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Az elsőéves matematikus és fizikus hallgatók tanulnak lineáris algebrát. Azt gon-
dolom, hogy ez a tárgy szükséges a megértéshez. (Ha valakinek hiányossága van az
alapozással, akkor belenézhet Freud Róbert jól érthető könyvébe.) Ebben a jegyzetben
majdnem kizárólag komplex elemű mátrixokról van szó. Rózsa Pál könyvében valós
mátrixok is vannak (és a mátrixok gyakrabban le vannak rajzolva, mint itt).

Ha egy olvasó tanult funkcionálanaĺızist, az kétségtelenül kedvező, mert számára a
Hilbert-tér formalizmus nem új. A jegyzetben a véges dimenziós Hilbert-tér szerepel
csak, a fogalmak megtalálhatók. (Ha valakit több minden érdekel az operátorok és
a Hilbert-terek témakörében, akkor javasolni tudom Kérchy László könyveit és az én
Lineáris anáızis könyvemet.)

A tartalomjegyzék megmutatja a témaköröket. Minden fejezet vége tartalmaz felada-
tokat, azok általában nem triviálisak, de nem is különösen nehezek. A nehezebbeknél
van egy kis útmutatás is.

A mátrixanaĺızisnek alkalmazásai előfordulnak. Néha a valósźınűségszámı́tásban,
statisztikában, de leginkább a kvantumelmétettel kapcsolatban. Jóval több minden sze-
repel az alábbi könyvben:
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Chapter 1

Matrices and operators

1.1 Basics on matrices

For n,m ∈ N, Mn×m = Mn×m(C) denotes the space of all n ×m complex matrices. A
matrix M ∈ Mn×m is a mapping {1, 2, . . . , n} × {1, 2, . . . , m} → C. It is represented as
an array with n rows and m columns:

M =









m11 m12 · · · m1m

m21 m22 · · · m2m
...

...
. . .

...
mn1 mn2 · · · mnm









mij is the intersection of the ith row and the jth column. If the matrix is denoted by
M , then this entry is denoted by Mij . If n = m, then we write Mn instead of Mn×n. A
simple example is the identity matrix In ∈ Mn defined as mij = δi,j, or

In =









1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1









.

Mn×m is complex vector space of dimension nm. The linear operations are defined as
follows.

[λA]ij := λAij , [A+B]ij = Aij +Bij.

(Here λ is a complex number and A,B ∈ Mn×m.)

Example 1.1 For i, j = 1, . . . , n let E(ij) be the n × n matrix such that (i, j)-entry
equals to one and all other entries equal to zero. Then E(ij) are called matrix-units
and form a basis of Mn.

A =

n
∑

i,j=1

AijE(ij).

Furthermore,

In =
n
∑

i=1

E(ii) .

is a representation of the identity matrix. �
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If A ∈ Mn×m and B ∈ Mm×k, then the product AB of A and B is defined by

[AB]ij =

m
∑

ℓ=1

AiℓBℓj.

if 1 ≤ i ≤ n and 1 ≤ j ≤ k. Hence AB ∈ Mn×k.

For A,B ∈ Mn, the product AB is defined, so Mn becomes an algebra. The most
significant feature of matrices is the non-commutativity of the product: AB 6= BA. For
example,

[

0 1
0 0

] [

0 0
1 0

]

=

[

1 0
0 0

]

,

[

0 0
1 0

] [

0 1
0 0

]

=

[

0 0
0 1

]

.

In the matrix algebra Mn, the identity matrix In behaves as a unit: InA = AIn = A
for every A ∈ Mn. The matrix A ∈ Mn is invertible if there is a B ∈ Mn such that
AB = BA = In. More generally, A ∈ Mn×m is invertible if there is a B ∈ Mm×n such
that AB = In and BA = Im. This B is called the inverse of A, in notation A−1.

The transpose At of the matrix A ∈ Mn×m is an m× n matrix,

[At]ij = Aji (1 ≤ i ≤ m, 1 ≤ j ≤ n).

It is easy to see if the product AB is defined, then (AB)t = BtAt. The adjoint matrix
A∗ is the complex conjugate of the transpose At. The space Mn is a *-algebra:

(AB)C = A(BC), (A+B)C = AC +BC, A(B + C) = AB + AC,

(A+B)∗ = A∗ +B∗, (λA)∗ = λ̄A∗, (A∗)∗ = A, (AB)∗ = B∗A∗.

