
1 ) > 1/2

0 otherwise.

The main result of this section is the universal consistency of this simple classification
scheme:

Theorem 6.2. (Györfi and Ottucsák [?]) Assume that the conditions of Theorems
5.1 or 5.2 or 5.3 or 5.4 are satisfied. Then the classification scheme f defined above
satisfies

lim
n→∞

Rn(f) = R∗ almost surely

for any stationary and ergodic process {(Xn, Yn)}∞n=−∞.

In order to prove Theorem 6.2 we derive a corollary of Theorem 5.1, which shows that
asymptotically, the predictor gt defined by (5.5) predicts as well as the optimal predictor
given by the regression function E{Yt|Y t−1

−∞ }. In fact, gt gives a good estimate of the
regression function in the following (Cesáro) sense:

Corollary 6.1. Under the conditions of Theorem 5.1

lim
n→∞

1

n

n∑
i=1

(
E{Yi|Xi

−∞, Y
i−1
−∞} − gi(Xi

1, Y
i−1
1 )

)2
= 0 almost surely.
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Proof. By Theorem 5.1,

lim
n→∞

1

n

n∑
i=1

(
Yi − gi(Xi

1, Y
i−1
1 )

)2
= L∗ almost surely.

Consider the following decomposition:(
Yi − gi(Xi

1, Y
i−1
1 )

)2
=

(
Yi − E{Yi|Xi

−∞, Y
i−1
−∞}

)2
+2
(
Yi − E{Yi|Xi

−∞, Y
i−1
−∞}

) (
E{Yi|Xi

−∞, Y
i−1
−∞} − gi(Xi

1, Y
i−1
1 )

)
+
(
E{Yi|Xi

−∞, Y
i−1
−∞} − gi(Xi

1, Y
i−1
1 )

)2
.

Then the ergodic theorem implies that

lim
n→∞

1

n

n∑
i=1

(
Yi − E{Yi|Xi

−∞, Y
i−1
−∞}

)2
= L∗ almost surely.

It remains to show that

lim
n→∞

1

n

n∑
i=1

(
Yi − E{Yi|Xi

−∞, Y
i−1
−∞}

) (
E{Yi|Y i−1

−∞} − gi(Xi
1, Y

i−1
1 )

)
= 0. (6.5)

almost surely. But this is a straightforward consequence of Kolmogorov’s classical strong
law of large numbers for martingale differences due to Chow [?] (see also Stout [?,
Theorem 3.3.1]). It states that if {Zi} is a martingale difference sequence with

∞∑
n=1

EZ2
n

n2
<∞, (6.6)

then

lim
n→∞

1

n

n∑
i=1

Zi = 0 almost surely.

Thus, (6.5) is implied by Chow’s theorem since the martingale differences Zi =
(
Yi − E{Yi|Xi

−∞, Y
i−1
−∞}

) (
E{Yi|Xi

−∞, Y
i−1
−∞} − gi(Xi

1, Y
i−1
1 )

)
are bounded by 4B2. �

Proof of Theorem 6.2 Because of (6.4) we have to show that

lim sup
n→∞

Rn(f) ≤ R∗ a.s.
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By Corollary 6.1,

lim
n→∞

1

n

n∑
t=1

(
E{Yt | Xt

−∞, Y
t−1
−∞ } − gt(Xt

1, Y
t−1
1 )

)2
= 0 a.s. (6.7)

Introduce the Bayes classification scheme using the infinite past:

f ∗t (Xt
−∞, Y

t−1
−∞ ) =

{
1 if P{Yt = 1 | Xt

−∞, Y
t−1
−∞ } > 1/2

0 otherwise,

and its normalized cumulative 0− 1 loss:

Rn(f ∗) =
1

n

n∑
t=1

I{f∗t (Xt
−∞,Y

t−1
−∞ )6=Yt}.

Put

R̄n(f) =
1

n

n∑
t=1

P{ft(Xt
1, Y

t−1
1 ) 6= Yt | Xt

−∞, Y
t−1
−∞ }

and

R̄n(f ∗) =
1

n

n∑
t=1

P{f ∗t (Xt
−∞, Y

t−1
−∞ ) 6= Yt | Xt

−∞, Y
t−1
−∞ }.

Then
Rn(f)− R̄n(f)→ 0 a.s.

and
Rn(f ∗)− R̄n(f ∗)→ 0 a.s.,

since they are the averages of bounded martingale differences. Moreover, by the ergodic
theorem

R̄n(f ∗)→ R∗ a.s.,

so we have to show that

lim sup
n→∞

(R̄n(f)− R̄n(f ∗)) ≤ 0 a.s.
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Lemma 6.1 implies that

R̄n(f)− R̄n(f ∗) =
1

n

n∑
t=1

(
P{ft(Xt

1, Y
t−1
1 ) 6= Yt | Xt

−∞, Y
t−1
−∞ }

−P{f ∗t (Xt
−∞, Y

t−1
−∞ ) 6= Yt | Xt

−∞, Y
t−1
−∞ }

)
≤ 2

1

n

n∑
t=1

∣∣E{Yt | Xt
−∞, Y

t−1
−∞ } − gt(Xt

1, Y
t−1
1 )

∣∣
≤ 2

√√√√ 1

n

n∑
t=1

∣∣E{Yt | Xt
−∞, Y

t−1
−∞ } − gt(Xt

1, Y
t−1
1 )

∣∣2
→ 0 a.s.,

where in the last step we applied (6.7). �
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Chapter 7

Density Estimation

7.1 Why and how density estimation: the L1 error
The classical nonparametric example is the problem estimating a distribution function

F (x) = P{X < x}.

from i.i.d. samples X1,X2, . . . ,Xn taking values in Rd. Here on the one hand the
construction of the empirical distribution function

Fn(x) =
1

n

n∑
i=1

I{Xi<x}.

is distribution-free, and on the other hand its uniform convergence, the Glivenko-Cantelli
Theorem holds for all F

lim
n→∞

sup
x∈Rd
|Fn(x)− F (x)| = 0

a.s.
The Glivenko-Cantelli Theorem is really distribution-free, and the convergence in

Kolmogorov- Smirnov distance means uniform convergence, so virtually it seems that
there is no need to go further. However, if, for example, in a decision problem one
wants to use empirical distribution functions for two unknown continuous distribution
functions for creating a kind of likelihood then these estimates are useless. It turns out
that we should look for stronger error criteria. For this purpose it is obvious to consider
the total variation: if µ and ν are probability distributions on Rd (d ≥ 1), then the total
variation distance between µ and ν is defined by

V (µ, ν) = sup
A
|µ(A)− ν(A)|,
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where the supremum is taken over all Borel sets A. The Scheffé Theorem below shows
that the total variation is the half of the L1 distance of the corresponding densities.

Theorem 7.1. (Scheffé [?]) If µ and ν are absolutely continuous with densities f and
g, respectively, then ∫

Rd
|f(x)− g(x)|dx = 2V (µ, ν).

(The quantity

L1(f, g) =

∫
Rd
|f(x)− g(x)|dx (7.1)

is called L1-distance.)

Proof. Note that

V (µ, ν) = sup
A
|µ(A)− ν(A)|

= sup
A

∣∣∣∣∫
A

f −
∫
A

g

∣∣∣∣
= sup

A

∣∣∣∣∫
A

(f − g)

∣∣∣∣
=

∫
f>g

(f − g)

=

∫
g>f

(g − f)

=
1

2

∫
|f − g|.

�
The red area in Figure 7.1 is equal to the L1 distance between the densities f and g.
The Scheffé Theorem implies an equivalent definition of the total variation:

V (µ, ν) =
1

2
sup
{Aj}

∑
j

|µ(Aj)− ν(Aj)|, (7.2)

where the supremum is taken over all finite Borel measurable partitions {Aj}.
For the distribution of X, introduce the notation

µ(A) = P{X ∈ A}.
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Figure 7.1: L1 error.

In the sequel assume that the distribution µ has a density, which is denoted by f :

µ(A) =

∫
A

f(x)dx.

From i.i.d. samples X1,X2, . . . ,Xn we may estimate the density function f , and such
an estimate is denoted by

fn(x) = fn(x,X1, . . . ,Xn).

In an obvious manner one can derive a distribution estimate µ∗n as follows:

µ∗n(A) =

∫
A

fn(x)dx.