Let A ∈ Mn. The trace of A is the sum of the diagonal entries:

TrA :=

n
∑

i=1

Aii. (1.1)

It is easy to show that TrAB = TrBA.

The determinant of A ∈ Mn is slightly more complicated.

detA :=
∑

π

(−1)σ(π)A1π(1)A2π(2) . . . Anπ(n) (1.2)

where the sum is over all permutations π of the set {1, 2, . . . , n} and σ(π) is the parity
of the permutation π. It can be proven that

det(AB) = (detA)(detB). (1.3)

More details about the determinant appear later.

1.2 Hilbert space

Let H be a complex vector space. A functional 〈 · , · 〉 : H ×H → C of two variables is
called inner product if
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(1) 〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉 (x, y, z ∈ H),

(2) 〈λx, y〉 = λ〈x, y〉 (λ ∈ C, x, y ∈ H),

(3) 〈x, y〉 = 〈y, x〉 (x, y ∈ H),

(4) 〈x, x〉 ≥ 0 for every x ∈ H and 〈x, x〉 = 0 only for x = 0.

These conditions imply the Schwarz inequality

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉. (1.4)

The inner product determines a norm

‖x‖ :=
√

〈x, x〉 (1.5)

which has the properties

‖x+ y‖ ≤ ‖x‖+ ‖y‖ and |〈x, y〉| ≤ ‖x‖ · ‖y‖ .

‖x‖ is interpreted as the length of the vector x. A further requirement in the definition
of a Hilbert space is that every Cauchy sequence must be convergent, that is, the space
is complete. (In the finite dimensional case, the completeness always holds.)

David Hilbert (1862-1943)

Hilbert had an essential role in the creation of functional analysis. For him
a “Hilbert space” was a kind of infinite sequence. Actually the abstract
definition was in the formulation of von Neumann.
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The linear space Cn of all n-tuples of complex numbers becomes a Hilbert space with
the inner product

〈x, y〉 =
n
∑

i=1

xiyi = [x1, x2, . . . , xn]













y1
y2
.
.
yn













,

where z denotes the complex conjugate of the complex number z ∈ C. Another example
is the space of square integrable complex-valued function on the real Euclidean space
Rn. If f and g are such functions then

〈f, g〉 =
∫

Rn

f(x) g(x) dx

gives the inner product. The latter space is denoted by L2(Rn) and it is infinite dimen-
sional contrary to the n-dimensional space Cn. Below we are mostly satisfied with finite
dimensional spaces.

If 〈x, y〉 = 0 for vectors x and y of a Hilbert space, then x and y are called orthogonal,
in notation x ⊥ y. When H ⊂ H, then H⊥ := {x ∈ H : x ⊥ h for every h ∈ H}. For
any subset H ⊂ H the orthogonal complement H⊥ is a closed subspace.

A family {ei} of vectors is called orthonormal if 〈ei, ei〉 = 1 and 〈ei, ej〉 = 0 if i 6= j.
A maximal orthonormal system is called basis or orthonormal basis. The cardinality of
a basis is called the dimension of the Hilbert space. (The cardinality of any two bases is
the same.)

In the space Cn, the standard orthonormal basis consists of the vectors

δ1 = (1, 0, . . . , 0), δ2 = (0, 1, 0, . . . , 0), . . . , δn = (0, 0, . . . , 0, 1), (1.6)

each vector has 0 coordinate n− 1 times and one coordinate equals 1.

Example 1.2 The space Mn of matrices becomes Hilbert space with the inner product

〈A,B〉 = TrA∗B (1.7)

which is called Hilbert–Schmidt inner product. The matrix units E(ij) (1 ≤ i, j ≤
n) form an orthormal basis.

It follows that the Hilbert–Schmidt norm

‖A‖2 :=
√

〈A,A〉 =
√
TrA∗A =

(

n
∑

i,j=1

|Aij|2
)1/2

(1.8)

is a norm for the matrices. �

Assume that in an n dimensional Hilbert space linearly independent vectors {v1, v2, . . . , vn}
are given. By the Gram-Schmidt procedure an orthonormal basis can be obtained
by linear combinations:

e1 :=
1

‖v1‖
v1,
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e2 :=
1

‖w2‖
w2 with w2 := v2 − 〈e1, v2〉e1,

e3 :=
1

‖w3‖
w3 with w3 := v3 − 〈e1, v3〉e1 − 〈e2, v3〉e2,

...

en :=
1

‖wn‖
wn with wn := vn − 〈e1, vn〉e1 − . . .− 〈en−1, vn〉en−1.