Then the Scheffé theorem implies that

V (µ, µ∗n) =
1

2

∫
Rd
|f(x)− fn(x)|dx,

therefore if the density estimate fn is consistent in L1, i.e.,

lim
n→∞

∫
|f(x)− fn(x)| dx = 0

a.s. then the corresponding distribution estimate µ∗n is consistent in total variation:

lim
n→∞

V (µ, µ∗n) = 0

a.s.
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7.2 The histogram

Let µn denote the empirical distribution

µn(A) =
1

n

n∑
i=1

I{Xi∈A}.

Let Pn = {An1, An2, . . . } be a partition of Rd such that the cells Anj have positive and
finite volume (Lebesgue measure λ). Then the histogram is defined by

fn(x) =
µn(An(x))

λ(An(x))
,

where
An(x) = Anj, if x ∈ Anj.

For the partition Pn, an example can be the cubic partition, when the cells are cubes of
side length hn. In this special case

fn(x) =
µn(An(x))

hdn

Theorem 7.2. Assume that for each sphere S centered at the origin we have that

lim
n→∞

sup
j:Anj∩S 6=∅

diam(Anj) = 0

and

lim
n→∞

|{j : Anj ∩ S 6= ∅}|
n

= 0,

then

lim
n→∞

E
{∫
|f(x)− fn(x)| dx

}
= 0.

Proof. The triangle inequality implies that∫
|fn(x)− f(x)| dx ≤

∫
|fn(x)− Efn(x)| dx︸ ︷︷ ︸
variation term

+

∫
|Efn(x)− f(x)| dx︸ ︷︷ ︸

bias

.
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The histogram is constant on a cell, therefore∫
|fn(x)− Efn(x)| dx =

∑
j

∫
Anj

|fn(x)− Efn(x)| dx =
∑
j

|µn(Anj)− µ(Anj)|.

Put Mn = |{j : Anj ∩ S 6= ∅}|, and choose the numbering of the cells such that
Anj ∩ S 6= ∅, j = 1, . . . ,Mn. Because of the condition of the theorem,

Mn

n
→ 0.

Denote

Sn =
Mn⋃
j=1

Anj.

Then ∫
|fn(x)− Efn(x)| dx ≤

Mn∑
j=1

|µn(Anj)− µ(Anj)|+ µn(Scn) + µ(Scn),

therefore the Cauchy-Schwarz and the Jensen inequalities imply that

E
{∫
|fn(x)− Efn(x)| dx

}
≤

Mn∑
j=1

E{|µn(Anj)− µ(Anj)|}+ 2µ(Scn)

≤
Mn∑
j=1

√
E{|µn(Anj)− µ(Anj)|2}+ 2µ(Sc)

≤
Mn∑
j=1

√
µ(Anj)

n
+ 2µ(Sc)

≤
√
Mn

n
+ 2µ(Sc) (7.3)

→ 2µ(Sc).

The sphere S is arbitrary therefore

E
{∫
|fn(x)− Efn(x)| dx

}
→ 0.
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Concerning the bias term, we have that

Efn(x) =
µ(An(x))

λ(An(x))
=

1

λ(An(x))

∫
An(x)

f(z) dz =

∫
f(z)Kn(x, z) dz,

where

Kn(x, z) =
I{z∈An(x)}
λ(An(x))

.

Then ∫
|Efn(x)− f(x)| dx =

∫ ∣∣∣∣∫ f(z)Kn(x, z) dz− f(x)

∣∣∣∣ dx.

If f is continuous and is zero outside of a compact set then it is uniformly continuous,
and the inequality

∫
|Efn(x)− f(x)| dx ≤

∫ ∫
|f(z)− f(x)|Kn(x, z) dzdx (7.4)

implies that ∫
|Efn(x)− f(x)| dx→ 0.

If the density f is arbitrary then for any ε > 0 there is a density f̃ such that it is
continuous and is zero outside of a compact set, and

∫
|f(x)− f̃(x)| dx < ε.
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Then ∫
|f(x)− Efn(x)| dx

=

∫ ∣∣∣∣f(x)−
∫
f(z)Kn(x, z) dz

∣∣∣∣ dx

≤
∫
|f(x)− f̃(x)| dx +

∫ ∣∣∣∣f̃(x)−
∫
f̃(z)Kn(x, z) dz

∣∣∣∣ dx

+

∫ ∣∣∣∣∫ f̃(z)Kn(x, z) dz−
∫
f(z)Kn(x, z) dz

∣∣∣∣ dx

≤ ε+

∫ ∣∣∣∣f̃(x)−
∫
f̃(z)Kn(x, z) dz

∣∣∣∣ dx

+

∫ (∫
|f̃(z)− f(z)|Kn(x, z) dx

)
dz

= ε+

∫ ∣∣∣∣f̃(x)−
∫
f̃(z)Kn(x, z) dz

∣∣∣∣ dx +

∫
|f̃(z)− f(z)| dz

→ 2ε.

�

Theorem 7.3. Assume that f is zero outside a sphere S and it is Lipschitz continuous,
i.e.,

|f(x)− f(z)| ≤ C‖x− z‖.
If the partition Pn is a cubic partition with side length hn then for the histogram fn, one
has that

E
∫
|f − fn| ≤

c1√
nhdn

+ c2hn,

so for the choice
hn = c3n

− 1
d+2

we have that
E
∫
|f − fn| ≤ c4n

− 1
d+2 .

Proof. For the variation term, (7.3) implies that

E
{∫
|fn(x)− Efn(x)| dx

}
≤
√
Mn

n
≤

√
λ(S)

nhdn
.
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Concerning the bias term, (7.4) implies that∫
|Efn(x)− f(x)| dx ≤

∫ ∫
|f(z)− f(x)|Kn(x, z) dzdx

≤
∫ ∫

C‖z− x‖Kn(x, z) dzdx

≤
∫ ∫

Chn
√
dKn(x, z) dzdx

≤ Chn
√
dλ(S).

�

7.3 Kernel density estimate
Introduce the kernel density estimate such that choose a density K(x), called kernel
function. For a positive bandwidth hn, the kernel estimate is defined by

fn(x) =
1

nhdn

n∑
i=1

K

(
x−Xi

hn

)
.

Theorem 7.4. If
lim
n→∞

hn = 0 and lim
n→∞

nhdn =∞.

then for the kernel density estimate fn, one has

lim
n→∞

E
∫
|f(x)− fn(x)| dx = 0.

Examples for kernels:

• Naive or window kernel
K(x) = cI{x∈S0,r},

where S0,r is a sphere centered at the origin and with radius r.

• Gauss kernel
K(x) = ce−‖x‖

2

.

• Cauchy kernel
K(x) =

c

1 + ‖x‖d+1
.
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• Epanechnikov kernel
K(x) = c(1− ‖x‖2)I{‖x‖≤1}.

Theorem 7.5. Assume that f is zero outside a sphere S and it is differentiable with
Lipschitz continuous gradient, i.e.,

‖f ′(x)− f ′(z)‖ ≤ C‖x− z‖.

Then for the kernel estimate fn, one has that

E
∫
|f − fn| ≤

c1√
nhdn

+ c2h
2
n,

so for the choice
hn = c3n

− 1
d+4

we have that
E
∫
|f − fn| ≤ c4n

− 2
d+4 .

For further reading on L1 density estimation, the books Devroye, Györfi [?], Devroye
[?] and Devroye, Lugosi [?] are suggested.
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Chapter 8

Testing Simple Hypotheses

8.1 α-level tests
In this section we consider decision problems, where the consequences of the various
errors are very much different. For example, if in a diagnostic problem Y = 0 means
that the patient is OK, while Y = 1 means that the patient is ill, then for Y = 0 the
false decision is that the patient is ill, which implies some superfluous medical treatment,
while for Y = 1 the false decision is that the illness is not detected, and the patient’s
state may become worse. A similar situation happens for radar detection.

The event Y = 0 is called null hypothesis and is denoted by H0, and the event Y = 1
is called alternative hypothesis and is denoted byH1. The decision, the test is formulated
by a set A ⊂ Rd, called acceptance region such that accept H0 if X ∈ A, otherwise reject
H0, i.e., accept H1. The set Ac is called critical region.

Let P0 and P1 be the probability distributions of X under H0 and H1, respectively.
There are two types of errors:

• Error of the first kind, if under the null hypothesis H0 we reject H0. This error is
P0(A

c).