The next theorem tells that any vector has a unique Fourier expansion.

Theorem 1.1 Let e1, e2, . . . be a basis in a Hilbert space H. Then for any vector x ∈ H
the expansion

x =
∑

n

〈en, x〉en

holds. Moreover,

‖x‖2 =
∑

n

|〈en, x〉|2

Let H and K be Hilbert spaces. A mapping A : H → K is called linear if it preserves
linear combination:

A(λf + µg) = λAf + µAg (f, g ∈ H, λ, µ ∈ C).

The kernel and the range of A are

kerA := {x ∈ H : Ax = 0}, ranA := {Ax ∈ K : x ∈ H}.

The dimension formula familiar in linear algebra is

dimH = dim (kerA) + dim (ranA). (1.9)

Let e1, e2, . . . , en be a basis of the Hilbert space H and f1, f2, . . . , fm be a basis of
K. The linear mapping A : H → K is determined by the vectors Aek, k = 1, 2, . . . , n.
Furthermore, the vector Aek is determined by its coordinates:

Aek = c1,kf1 + c2,kf2 + . . .+ cn,kfm.

The numbers ci,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, form an m×n matrix, it is called the matrix of
the linear transformation A with respect to the bases (e1, e2, . . . , en) and (f1, f2, . . . , fm).
If we want to distinguish the linear operator A from its matrix, then the latter one will
be denoted by [A]. We have

[A]ij = 〈fi, Aej〉 (1 ≤ i ≤ m, 1 ≤ j ≤ n).

Note that the order of the basis vectors is important. We shall mostly consider linear
operators of a Hilbert space into itself. Then only one basis is needed and the matrix
of the operator has the form of a square. So a linear transformation and a basis yield
a matrix. If an n × n matrix is given, then it can be always considered as a linear
transformation of the space Cn endowed with the standard basis (1.6).
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The inner product of the vectors |x〉 and |y〉 will be often denoted as 〈x|y〉, this
notation, sometimes called bra and ket, it is popular in physics. On the other hand,
|x〉〈y| is a linear operator which acts on the vector |z〉 as

(|x〉〈y|) |z〉 := |x〉 〈y|z〉 ≡ 〈y|z〉 |x〉.

Therefore,

|x〉〈y| =













x1
x2
.
.
xn













[y1, y2, . . . , yn]

is conjugate linear in |y〉, while 〈x|y〉 is linear.

Example 1.3 Fix a natural number n and let H be the space of polynomials of at most
n degree. Assume that the variable of these polynomials is t and the coefficients are
complex numbers. The typical elements are

p(t) =
n
∑

i=0

uit
i and q(t) =

n
∑

i=0

vit
i.

If their inner product is defined as

〈p(t), q(t)〉 :=
n
∑

i=0

uivi,

then {1, t, t2, . . . , tn} is an orthonormal basis.

The differentiation is a linear operator:

n
∑

k=0

ukt
k 7→

n
∑

k=0

kukt
k−1

In the above basis, its matrix is

















0 1 0 . . . 0 0
0 0 2 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
... 0

0 0 0 . . . 0 n
0 0 0 . . . 0 0

















. (1.10)

This is an upper triangular matrix, the (i, j) entry is 0 if i > j. �

Let H1,H2 and H3 be Hilbert spaces and we fix a basis in each of them. If B : H1 →
H2 and A : H2 → H3 are linear mappings, then the composition

f 7→ A(Bf) ∈ H3 (F ∈ H1)
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is linear as well and it is denoted by AB. The matrix [AB] of the composition AB can
be computed from the the matrices [A] and [B] as follows

[AB]ij =
∑

k

[A]ik[B]kj. (1.11)

The right-hand-side is defined to be the product [A] [B] of the matrices [A] and [B].
Then [AB] = [A] [B] holds. It is obvious that for a k × m matrix [A] and an m × n
matrix [B], their product [A] [B] is a k × n matrix.