• Error of the second kind, if under the alternative hypothesis H1 we reject H1. This
error is P1(A).

Obviously, one decreases the error of the first kind P0(A
c) if the error of the second

kind P1(A) increases. We can formulate the optimization problem such that minimize
the error of the second kind under the condition that the error of the first kind is at most
0 < α < 1:

min
A:P0(Ac)≤α

P1(A). (8.1)
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In order to solve this problem the Neyman-Pearson Lemma plays an important role.

Theorem 8.1. (Neyman, Pearson [?]) Assume that the distributions P0 and P1 have
densities f0 and f1:

P0(B) =

∫
B

f0(x)dx and P1(B) =

∫
B

f1(x)dx.

For a γ > 0, put
Aγ = {x : f0(x) ≥ γf1(x)}.

If for any set A
P0(A

c) ≤ P0(A
c
γ)

then
P1(A) ≥ P1(Aγ).

Proof. Because of the condition of the theorem, we have the following chain of inequal-
ities:

P0(A
c) ≤ P0(A

c
γ)

P0(A
c ∩ Aγ) + P0(A

c ∩ Acγ) ≤ P0(A ∩ Acγ) + P0(A
c ∩ Acγ)∫

Ac∩Aγ
f0(x)dx ≤

∫
A∩Acγ

f0(x)dx.

The definition of Aγ implies that

γ

∫
Ac∩Aγ

f1(x)dx ≤
∫
Ac∩Aγ

f0(x)dx ≤
∫
A∩Acγ

f0(x)dx ≤ γ

∫
A∩Acγ

f1(x)dx,

therefore using the previous chain of derivations in a reverse order we get that

P1(A
c) ≤ P1(A

c
γ).

�
In Figure 8.1 the blue area illustrates the error of the first kind, while the red area is

the error of the second kind.
If for an 0 < α < 1 there is a γ = γ(α), which solves the equation

P0(A
c
γ) = α,
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Figure 8.1: Error of the first and second kind.

then the Neyman-Pearson Lemma implies that in order to solve the problem (8.1), it is
enough to search for set of form Aγ, i.e.,

min
A:P0(Ac)≤α

P1(A) = min
Aγ :P0(Acγ)≤α

P1(Aγ).

Then Aγ is called the most powerful α-level test.
Because of the Neyman-Pearson Lemma, we introduce the likelihood ratio statistic

T (X) =
f0(X)

f1(X)
,

and so the null hypothesis H0 is accepted if T (X) ≥ γ.

Example 1. As an illustration of the Neyman-Pearson Lemma, consider the example of
an experiment, where the null hypothesis is that the components of X are i.i.d. normal
with mean m = m0 > 0 and with variance σ2, while under the alternative hypothesis
the components of X are i.i.d. normal with mean m1 = 0 and with the same variance
σ2. Then

f0(x) = f0(x1, . . . , xd) =
d∏
i=1

(
1√
2πσ

e−
(xi−m)2

2σ2

)
and

f1(x) = f1(x1, . . . , xd) =
d∏
i=1

(
1√
2πσ

e−
x2i
2σ2

)
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and
f0(X)

f1(X)
≥ γ

means that

−
d∑
i=1

(Xi −m)2

2σ2
+

d∑
i=1

X2
i

2σ2
≥ ln γ,

or equivalently,
d∑
i=1

(2Xim−m2) ≥ 2σ2 ln γ.

This test accepts the null hypothesis if

1

d

d∑
i=1

Xi ≥
2σ2 ln γ/d+m2

2m
=
σ2 ln γ

dm
+
m

2
=: γ′.

The test is based on the linear statistic
∑d

i=1Xi/d, and the question left is how to choose
the critical value γ′, for which it is an α-level test, i.e., the error of the first kind is α:

P0

{
1

d

d∑
i=1

Xi ≤ γ′

}
= α.

Under the null hypothesis, the distribution of 1
d

∑d
i=1Xi is normal with mean m and

with variance σ2/d, therefore

P0

{
1

d

d∑
i=1

Xi ≤ γ′

}
= Φ

(
γ′ −m
σ/
√
d

)
,

where Φ denotes the standard normal distribution function, and so the critical value γ′
of an α-level test solves the equation

Φ

(
−m− γ

′

σ/
√
d

)
= α,

i.e.,
γ′ = m− Φ−1(1− α)σ/

√
d.
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Remark 1. In many situations, when d is large enough, one can refer to the central
limit theorem such that the log-likelihood ratio

ln
f0(X)

f1(X)

is asymptotically normal. The argument of Example 1 can be extended if under H0, the
log-likelihood ratio is approximately normal with mean m0 and with variance σ2

0. Let
the test be defined such that it accepts H0 if

ln
f0(X)

f1(X)
≥ γ′,

where
γ′ = m0 − Φ−1(1− α)σ0.

Then this test is approximately an α-level test.

8.2 φ-divergences
In the analysis of repeated observations the divergences between distribution play an im-
portant role. Imre Csiszár [?] introduced the concept of φ-divergences. Let φ : (0,∞)→
R be a convex function, extended on [0,∞) by continuity such that φ(1) = 0. For the
probability distributions µ and ν, let λ be a σ-finite dominating measure of µ and ν, for
example, λ = µ+ ν. Introduce the notations

f =
dµ

dλ

and
g =

dν

dλ
.

Then the φ-divergence of µ and ν is defined by

Dφ(µ, ν) =

∫
Rd
φ

(
f(x)

g(x)

)
g(x)λ(dx). (8.2)

The Jensen inequality implies the most important property of the φ-divergences:

Dφ(µ, ν) =

∫
Rd
φ

(
f(x)

g(x)

)
g(x)λ(dx) ≥ φ

(∫
Rd

f(x)

g(x)
g(x)λ(dx)

)
= φ(1) = 0.

It means that Dφ(µ, ν) ≥ 0 and if µ = ν then Dφ(µ, ν) = 0. If, in addition, φ is strictly
convex at 1 then Dφ(µ, ν) = 0 iff µ = ν.

Next we show some examples.

97



• For
φ1(t) = |t− 1|,

we get the L1 distance

Dφ1(µ, ν) =

∫
Rd
|f(x)− g(x)|λ(dx).

• For
φ2(t) = (

√
t− 1)2,

we get the squared Hellinger distance

Dφ2(µ, ν) =

∫
Rd

(√
f(x)−

√
g(x)

)2
λ(dx)

= 2

(
1−

∫
Rd

√
f(x)g(x)λ(dx)

)
.

• For
φ3(t) = − ln t,

we get the I-divergence (called also relative entropy or Kullback-Leibler divergence)

I(µ, ν) = Dφ3(µ, ν) =

∫
Rd

ln

(
g(x)

f(x)

)
g(x)λ(dx).

• For
φ4(t) = (t− 1)2,

we get the χ2-divergence

χ2(µ, ν) = Dφ4(µ, ν) =

∫
Rd

(f(x)− g(x))2

g(x)
λ(dx).

An equivalent definition of the φ-divergence is

Dφ(µ, ν) = sup
P

∑
j

φ

(
µ(Aj)

ν(Aj)

)
ν(Aj), (8.3)

where the supremum is taken over all finite Borel measurable partitions P = {Aj} of Rd.
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The main reasoning of this equivalence is that for any partition P = {Aj}, the Jensen
inequality implies that

Dφ(µ, ν) =

∫
Rd
φ

(
f(x)

g(x)

)
g(x)λ(dx)

=
∑
j

∫
Aj

φ

(
f(x)

g(x)

)
g(x)λ(dx)

=
∑
j

1

ν(Aj)

∫
Aj

φ

(
f(x)

g(x)

)
g(x)λ(dx)ν(Aj)

≥
∑
j

φ

(
1

ν(Aj)

∫
Aj

f(x)

g(x)
g(x)λ(dx)

)
ν(Aj)

=
∑
j

φ

(
µ(Aj)

ν(Aj)

)
ν(Aj). (8.4)

The sequence of partitions P1,P2, . . . is called nested if any cell A ∈ Pn+1 is a subset
of a cell A′ ∈ Pn. Next we show that for nested sequence of partitions

∑
A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A) ↑ .