LetH1 andH2 be Hilbert spaces and we fix a basis in each of them. If A,B : H1 → H2

are linear mappings, then their linear combination

(λA+ µB)f 7→ λ(Af) + µ(Bf)

is a linear mapping and
[λA+ µB]ij = λ[A]ij + µ[B]ij . (1.12)

Let H be a Hilbert space the linear operators H → H form an algebra. This algebra
B(H) has a unit, the identity operator denoted by I and the product is non-commutative.
Assume that H is n dimensional and fix a basis. Then to each linear operator A ∈ B(H)
an n×n matrix A is associated. The correspondence A 7→ [A] is an algebraic isomorphism
from B(H) to the algebra Mn(C) of n × n matrices. This isomorphism shows that the
theory of linear operators on an n dimensional Hilbert space is the same as the theory
of n× n matrices.

Theorem 1.2 (Riesz-Fischer theorem) Let φ : H → C be a linear mapping on a
finite-dimensional Hilbert space H. Then there is a unique vector v ∈ H such that
φ(x) = 〈v, x〉 for every vector x ∈ H.

Proof: Let e1, e2, . . . , en be an orthonormal basis in H. Then we need a vector v ∈ H
such that φ(ei) = 〈v, ei〉. So

v =
∑

i

φ(ei)ei

will satisfy the condition. �

The linear mappings φ : H → C are called functionals. If the Hilbert space is not
finite dimensional, then in the previous theorem the condition |φ(x)| ≤ c‖x‖ should be
added, where c is a positive number.

The operator norm of a linear operator A : H → K is defined as

‖A‖ := sup{‖Ax‖ : x ∈ H, ‖x‖ = 1} .

It can be shown that ‖A‖ is finite. In addition to the common properties ‖A + B‖ ≤
‖A‖+ ‖B‖ and ‖λA‖ = |λ|‖A‖, the submultiplicativity

‖AB‖ ≤ ‖A‖ ‖B‖

also holds.

If ‖A‖ ≤ 1, then the operator A is called contraction.
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The set of linear operators H → H is denoted by B(H). The convergence An → A
means ‖A − An‖ → 0. In the case of finite dimensional Hilbert space the norm here
can be the operator norm, but also the Hilbert-Schmidt norm. The operator norm of a
matrix is not expressed explicitly by the matrix entries.

Example 1.4 Let A ∈ B(H) and ‖A‖ < 1. Then I −A is invertible and

(I − A)−1 =
∞
∑

n=0

An.

Since

(I − A)

N
∑

n=0

An = I − AN+1 and ‖AN+1‖ ≤ ‖A‖N+1,

we can see that the limit of the first equation is

(I − A)

∞
∑

n=0

An = I.

This shows the statement which is called Neumann series. �

Let H and K be Hilbert spaces. If T : H → K is a linear operator, then its adjoint
T ∗ : K → H is determined by the formula

〈x, Ty〉K = 〈T ∗x, y〉H (x ∈ K, y ∈ H). (1.13)

The operator T ∈ B(H) is called self-adjoint if T ∗ = T . The operator T is self-adjoint
if and only if 〈x, Tx〉 is a real number for every vector x ∈ H. For self-adjoint operators
and matrices the notations B(H)sa and Msa

n are used.

Theorem 1.3 The properties of the adjoint:

(1) (A+B)∗ = A∗ +B∗, (λA)∗ = λA∗ (λ ∈ C),

(2) (A∗)∗ = A, (AB)∗ = B∗A∗,

(3) (A−1)∗ = (A∗)−1 if A is invertible,

(4) ‖A‖ = ‖A∗‖, ‖A∗A‖ = ‖A‖2.

Example 1.5 Let A : H → H be a linear mapping and e1, e2, . . . , en be a basis in the
Hilbert space H. The (i, j) element of the matrix of A is 〈ei, Aej〉. Since

〈ei, Aej〉 = 〈ej, A∗ei〉,

this is the complex conjugate of the (j, i) element of the matrix of A∗. �

Theorem 1.4 (Projection theorem) Let M be a closed subspace of a Hilbert space
H. Any vector x ∈ H can be written in a unique way in the form x = x0 + y, where
x0 ∈ M and y ⊥ M.
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The mapping P : x 7→ x0 defined in the context of the previous theorem is called
orthogonal projection onto the subspace M. This mapping is linear:

P (λx+ µy) = λPx+ µPy.

Moreover, P 2 = P = P ∗. The converse is also true: If P 2 = P = P ∗, then P is an
orthogonal projection (onto its range).

Example 1.6 The matrix A ∈ Mn is self-adjoint if Aji = Aij. A particular example is
the Toeplitz matrix:

















a1 a2 a3 . . . an−1 an
a2 a1 a2 . . . an−2 an−1

a3 a2 a1 . . . an−3 an−2
...