Again, this property is the consequence of the Jensen inequality:

∑
A′∈Pn+1

φ

(
µ(A′)

ν(A′)

)
ν(A′) =

∑
A∈Pn

 ∑
A′∈Pn+1,A′⊂A

φ

(
µ(A′)

ν(A′)

)
ν(A′)


=

∑
A∈Pn

 ∑
A′∈Pn+1,A′⊂A

φ

(
µ(A′)

ν(A′)

)
ν(A′)

ν(A)

 ν(A)

≥
∑
A∈Pn

φ

 ∑
A′∈Pn+1,A′⊂A

µ(A′)

ν(A′)

ν(A′)

ν(A)

 ν(A)

=
∑
A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A).
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It implies that there is a nested sequence of partitions P1,P2, . . . such that∑
A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A) ↑ sup

Pn

∑
A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A).

The sequence of partitions P1,P2, . . . is called asymptotically fine if for any sphere
S centered at the origin

lim
n→∞

max
A∈Pn,A∩S 6=0

diam(A) = 0. (8.5)

One can show that if the nested sequence of partitions P1,P2, . . . is asymptotically fine
then ∑

A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A) ↑

∫
Rd
φ

(
f(x)

g(x)

)
g(x)λ(dx).

This final step will be verified in the particular case of L1 distance, cf. (9.7). In general,
we may introduce a cell wise constant approximation of f(x)

g(x)
:

Fn(x) :=
µ(A)

ν(A)
if x ∈ A.

Thus, ∑
A∈Pn

φ

(
µ(A)

ν(A)

)
ν(A) =

∫
Rd
φ (Fn(x)) g(x)λ(dx)

and
Fn(x)→ f(x)

g(x)

for almost all x mod λ with g(x) > 0 such that∫
Rd
φ (Fn(x)) g(x)λ(dx)→

∫
Rd
φ

(
f(x)

g(x)

)
g(x)λ(dx).

8.3 Repeated observations
The error probabilities can be decreased if instead of an observation vector X, we are
given n vectors X1, . . . ,Xn such that under H0, X1, . . . ,Xn are independent and identi-
cally distributed (i.i.d.) with distribution P0, while under H1, X1, . . . ,Xn are i.i.d. with
distribution P1. In this case the likelihood ratio statistic is of form

T (X) =
f0(X1) · . . . · f0(Xn)

f1(X1) · . . . · f1(Xn)
.
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The Stein Lemma below says that there are tests, for which both the error of the first
kind αn and the error of the second kind βn tend to 0, if n→∞.

In order to formulate the Stein Lemma, we remember the I-divergence

I(P0, P1) = D(f0, f1) =

∫
Rd
f0(x) ln

f0(x)

f1(x)
dx. (8.6)

.

Theorem 8.2. (cf. Chernoff [?]) For any 0 < δ < D(f0, f1), there is a test such
that the error of the first kind

αn → 0,

and for the error of the second kind

βn ≤ e−n(D(f0,f1)−δ) → 0.

Proof. Construct a test such that accept the null hypothesis H0 if

f0(X1) · . . . · f0(Xn)

f1(X1) · . . . · f1(Xn)
≥ en(D(f0,f1)−δ),

or equivalently

1

n

n∑
i=1

ln
f0(Xi)

f1(Xi)
≥ D(f0, f1)− δ.

Under H0, the strong law of large numbers implies that

1

n

n∑
i=1

ln
f0(Xi)

f1(Xi)
→ D(f0, f1)

almost surely (a.s.), therefore for the error of the first kind αn, we get that

αn = P0

{
1

n

n∑
i=1

ln
f0(Xi)

f1(Xi)
< D(f0, f1)− δ

}
→ 0.
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Concerning the error of the second kind βn we have the following simple bound:

βn

= P1

{
f0(X1) · . . . · f0(Xn)

f1(X1) · . . . · f1(Xn)
≥ en(D(f0,f1)−δ)

}
=

∫
{
f0(x1)· ... ·f0(xn)
f1(x1)· ... ·f1(xn)

≥en(D(f0,f1)−δ)
} f1(x1) · . . . · f1(xn)dx1, . . . , dxn

≤ e−n(D(f0,f1)−δ)
∫
{
f0(x1)· ... ·f0(xn)
f1(x1)· ... ·f1(xn)

≥en(D(f0,f1)−δ)
} f0(x1) · . . . · f0(xn)dx1, . . . , dxn

≤ e−n(D(f0,f1)−δ).

�

The critical value of the test in the proof of the Stein Lemma used the I-divergence
D(f0, f1). Without knowing D(f0, f1), the Chernoff Lemma below results in exponential
rate of convergence of the errors.

Theorem 8.3. (Chernoff [?]). Construct a test such that accept the null hypothesis
H0 if

f0(X1) · . . . · f0(Xn)

f1(X1) · . . . · f1(Xn)
≥ 1,

or equivalently
n∑
i=1

ln
f0(Xi)

f1(Xi)
≥ 0.

(This test is called maximum likelihood test.) Then

αn ≤
(

inf
s>0

∫
Rd
f1(x)sf0(x)1−sdx

)n
and

βn ≤
(

inf
s>0

∫
Rd
f0(x)sf1(x)1−sdx

)n
.

Proof. Apply the Chernoff bounding technique such that for any s > 0 the Markov
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inequality implies that

αn = P0

{
n∑
i=1

ln
f0(Xi)

f1(Xi)
< 0

}

= P0

{
s

n∑
i=1

ln
f1(Xi)

f0(Xi)
> 0

}

= P0

{
e
s
∑n
i=1 ln

f1(Xi)

f0(Xi) > 1

}
≤ E0

{
e
s
∑n
i=1 ln

f1(Xi)

f0(Xi)

}
= E0

{
n∏
i=1

(
f1(Xi)

f0(Xi)

)s}
.

Under H0, X1, . . . ,Xn are i.i.d., therefore

αn ≤ E0

{
n∏
i=1

(
f1(Xi)

f0(Xi)

)s}

=
n∏
i=1

E0

{(
f1(Xi)

f0(Xi)

)s}
= E0

{(
f1(X1)

f0(X1)

)s}n
=

(∫
Rd

(
f1(x)

f0(x)

)s
f0(x)dx

)n
.

Since s > 0 is arbitrary, the first half of the lemma is proved, and the proof of the second
half is similar. �

Remark 2. The Chernoff Lemma results in exponential rate of convergence if

inf
s>0

∫
Rd
f1(x)sf0(x)1−sdx < 1

and
inf
s>0

∫
Rd
f0(x)sf1(x)1−sdx < 1.
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The Cauchy-Schwartz inequality implies that

inf
s>0

∫
Rd
f1(x)sf0(x)1−sdx ≤

∫
Rd
f1(x)1/2f0(x)1/2dx

≤

√∫
Rd
f1(x)dx

∫
Rd
f0(x)dx

= 1,

with equality in the second inequality if and only if f0 = f1. Morover, one can check
that the function

g(s) :=

∫
Rd
f1(x)sf0(x)1−sdx

is convex such that g(0) = 1 and g(1) = 1, therefore

inf
s>0

∫
Rd
f1(x)sf0(x)1−sdx = inf

1>s>0

∫
Rd
f1(x)sf0(x)1−sdx.

The quantity

He(f0, f1) =

∫
Rd
f1(x)1/2f0(x)1/2dx (8.7)

is called Hellinger integral. The previous derivations imply that

αn ≤ He(f0, f1)
n

and
βn ≤ He(f0, f1)

n.

The squared Hellinger distance Dφ2(µ, ν) was introduced in previous section. One can
check that

Dφ2(µ, ν) = 2 (1−He(f0, f1)) .

Remark 3. Besides the concept of α-level consistency, there is a new kind of consistency,
called strong consistency, meaning that both onH0 and on its complement the tests make
a.s. no error after a random sample size. In other words, denoting by P0 (resp. P1) the
probability distributions under the null hypothesis (resp. under the alternative), we have

P0{rejecting H0 for only finitely many n} = 1 (8.8)

and
P1{accepting H0 for only finitely many n} = 1. (8.9)
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Because of the Chernoff bound, both errors tend to 0 exponentially fast, so the Borel-
Cantelli Lemma implies that the maximum likelihood test is strongly consistent. In a
real life problem, for example, when we get the data sequentially, one gets data just
once, and should make good inference for these data. Strong consistency means that
the single sequence of inference is a.s. perfect if the sample size is large enough. This
concept is close to the definition of discernability introduced by Dembo and Peres [?].
For a discussion and references, we refer the reader to Devroye and Lugosi [?].
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Chapter 9

Testing Simple versus Composite
Hypotheses

9.1 Total variation and I-divergence
If µ and ν are probability distributions on Rd (d ≥ 1), then the total variation distance
between µ and ν was defined by

V (µ, ν) = sup
A
|µ(A)− ν(A)|,

where the supremum is taken over all Borel sets A. According to the Scheffé Theorem
(Theorem 7.1), the total variation is the half of the L1 distance of the corresponding
densities.

The following inequality, called Pinsker’s inequality, gives an upper bound to the
total variation in terms of I-divergence:

Theorem 9.1. ( Csiszár [?], Kullback [?] and Kemperman [?])

2{V (µ, ν)}2 ≤ I(µ, ν). (9.1)

Proof. Applying the notations of the proof of the Scheffé Theorem, put

A∗ = {f > g},

then the Scheffé Theorem implies that

V (µ, ν) = µ(A∗)− ν(A∗).
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Moreover, from (8.4) we get that

I(µ, ν) ≥ µ(A∗) ln
µ(A∗)

ν(A∗)
+ (1− µ(A∗)) ln

1− µ(A∗)

1− ν(A∗)

Introduce the notations
q = ν(A∗) and p = µ(A∗) > q,

and
hp(q) = p ln

p

q
+ (1− p) ln

1− p
1− q

.

then we have to prove that
2(p− q)2 ≤ hp(q),

which follows from the facts on the derivative:

d

dq
(hp(q)− 2(p− q)2) = −p

q
+

1− p
1− q

+ 4(p− q)

= − p− q
q(1− q)

+ 4(p− q)

≤ 0.

�

9.2 Large deviation of L1 distance

Consider the sample of Rd-valued random vectors X1, . . . ,Xn with i.i.d. components
such that the common distribution is denoted by ν. For a fixed distribution µ, we
consider the problem of testing hypotheses

H0 : ν = µ versus H1 : ν 6= µ

by means of test statistics Tn = Tn(X1, . . . ,Xn).
For testing a simple hypothesis H0 that the distribution of the sample is µ, versus a

composite alternative, Györfi and van der Meulen [?] introduced a related goodness of
fit test statistic Ln defined as

Ln =
mn∑
j=1

|µn(An,j)− µ(An,j)|,
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where µn denotes the empirical measure associated with the sample X1, . . . ,Xn, so that

µn(A) =
#{i : Xi ∈ A, i = 1, . . . , n}

n

for any Borel subset A, and Pn = {An,1, . . . , An,mn} is a finite partition of Rd.
Next we characterize the large deviation properties of Ln:

Theorem 9.2. (Beirlant, Devroye, Györfi and Vajda [?]). Assume that

lim
n→∞

max
j
µ(An,j) = 0 (9.2)

and
lim
n→∞

mn lnn

n
= 0. (9.3)

Then for all 0 < ε < 2

lim
n→∞

1

n
lnP{Ln > ε} = −gL(ε), (9.4)

where

gL(ε) = inf
0<p<1−ε/2

(
p ln

p

p+ ε/2
+ (1− p) ln

1− p
1− p− ε/2

)
. (9.5)

Biau and Györfi [?] provided an alternative derivation of gL(ε) and non-asymptotic
upper bound.

Theorem 9.3. (Biau and Györfi [?]). For any ε > 0,

P{Ln > ε} ≤ 2mne−nε
2/2.

Proof. By Scheffé’s theorem for partitions

Ln =
∑
A∈Pn

|µn(A)− µ(A)| = 2 max
A∈σ(Pn)

(µn(A)− µ(A)) ,

where the class of sets σ(Pn) contains all sets obtained by unions of cells of Pn. Therefore,
for any s > 0, by the Markov inequality

P{Ln > ε} = P{Ln/2 > ε/2} = P{ensLn/2 > ensε/2} ≤ E{ensLn/2}
ensε/2

.
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Moreover,

E{esnLn/2} = E{ max
A∈σ(Pn)

esn(µn(A)−µ(A))}

≤
∑

A∈σ(Pn)

E{esn(µn(A)−µ(A))}

≤ 2mn max
A∈σ(Pn)

E{esn(µn(A)−µ(A))}

= 2mn max
A∈σ(Pn)

E{esnµn(A)}e−snµ(A).

For any fixed Borel set A,

E{esnµn(A)} = E{es
∑n
i=1 IXi∈A} =

n∏
i=1

E{esIXi∈A} = (esµ(A) + 1− µ(A))n .

Thus, for any s > 0, we have that

P{Ln > ε} ≤ 2mn
[

max
A∈σ(Pn)

e−s(µ(A)+ε/2) (esµ(A) + 1− µ(A))

]n
.

For fixed set A, choose

es =
µ(A) + ε/2

1− (µ(A) + ε/2)

1− µ(A)

µ(A)
,

then for this s,

e−s(µ(A)+ε/2) (esµ(A) + 1− µ(A)) = e−I((µ(A)+ε/2,1−µ(A)−ε/2),(µ(A),1−µ(A)))

≤ e−ε
2/2,

where the last step follows from the Pinsker inequality. Thus,

P{Ln > ε} ≤ 2mne−nε
2/2.

�

Remark 5. As a special case of relative frequencies, in the previous proof the Chernoff
inequality

P{µn(A)− µ(A) ≥ ε} ≤ e−nI((µ(A)+ε/2,1−µ(A)−ε/2),(µ(A),1−µ(A)))

110



and the Hoeffding inequality is contained:

P{µn(A)− µ(A) ≥ ε} ≤ e−2nε
2

. (9.6)

The Hoeffding inequality can be extended as follows: Let X1, . . . , Xn be independent
real-valued random variables, let a, b ∈ R with a < b, and assume that Xi ∈ [a, b] with
probability one (i = 1, . . . , n). Then, for all ε > 0,

P

{∣∣∣∣∣ 1n
n∑
i=1

(Xi − E{Xi})

∣∣∣∣∣ > ε

}
≤ 2e

− 2nε2

|b−a|2 .

(Cf. Hoeffding [?].) A further refinement is the Berstein inequality such that it takes into
account the variances, too: let X1, . . . , Xn be independent real-valued random variables,
let a, b ∈ R with a < b, and assume that Xi ∈ [a, b] with probability one (i = 1, . . . , n).
Let

σ2 =
1

n

n∑
i=1

Var{Xi} > 0.

Then, for all ε > 0,

P

{∣∣∣∣∣ 1n
n∑
i=1

(Xi − E{Xi})

∣∣∣∣∣ > ε

}
≤ 2e

− nε2

2σ2+2ε(b−a)/3 .

(Cf. Berstein [?].)

9.3 L1-distance-based strongly consistent test
Theorem 9.3 results in a strongly consistent test such that reject the null-hypothesis H0

if

Ln > c1

√
mn

n
,

where
c1 >

√
2 ln 2 ≈ 1.177.

Moreover, assume that the sequence of partitions P1,P2, . . . is asymptotically fine. (Cf.
(8.5)). Then, under the null hypothesis H0 = {ν = µ}, the inequality in Theorem 9.3
implies an upper bound on the error of the first kind

P
{
Ln > c1

√
mn

n

}
≤ 2mne−nc

2
1mn/(2n) = e−mn(c

2
1/2−ln 2) → 0
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If mn/ lnn→∞ then
∞∑
n=1

P
{
Ln > c1

√
mn

n

}
<∞,

therefore the Borel-Cantelli lemma implies that the goodness of fit test based on the
statistic Ln is strongly consistent under the null hypothesis H0, independently of the
underlying distribution µ.

Under the alternative hypothesis H1 = {ν 6= µ}, the triangle inequality implies that

Ln =
mn∑
j=1

|µn(Anj)− µ(Anj)|

≥
mn∑
j=1

|µ(Anj)− ν(Anj)| −
mn∑
j=1

|µn(Anj)− ν(Anj)|.