...
...

. . .
... a3

an−1 an−2 an−3 . . . a1 a2
an an−1 an−2 . . . a2 a1

















, (1.14)

where a1 ∈ R. �

The operator U ∈ B(H) is called unitary if U∗ is the inverse of U . Then U∗U = I and

〈x, y〉 = 〈U∗Ux, y〉 = 〈Ux, Uy〉

for any vectors x, y ∈ H. Therefore the unitary operators preserve the inner product. In
particular, orthogonal unit vectors are mapped into orthogonal unit vectors.

Example 1.7 The permutation matrices are simple unitaries. Let π be a permuta-
tion of the set {1, 2, . . . , n}. The Ai,π(i) entries of A ∈ M(C) are 1 and all others are 0.
Every line and every column contain exactly one 1 entry. If such a matrix A is applied
to a vector, it permutes the coordinates, this is the reason of the terminology. �

The operator A ∈ B(H) is called normal if AA∗ = A∗A. It follows immediately that

‖Ax‖ = ‖A∗x‖ (1.15)

for any vector x ∈ H. Self-adjoint and unitary operators are normal.

The operators we need are mostly linear, but sometimes conjugate-linear operators
appear. Λ : H → K is conjugate-linear if

Λ(λx+ µy) = λx+ µy

for any complex numbers λ and µ and for any vectors x, y ∈ H. The adjoint Λ∗ of the
conjugate-linear operator Λ is determined by the equation

〈x,Λy〉K = 〈y,Λ∗x〉H (x ∈ K, y ∈ H). (1.16)

A mapping φ : H × H → C is called complex bilinear form if φ is linear in
the second variable and conjugate linear in the first variables. The inner product is a
particular example.
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Theorem 1.5 On a finite dimensional Hilbert space there is a one-to-one correspon-
dence

φ(x, y) = 〈Ax, y〉
between the complex bilinear forms φ : H×H → C and the linear operators A : H → H.

Proof: Fix x ∈ H. Then y 7→ φ(x, y) is a linear functional. Due to the Riesz-Fischer
theorem φ(x, y) = 〈z, y〉 for a vector z ∈ H. We set Ax = z. �

The polarization identity

4φ(x, y) = φ(x+ y, x+ y)+ iφ(x+ iy, x+ iy)−φ(x− y, x− y)− iφ(x− iy, x− iy) (1.17)

shows that a complex bilinear form φ is determined by its so-called quadratic form
x 7→ φ(x, x).

1.3 Notes and remarks

The origins of mathematical matrices lie with the study of systems of simultaneous linear
equations. Takakazu Shinsuke Seki Japanese mathematician was the first person to study
determinants in 1683. Gottfried Leibnitz (1646-1716), one of the founders of calculus,
used determinants in 1693 and Gabriel Cramer (1704-1752) presented his determinant-
based formula for solving systems of linear equations (today known as Cramer’s Rule) in
1750. A modern matrix method of solution outlined by Carl Friedrich Gauss (1777-1855)
is known as Gaussian elimination. The term ”matrix” was introduced in 1850 by James
Joseph Sylvester (1814-1897).

1.4 Exercises

1. Show that in the Schwarz inequalty (1.4) the equality occurs if and only if x and
y are linearly dependent.

2. Show that
‖x− y‖2 + ‖x+ y‖2 = 2‖x‖2 + 2‖y‖2 (1.18)

for the norm in a Hilbert space. (This is called parallelogram law.)

3. Show the polarization identity (1.17).

4. Show that an orthonormal family of vectors is linearly independent.

5. Show that the vectors |x1〉, |x2, 〉, . . . , |xn〉 form an orthonormal basis in an n-
dimensional Hilbert space if and only if

∑

i

|xi〉〈xi| = I.

6. Show that Gram-Schmidt procedure constructs an orthonormal basis e1, e2, . . . , en.
Show that ek is the linear combination of v1, v2, . . . , vk (1 ≤ k ≤ n).
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James Joseph Sylvester (1814-1897)

Sylvester was an English mathematician. He had results in matrix and
determinant theories. He introduced the term “matrix” in 1850.

7. Show that the upper triangular matrices form an algebra.

8. Show the following properties:

(|u〉〈v|)∗ = |v〉〈u|, (|u1〉〈v1|)(|u2〉〈v2|) = 〈v1, u2〉|u1〉〈v2|,
A(|u〉〈v|) = |Au〉〈v|, (|u〉〈v|)A = |u〉〈A∗v| for all A ∈ B(H).

9. Let A,B ∈ B(H). Show that ‖AB‖ ≤ ‖A‖ ‖B‖.

10. Let H be an n-dimensional Hilbert space. For A ∈ B(H) let ‖A‖2 :=
√
TrA∗A.

Show that ‖A+B‖2 ≤ ‖A‖2 + ‖B‖2. Is it true that ‖AB‖2 ≤ ‖A‖2 × ‖B‖2?

11. Find constants c(n) and d(n) such that

c(n)‖A‖ ≤ ‖A‖2 ≤ d(n)‖A‖
for every matrix A ∈ Mn(C).

12. Show that ‖A∗A‖ = ‖A‖2 for every A ∈ B(H).

13. Let H be an n-dimensional Hilbert space. Show that given an operator A ∈ B(H)
we can chose an orthonormal basis such that the matrix of A is upper triangular.

14. Let A,B ∈ Mn be invertible matrices. Show that A+B is invertible if and only if
A−1 +B−1 is invertible, moreover

(A+B)−1 = A−1 −A−1(A−1 +B−1)−1A−1.
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15. Let A ∈ Mn be self-adjoint. Show that

U = (I − iA)(I + iA)−1

is a unitary. (U is the Cayley transform of A.)



Chapter 2

Square matrices

The n × n matrices Mn can be identified with the linear operators B(H) where the
Hilbert space H is n-dimensional. To make a precise identification an orthonormal basis
should be fixed in H.

2.1 Jordan canonical form

A Jordan block is a matrix

Jk(a) =













a 1 0 · · · 0
0 a 1 · · · 0
0 0 a · · · 0
...

...
...

. . .
...

0 0 0 · · · a













, (2.1)

where a ∈ C. This is an upper triangular matrix Jk(a) ∈ Mk. We use also the notation
Jk := Jk(0). Then

Jk(a) = aIk + Jk (2.2)

and the sum consists of commuting matrices.

Example 2.1 The matrix Jk is

(Jk)ij =
{

1 if j = i+ 1,
0 otherwise.

Therefore
(Jk)ij(Jk)jk =

{

1 if j = i+ 1 and k = i+ 2,
0 otherwise.

It follows that
(J2
k)ij =

{

1 if j = i+ 2,
0 otherwise.

We observe that taking the powers of Jk the line of the 1 entries is going upper, in
particular Jkk = 0. The matrices {Jmk : 0 ≤ m ≤ k − 1} are linearly independent.

If a 6= 0, then det Jk(a) 6= 0 and Jk(a) is invertible. We can search for the inverse by
the equation

(aIk + Jk)

(

k−1
∑

j=0

cjJ
j
k

)

= Ik.
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Rewriting this equation we get

ac0Ik +

k−1
∑

j=1

(acj + cj−1)J
j
k = Ik.

The solution is
cj = −(−a)−j−1 (0 ≤ j ≤ k − 1).

In particular,




a 1 0
0 a 1
0 0 a





−1

=





a−1 −a−2 a−3

0 a−1 −a−2

0 0 a−1



 .

Computation with a Jordan block is convenient. �

The Jordan canonical form theorem is the following.

Theorem 2.1 Given a matrix X ∈ Mn, there is an invertible matrix S ∈ Mn such that

X = S









Jk1(λ1) 0 · · · 0
0 Jk2(λ2) · · · 0
...

...
. . .

...
0 0 · · · Jkm(λm)









S−1 = SJS−1,

where k1 + k2 + . . . + km = n. The Jordan matrix J is uniquely determined (up to the
permutation of the Jordan blocks in the diagonal.)

Note that the numbers λ1, λ2, . . . , λm are not necessarily different. Example 2.1
showed that it is rather easy to handle a Jordan block. If the Jordan canonical de-
composition is known, then the inverse can be obtained. The theorem is about complex
matrices, but for X ∈ Mn(R), S and J is in Mn(R) as well.

Example 2.2 An essential application is concerning the determinant. Since detX =
det(SJS−1) = det J , it is enough to compute the determinant of the upper-triangular
Jordan matrix J . Therefore

detX =
m
∏

j=1

λ
kj
j . (2.3)

The characteristic polynomial of X ∈ Mn is defined as

p(x) := det(xIn −X)

From the computation (2.3) we have

p(x) =

m
∏

j=1

(x− λj)
kj .