Because of the argument above,

mn∑
j=1

|µn(Anj)− ν(Anj)| → 0,

a.s., while the condition (8.5) and {ν 6= µ} imply that

mn∑
j=1

|µ(Anj)− ν(Anj)| → 2 sup
B
|µ(B)− ν(B)| = 2V (µ, ν) > 0. (9.7)

therefore

lim inf
n→∞

Ln ≥ 2V (µ, ν) > 0 (9.8)

a.s., therefore Ln > c1
√
mn/n a.s. for n large enough, and so the goodness of fit test

based on Ln is strongly consistent under the alternative hypothesis H1, too.
In order to show (9.7) we apply the technique from Barron, Györfi and van der Meulen

[?]. Choose a measure λ which dominates µ and ν, for example, λ = µ + ν, and denote
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by f the Radon-Nikodym derivative of µ− ν with respect to λ. Then, on the one hand,∑
A∈Pn

|µ(A)− ν(A)| =
∑
A∈Pn

∣∣∣∣∫
A

f dλ
∣∣∣∣

≤
∑
A∈Pn

∫
A

|f | dλ

=

∫
|f | dλ

= 2 sup
B
|µ(B)− ν(B)|.

On the other hand, for uniformly continuous f , using (8.5),∑
A∈Pn

∣∣∣∣∫
A

f dλ
∣∣∣∣→ ∫

|f | dλ.

If f is arbitrary then, for a given δ > 0, choose a uniformly continuous f̃ such that∫
|f − f̃ | dλ < δ.

Thus ∑
A∈Pn

∣∣∣∣∫
A

f dλ
∣∣∣∣ ≥ ∑

A∈Pn

∣∣∣∣∫
A

f̃ dλ
∣∣∣∣− ∑

A∈Pn

∣∣∣∣∫
A

(f − f̃) dλ
∣∣∣∣

≥
∑
A∈Pn

∣∣∣∣∫
A

f̃ dλ
∣∣∣∣− ∫ |f − f̃ | dλ

≥
∑
A∈Pn

∣∣∣∣∫
A

f̃ dλ
∣∣∣∣− δ

→
∫
|f̃ | dλ− δ

≥
∫
|f | dλ− 2δ

= 2 sup
B
|µ(B)− ν(B)| − 2δ.

The result follows since δ was arbitrary.
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9.4 L1-distance-based α-level test
Beirlant, Györfi and Lugosi [?] proved, under conditions

lim
n→∞

mn =∞, lim
n→∞

mn

n
= 0,

and
lim
n→∞

max
j=1,...,mn

µ(Anj) = 0,

that √
n (Ln − E{Ln}) /σ

D→ N (0, 1),

where D→ indicates convergence in distribution and σ2 = 1− 2/π.
Let α ∈ (0, 1). Consider the test which rejects H0 when

Ln > c2

√
mn

n
+

σ√
n

Φ−1(1− α) ≈ c2

√
mn

n
,

where
c2 =

√
2/π ≈ 0.798.

Then the test is asymptotically an α-level test.
Comparing c2 above with c1 in the strong consistent test, both tests behave identically

with respect to
√
mn/n for large enough n, but c2 is smaller.

Under H0,
P{
√
n(Ln − E{Ln})/σ ≤ x} ≈ Φ(x),

therefore the error probability with threshold x is

α = 1− Φ(x).

Thus the asymptotically α-level test rejects the null hypothesis if

Ln > E{Ln}+
σ√
n

Φ−1(1− α).

Beirlant, Györfi and Lugosi [?] proved an upper bound

E{Ln} ≤
√

2/π

√
mn

n
.
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Chapter 10

Testing Homogeneity

10.1 The testing problem

Consider two mutually independent samples of Rd-valued random vectors X1, . . . ,Xn

and X′1, . . . ,X
′
n with i.i.d. components distributed according to unknown probability

measures µ and µ′. We are interested in testing the null hypothesis that the two samples
are homogeneous, that is

H0 : µ = µ′.

Such tests have been extensively studied in the statistical literature for special parametrized
models, e.g. for linear or loglinear models. For example, the analysis of variance provides
standard tests of homogeneity when µ and µ′ belong to a normal family on the line. For
multinomial models these tests are discussed in common statistical textbooks, together
with the related problem of testing independence in contingency tables. For testing ho-
mogeneity in more general parametric models, we refer the reader to the monograph of
Greenwood and Nikulin [?] and further references therein.

However, in many real life applications, the parametrized models are either unknown
or too complicated for obtaining asymptotically α-level homogeneity tests by the classical
methods. For d = 1, there are nonparametric procedures for testing homogeneity, for
example, the Cramer-Mises, Kolmogorov-Smirnov, Wilcoxon tests. The problem of d > 1
is much more complicated, but nonparametric tests based on finite partitions of Rd may
provide a welcome alternative. Such results are the extensions of Read and Cressie [?].

In the present chapter, we discuss a simple approach based on a L1 distance test
statistic. The advantage of our test procedure is that, besides being explicit and rela-
tively easy to carry out, it requires very few assumptions on the partition sequence, and
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it is consistent. Let us now describe our test statistic.

Denote by µn and µ′n the empirical measures associated with the samples X1, . . . ,Xn

and X′1, . . . ,X
′
n, respectively, so that

µn(A) =
#{i : Xi ∈ A, i = 1, . . . , n}

n
,

and, similarly,

µ′n(A) =
#{i : X′i ∈ A, i = 1, . . . , n}

n
.

Based on a finite partition Pn = {An,1, . . . , An,mn} of Rd (mn ∈ N∗), we let the test
statistic comparing µn and µ′n be defined as

Tn =
mn∑
j=1

|µn(An,j)− µ′n(An,j)|.

10.2 L1-distance-based strongly consistent test
The following theorem extends the results of Beirlant, Devroye, Györfi and Vajda [?],
and Devroye and Györfi [?] to the statistic Tn.

Theorem 10.1. (Biau, Györfi [?].) Assume that conditions

lim
n→∞

mn =∞, lim
n→∞

mn

n
= 0, (10.1)

and
lim
n→∞

max
j=1,...,mn

µ(Anj) = 0, (10.2)

are satisfied. Then, under H0, for all 0 < ε < 2,

lim
n→∞

1

n
lnP{Tn > ε} = −gT (ε),

where
gT (ε) = (1 + ε/2) ln(1 + ε/2) + (1− ε/2) ln(1− ε/2).

Proof. We prove only the upper bound

P{Tn > ε} ≤ 2mne−ngT (ε) ≤ 2mne−nε
2/4. (10.3)
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For any s > 0, the Markov inequality implies that

P{Tn > ε} = P{esnTn > esnε} ≤ E{esnTn}
esnε

.

By Scheffé’s theorem for partitions

Tn =
∑
A∈Pn

|µn(A)− µ′n(A)| = 2 max
A∈σ(Pn)

(µn(A)− µ′n(A)) ,

where the class of sets σ(Pn) contains all sets obtained by unions of cells of Pn. Therefore

E{esnTn} = E{ max
A∈σ(Pn)

e2sn(µn(A)−µ
′
n(A))}

≤
∑

A∈σ(Pn)

E{e2sn(µn(A)−µ′n(A))}

≤ 2mn max
A∈σ(Pn)

E{e2sn(µn(A)−µ′n(A))}

= 2mn max
A∈σ(Pn)

E{e2snµn(A)}E{e−2snµ′n(A)}.

Clearly,

E{e2snµn(A)} =
n∑
k=0

e2sk
(n
k

)
µ(A)k (1− µ(A))n−k

=
(
e2sµ(A) + 1− µ(A)

)n
,

and, similarly, under H0,

E{e−2snµ′n(A)} =
n∑
k=0

e−2sk
(n
k

)
µ(A)k (1− µ(A))n−k

=
(
e−2sµ(A) + 1− µ(A)

)n
.
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The remainder of the proof is under the null hypothesis H0. From above, we deduce that

E{esnTn}
≤ 2mn max

A∈σ(Pn)

(
e2sµ(A) + 1− µ(A)

)n (
e−2sµ(A) + 1− µ(A)

)n
= 2mn max

A∈σ(Pn)

[(
e2sµ(A) + 1− µ(A)

) (
e−2sµ(A) + 1− µ(A)

)]n
= 2mn max

A∈σ(Pn)

[
1 + µ(A) (1− µ(A)) (e2s + e−2s − 2)

]n
≤ 2mn

[
1 + (e2s + e−2s − 2)/4

]n
= 2mn

[
1/2 + (e2s + e−2s)/4

]n
.

It implies that

P{Tn > ε} ≤ inf
s>0

E{esnTn}
esnε

≤ 2mn
[

inf
s>0

1/2 + (e2s + e−2s)/4

esε

]n
One can verify that the infimum is achieved at

e2s =
1 + ε/2

1− ε/2
,

and then
P{Tn > ε} ≤ 2mne−ngT (ε).

The Pinsker inequality implies that

gT (ε) ≥ ε2/4

therefore
P{Tn > ε} ≤ 2mne−nε

2/4.

�
The technique of Theorem 10.1 yields a distribution-free strong consistent test of

homogeneity, which rejects the null hypothesis if Tn becomes large. We insist on the fact
that the test presented in Corollary 10.1 is entirely distribution-free, i.e., the measures
µ and µ′ are completely arbitrary.

Corollary 10.1. (Biau, Györfi [?].) Consider the test which rejects H0 when

Tn > c1

√
mn

n
,
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where
c1 > 2

√
ln 2 ≈ 1.6651.

Assume that condition (10.1) is satisfied and

lim
n→∞

mn

lnn
=∞.

Then, under H0, after a random sample size the test makes a.s. no error. Moreover, if

µ 6= µ′,

and the sequence of partitions P1,P2, . . . is asymptotically fine, (cf. (8.5)), then after a
random sample size the test makes a.s. no error.

Proof. Under H0, by (10.3),

P
{
Tn > c1

√
mn

n

}
≤ 2mne

−ngT
(
c1
√
mn/n

)

= 2mne−nc
2
1(mn/n)/4+n·o(mn/n)

= e−(c21/4−ln 2+o(1))mn ,

as n→∞. Therefore the condition mn/ lnn→∞ implies that

∞∑
n=1

P
{
Tn > c1

√
mn

n

}
<∞,

and by the Borel-Cantelli lemma we are ready with the first half of the corollary. Con-
cerning the second half, in the same way as for (9.7) we can show that by the additional
condition (8.5),

lim inf
n→∞

Tn ≥ 2 sup
B
|µ(B)− µ′(B)| > 0 (10.4)

a.s. �

10.3 L1-distance-based α-level test

Again, one can prove the following asymptotic normality:
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Theorem 10.2. (Biau, Györfi [?].) Assume that conditions (10.1) and (10.2) are
satisfied. Then, under H0, there exists a centering sequence Cn = E{Tn} such that

√
n (Tn − Cn) /σ

D→ N (0, 1),

where σ2 = 2(1− 2/π).

Theorem 10.2 yields the asymptotic null distribution of a consistent homogeneity
test, which rejects the null hypothesis if Tn becomes large. In contrast to Corollary 10.1,
and because of condition (10.2), this new test is not distribution-free. In particular, the
measures µ and µ′ have to be nonatomic.

Corollary 10.2. (Biau, Györfi [?].) Put α ∈ (0, 1), and let C∗ ≈ 0.7655 denote a
universal constant. Consider the test which rejects H0 when

Tn > c2

√
mn

n
+ C∗

mn

n
+

σ√
n

Φ−1(1− α) ≈ c2

√
mn

n
,

where
σ2 = 2(1− 2/π) and c2 =

2√
π
≈ 1.1284.

Then, under the conditions of Theorem 10.2, the test is an asymptotically α-level test.
Moreover, under the additional condition (8.5), the test is consistent.

Proof. According to Theorem 10.2, under H0,

P{
√
n(Tn − E{Tn})/σ ≤ x} ≈ Φ(x),

therefore the error probability with threshold x is

α = 1− Φ(x).

Thus the α-level test rejects the null hypothesis if

Tn > E{Tn}+
σ√
n

Φ−1(1− α).

However, E{Tn} depends on the unknown distribution, thus we apply an upper bound
on E{Tn}, and so decrease the error probability. The following inequality is valid:

E{Tn} ≤ c2

√
mn

n
+ C∗

mn

n
,
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(cf. Biau, Györfi [?]). Thus

α ≈ P

{
Tn > E{Tn}+

σ√
n

Φ−1(1− α)

}
≥ P

{
Tn > c2

√
mn

n
+ C∗

mn

n
+

σ√
n

Φ−1(1− α)

}
.

This proves that the test has asymptotic error probability at most α.
Under µ 6= µ′, the consistency of the test follows from (10.4). �
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Chapter 11

Testing Independence

11.1 The testing problem
Consider a sample of Rd×Rd′-valued random vectors (X1,Y1), . . . , (Xn,Yn) with inde-
pendent and identically distributed (i.i.d.) pairs. The distribution of (X,Y) is denoted
by ν, while µ1 and µ2 stand for the distributions of X and Y, respectively. We are
interested in testing the null hypothesis that X and Y are independent,

H0 : ν = µ1 × µ2, (11.1)

while making minimal assumptions regarding the distribution.
We obtain two kinds of tests for each statistic: first, we derive strong consistent tests

— meaning that both on H0 and on its complement the tests make a.s. no error after
a random sample size — based on large deviation bounds. While such tests are not
common in the classical statistics literature, they are well suited to data analysis from
streams, where we receive a sequence of observations rather than a sample of fixed size,
and must return the best possible decision at each time using only current and past
observations. Our strong consistent tests are distribution-free, meaning they require no
conditions on the distribution being tested; and universal, meaning the test threshold
holds independent of the distribution. Second, we obtain tests based on the asymptotic
distribution of the L1, which assume only that ν is nonatomic. Subject to this assump-
tion, the tests are consistent: for a given asymptotic error rate on H0, the probability of
error on H1 drops to zero as the sample size increases. Moreover, the thresholds for the
asymptotic tests are distribution-independent. We emphasize that our tests are explicit,
easy to carry out, and require very few assumptions on the partition sequences.

Additional independence testing approaches also exist in the statistics literature. For
d = d′ = 1, an early nonparametric test for independence, due to Hoeffding [?], Blum et
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al. [?], De Wet [?] is based on the notion of differences between the joint distribution
function and the product of the marginals. The associated independence test is consistent
under appropriate assumptions. Two difficulties arise when using this statistic in a test,
however. First, quantiles of the null distribution are difficult to estimate. Second, and
more importantly, the quality of the empirical distribution function estimates becomes
poor as the dimensionality of the spaces Rd and Rd′ increases, which limits the utility of
the statistic in a multivariate setting.

Rosenblatt [?] defined the statistic as the L2 distance between the joint density esti-
mate and the product of marginal density estimates. Let K and K ′ be density functions
(called kernels) defined on Rd and on Rd′ , respectively. For the bandwidth h > 0, define

Kh(x) =
1

hd
K
(x
h

)
and K ′h(y) =

1

hd′
K ′
(y
h

)
.

The Rosenblatt-Parzen kernel density estimates of the density of (X,Y) and X are
respectively

fn(x,y) =
1

n

n∑
i=1

Kh(x−Xi)K
′
h(y −Yi) and fn,1(x) =

1

n

n∑
i=1

Kh(x−Xi), (11.2)

with fn,2(y) defined by analogy. Rosenblatt [?] introduced the kernel-based independence
statistic

Tn =

∫
Rd×Rd′

(fn(x,y)− fn,1(x)fn,2(y))2dx dy. (11.3)

Further approaches to independence testing can be employed when particular assump-
tions are made on the form of the distributions, for instance that they should exhibit
symmetry. We do not address these approaches in the present study.

11.2 L1-distance-based strongly consistent test

Denote by νn, µn,1 and µn,2 the empirical measures associated with the samples
(X1,Y1), . . . , (Xn,Yn), X1, . . . ,Xn, and Y1, . . . ,Yn, respectively, so that

νn(A×B) = n−1#{i : (Xi,Yi) ∈ A×B, i = 1, . . . , n},
µn,1(A) = n−1#{i : Xi ∈ A, i = 1, . . . , n}, and

µn,2(B) = n−1#{i : Yi ∈ B, i = 1, . . . , n}.
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Given the finite partitions Pn = {An,1, . . . , An,mn} of Rd and Qn = {Bn,1, . . . , Bn,m′n} of
Rd′ , we define the L1 test statistic comparing νn and µn,1 × µn,2 as

Ln(νn, µn,1 × µn,2) =
∑
A∈Pn

∑
B∈Qn

|νn(A×B)− µn,1(A) · µn,2(B)|.

In the following two sections, we derive the large deviation and limit distribution prop-
erties of this L1 statistic, and the associated independence tests.