The numbers λj are roots of the characteristic polynomial. �

The powers of a matrix X ∈ Mn is well-defined, therefore for a polynomial p(x) =
∑m

k=0 ckx
k the matrix p(X) is defined as well. If q is a polynomial, then it is annihilating

for a matrix X ∈ Mn if q(X) = 0. If p is the characteristic polynomial of X ∈ Mn, then
p(X) = 0.
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2.2 Spectrum and eigenvalues

Let H be a Hilbert space. For A ∈ B(H) and λ ∈ C, we say that λ is an eigenvalue
of A if there is a non-zero vector v ∈ H such that Av = λv. Such a vector v is called
an eigenvector of A for the eigenvalue λ. If H is finite-dimensional, then λ ∈ C is an
eigenvalue of A if and only if A− λI is not invertible.

Generally, the spectrum σ(A) of A ∈ B(H) consists of the numbers λ ∈ C such that
A−λI is not invertible. Therefore in the finite-dimensional case the spectrum is the set
of eigenvalues.

Example 2.3 In the history of matrix theory the particular matrix
















0 1 0 . . . 0 0
1 0 1 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
... 0

0 0 0 . . . 0 1
0 0 0 . . . 1 0

















(2.4)

has importance. Its eigenvalues were computed by Joseph Louis Lagrange in 1759.
He found that the eigenvalues are 2 cos jπ/(n+ 1) (j = 1, 2, . . . , n). �

The matrix (2.4) is tridiagonal. This means that Aij = 0 if |i− j| > 1.

Example 2.4 Let λ ∈ R and consider the matrix

J3(λ) =





λ 1 0
0 λ 1
0 0 λ



 . (2.5)

Now λ is the only eigenvalue and (y, 0, 0) is the only eigenvector. The situation is similar
in the k × k generalization Jk(λ): λ is the eigenvalue of SJk(λ)S

−1 for an arbitrary
invertable S and there is one eigenvector (up to constant multiple). This has the conse-
quence that the characteristic polynomial gives the eigenvalues without the multiplicity.

If X has the Jordan form as in Theorem 2.1, then all λj ’s are eigenvalues. Therefore
the roots of the characteristic polynomial are eigenvalues.

For the above J3(λ) we can see that

J3(λ)(0, 0, 1) = (0, 1, λ), J3(λ)
2(0, 0, 1) = (1, 2λ, λ2),

therefore (0, 0, 1) and these two vectors linearly span the whole space C3. The vector
(0, 0, 1) is called cyclic vector.

When we want formal matrix product, then

J3(λ)





0
0
1



 =





0
1
λ





is the correct notation, or J3(λ)(0, 0, 1)
t = (0, 1, λ)t is written by the use of transform.

Assume that a matrix X ∈ Mn has a cyclic vector v ∈ Cn which means that the set
{v,Xv,X2v, . . . , Xn−1v} spans Cn. Then X = SJn(λ)S

−1 with some invertible matrix
S, the Jordan canonical form is very simple. �
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Theorem 2.2 Assume that A ∈ B(H) is normal. Then there exist λ1, . . . , λn ∈ C and
u1, . . . , un ∈ H such that {u1, . . . , un} is an orthonormal basis of H and Aui = λiui for
all 1 ≤ i ≤ n.

Proof: Let us prove by induction on n = dimH. The case n = 1 trivially holds.
Suppose the assertion for dimension n − 1. Assume that dimH = n and A ∈ B(H) is
normal. Choose a root λ1 of det(λI − A) = 0. As explained before the theorem, λ1 is
an eigenvalue of A so that there is an eigenvector u1 with Au1 = λ1u1. One may assume
that u1 is a unit vector, i.e., ‖u1‖ = 1. Since A is normal, we have

(A− λ1I)
∗(A− λ1I) = (A∗ − λ1I)(A− λ1I)