For testing a simple hypothesis versus a composite alternative, Györfi and van der
Meulen [?] introduced a related goodness of fit test statistic Ln defined as

Ln(µn,1, µ1) =
∑
A∈Pn

|µn,1(A)− µ1(A)|.

Biau and Györfi [?] proved that, for all 0 < ε,

P{Ln(µn,1, µ1) > ε} ≤ 2mne−nε
2/2, (11.4)

(cf. Theorem 9.3). We now describe a similar result for our L1 independence statistic.

Theorem 11.1. (Gretton, Györfi [?].) Under H0, for all 0 < ε1, 0 < ε2 and
0 < ε3,

P{Ln(νn, µn,1 × µn,2) > ε1 + ε2 + ε3} ≤ 2mn·m
′
ne−nε

2
1/2 + 2mne−nε

2
2/2 + 2m

′
ne−nε

2
3/2.

Proof. We bound Ln(νn, µn,1 × µn,2) according to

Ln(νn, µn,1 × µn,2) =
∑
A∈Pn

∑
B∈Qn

|νn(A×B)− µn,1(A) · µn,2(B)|

≤
∑
A∈Pn

∑
B∈Qn

|νn(A×B)− ν(A×B)|

+
∑
A∈Pn

∑
B∈Qn

|ν(A×B)− µ1(A) · µ2(B)|

+
∑
A∈Pn

∑
B∈Qn

|µ1(A) · µ2(B)− µn,1(A) · µn,2(B)|.

Under the null hypothesis H0, we have that∑
A∈Pn

∑
B∈Qn

|ν(A×B)− µ1(A) · µ2(B)| = 0.
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Moreover ∑
A∈Pn

∑
B∈Qn

|µ1(A) · µ2(B)− µn,1(A) · µn,2(B)|

≤
∑
A∈Pn

∑
B∈Qn

|µ1(A) · µ2(B)− µ1(A) · µn,2(B)|

+
∑
A∈Pn

∑
B∈Qn

|µ1(A) · µn,2(B)− µn,1(A) · µn,2(B)|

=
∑
B∈Qn

|µ2(B)− µn,2(B)|+
∑
A∈Pn

|µ1(A)− µn,1(A)|

= Ln(µn,1, µ1) + Ln(µn,2, µ2).

Thus, (11.4) implies

P{Ln(νn, µn,1 × µn,2) > ε1 + ε2 + ε3}
≤ P {Ln(νn, ν) > ε1}+ P {Ln(µn,1, µ1) > ε2}+ P {Ln(µn,2, µ2) > ε3}

≤ 2mn·m
′
ne−nε

2
1/2 + 2mne−nε

2
2/2 + 2m

′
ne−nε

2
3/2.

�
Theorem 11.1 yields a strong consistent test of independence, which rejects the null

hypothesis if Ln(νn, µn,1 × µn,2) becomes large. The test is distribution-free, i.e., the
probability distributions ν, µ1 and µ2 are completely arbitrary; and the threshold is
universal, i.e., it does not depend on the distribution.

Corollary 11.1. (Gretton, Györfi [?].) Consider the test which rejects H0 when

Ln(νn, µn,1 × µn,2) > c1

(√
mnm′n
n

+

√
mn

n
+

√
m′n
n

)
≈ c1

√
mnm′n
n

,

where
c1 >

√
2 ln 2 ≈ 1.177. (11.5)

Assume that conditions
lim
n→∞

mnm
′
n

n
= 0, (11.6)

and
lim
n→∞

mn

lnn
=∞, lim

n→∞

m′n
lnn

=∞, (11.7)
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are satisfied. Then under H0, the test makes a.s. no error after a random sample size.
Moreover, if

ν 6= µ1 × µ2,

and for any sphere S centered at the origin,

lim
n→∞

max
A∈Pn, A∩S 6=0

diam(A) = 0 (11.8)

and
lim
n→∞

max
B∈Qn, B∩S 6=0

diam(B) = 0, (11.9)

then after a random sample size the test makes a.s. no error.

Proof. Under H0, we obtain from Theorem 11.1 a non-asymptotic bound for the tail
of the distribution of Ln(νn, µn,1 × µn,2), namely

P

{
Ln(νn, µn,1 × µn,2) > c1

(√
mnm′n
n

+

√
mn

n
+

√
m′n
n

)}
≤ 2mnm

′
ne−c

2
1mnm

′
n/2 + 2mne−c

2
1mn/2 + 2m

′
ne−c

2
1m
′
n/2

≤ e−(c
2
1/2−ln 2)mnm′n + e−(c

2
1/2−ln 2)mn + e−(c

2
1/2−ln 2)m′n

as n→∞. Therefore the condition (11.7) implies

∞∑
n=1

P

{
Ln(νn, µn,1 × µn,2) > c1

(√
mnm′n
n

+

√
mn

n
+

√
m′n
n

)}
<∞,

and the proof under the null hypothesis is completed by the Borel-Cantelli lemma. For
the result under the alternative hypothesis, we first apply the triangle inequality

Ln(νn, µn,1 × µn,2) ≥
∑
A∈Pn

∑
B∈Qn

|ν(A×B)− µ1(A) · µ2(B)|

−
∑
A∈Pn

∑
B∈Qn

|νn(A×B)− ν(A×B)|

−
∑
B∈Qn

|µ2(B)− µn,2(B)|

−
∑
A∈Pn

|µ1(A)− µn,1(A)|.
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The condition in (11.6) implies the three last terms of the right hand side tend to 0
a.s. Moreover, using the technique for (9.7) we can prove that by conditions (11.8) and
(11.9), ∑

A∈Pn

∑
B∈Qn

|ν(A×B)− µ1(A) · µ2(B)| → 2 sup
C
|ν(C)− µ1 × µ2(C)| > 0

as n→∞, where the last supremum is taken over all Borel subsets C of Rd × Rd′ , and
therefore

lim inf
n→∞

Ln(νn, µn,1 × µn,2) ≥ 2 sup
C
|ν(C)− µ1 × µ2(C)| > 0 (11.10)

a.s. �

11.3 L1-distance-based α-level test
Again, one can prove the following asymptotic normality:

Theorem 11.2. (Gretton, Györfi [?].) Assume that conditions (11.6) and

lim
n→∞

max
A∈Pn

µ1(A) = 0, lim
n→∞

max
B∈Qn

µ2(B) = 0, (11.11)

are satisfied. Then, under H0, there exists a centering sequence
Cn = E{Ln(νn, µn,1 × µn,2)} depending on ν such that

√
n (Ln(νn, µn,1 × µn,2)− Cn) /σ

D→ N (0, 1),

where σ2 = 1− 2/π.

Theorem 11.2 yields the asymptotic null distribution of a consistent independence
test, which rejects the null hypothesis if Ln(νn, µn,1×µn,2) becomes large. In contrast to
Corollary 11.1, and because of condition (11.11), this new test is not distribution-free:
the measures µ1 and µ2 have to be nonatomic.

Corollary 11.2. (Gretton, Györfi [?].) Let α ∈ (0, 1). Consider the test which
rejects H0 when

Ln(νn, µn,1 × µn,2) > c2

√
mnm′n
n

+
σ√
n

Φ−1(1− α)

≈ c2

√
mnm′n
n

,
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where
σ2 = 1− 2/π and c2 =

√
2/π ≈ 0.798.

Then, under the conditions of Theorem 11.2, the test is an asymptotically α-level test.
Moreover, under the additional conditions (11.8) and (11.9), the test is consistent.

Before proceeding to the proof, we examine how the above test differs from that in
Corollary 11.1. In particular, comparing c2 above with c1 in (11.5), both tests behave
identically with respect to

√
mnm′n/n for large enough n, but c2 is smaller.

Proof. According to Theorem 11.2, under H0,

P{
√
n(Ln(νn, µn,1 × µn,2)− Cn)/σ ≤ x} ≈ Φ(x),

therefore the error probability with threshold x is

α = 1− Φ(x).

Thus the α-level test rejects the null hypothesis if

Ln(νn, µn,1 × µn,2) > Cn +
σ√
n

Φ−1(1− α).

As Cn depends on the unknown distribution, we apply an upper bound

Cn = E{Ln(νn, µn,1 × µn,2)} ≤
√

2/π

√
mnm′n
n

(cf. Gretton, Györfi [?]). �
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