= A∗A− λ1A− λ1A
∗ + λ1λ1I

= AA∗ − λ1A− λ1A
∗ + λ1λ1I

= (A− λ1I)(A− λ1I)
∗,

that is, A− λ1I is also normal. Therefore,

‖(A∗ − λ1I)u1‖ = ‖(A− λ1I)
∗u1‖ = ‖(A− λ1I)u1‖ = 0

so that A∗u1 = λ1u1. Let H1 := {u1}⊥, the orthogonal complement of {u1}. If x ∈ H1

then

〈Ax, u1〉 = 〈x,A∗u1〉 = 〈x, λ1u1〉 = λ1〈x, u1〉 = 0,

〈A∗x, u1〉 = 〈x,Au1〉 = 〈x, λ1u1〉 = λ1〈x, u1〉 = 0

so that Ax,A∗x ∈ H1. Hence we have AH1 ⊂ H1 and A∗H1 ⊂ H1. So one can define
A1 := A|H1

∈ B(H1). Then A∗
1 = A∗|H1

, which implies that A1 is also normal. Since
dimH1 = n − 1, the induction hypothesis can be applied to obtain λ2, . . . , λn ∈ C and
u2, . . . , un ∈ H1 such that {u2, . . . , un} is an orthonormal basis of H1 and A1ui = λiui
for all i = 2, . . . , n. Then {u1, u2, . . . , un} is an orthonormal basis of H and Aui = λiui
for all i = 1, 2, . . . , n. Thus the assertion holds for dimension n as well. �

It is an important consequence that the matrix of a normal operator is diagonal in
an appropriate orthonormal basis and the trace is the sum of the eigenvalues.

Theorem 2.3 Assume that A ∈ B(H) is self-adjoint. If Av = λv and Aw = µw with
non-zero eigenvectors v, w and the eigenvalues λ and µ are different, then v ⊥ w and
λ, µ ∈ R.

Proof: First we show that the eigenvalues are real:

λ〈v, v〉 = 〈v, λv〉 = 〈v, Av〉 = 〈Av, v〉 = 〈λv, v〉 = λ〈v, v〉.

The 〈v, w〉 = 0 orthogonality comes similarly:

µ〈v, w〉 = 〈v, µw〉 = 〈v, Aw〉 = 〈Av, w〉 = 〈λv, w〉 = λ〈v, w〉.

�
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If A is a self-adjoint operator on an n-dimensional Hilbert space, then from the eigen-
vectors we can find an orthonormal basis v1, v2, . . . , vn. If Avi = λivi, then

A =

n
∑

i=1

λi|vi〉〈vi| (2.6)

which is called the Schmidt decomposition. The Schmidt decomposition is unique
if all the eigenvalues are different, otherwise not. Another useful decomposition is the
spectral decomposition. Assume that the self-adjoint operator A has the eigenvalues
µ1 > µ2 > . . . > µk. Then

A =

k
∑

j=1

µjPj, (2.7)

where Pj is the orthogonal projection onto the subspace spanned by the eigenvectors
with eigenvalue µj. From the Schmidt decomposition (2.6),

Pj =
∑

i

|vi〉〈vi|,

where the summation is over all i such that λi = µj. This decomposition is always
unique. Actually, the Schmidt decomposition and the spectral decomposition exist for
all normal operators.

If λi ≥ 0 in (2.6), then we can set |xi〉 :=
√
λi|vi〉 and we have

A =
n
∑

i=1

|xi〉〈xi|.

If the orthogonality of the vectors |xi〉 is not assumed, then there are several similar
decompositions, but they are connected by a unitary. The next lemma and its proof
is a good exercise for the bra and ket formalism. (The result and the proof is due to
Schrödinger [51].)

Lemma 2.1 If

A =
n
∑

j=1

|xj〉〈xj | =
n
∑

i=1

|yi〉〈yi|,

then there exists a unitary matrix (Uij)
n
i,j=1 such that

n
∑

j=1

Uij |xj〉 = |yi〉. (2.8)

Proof: Assume first that the vectors |xj〉 are orthogonal. Typically they are not
unit vectors and several of them can be 0. Assume that |x1〉, |x2〉, . . . , |xk〉 are not 0 and
|xk+1〉 = . . . = |xn〉 = 0. Then the vectors |yi〉 are in the linear span of {|xj〉 : 1 ≤ j ≤ k},
therefore

|yi〉 =
k
∑

j=1

〈xj|yi〉
〈xj|xj〉

|xj〉
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is the orthogonal expansion. We can define (Uij) by the formula

Uij =
〈xj |yi〉
〈xj|xj〉

(1 ≤ i ≤ n, 1 ≤ j ≤ k).

We easily compute that

k
∑

i=1

UitU
∗
iu =

k
∑

i=1

〈xt|yi〉
〈xt|xt〉

〈yi|xu〉
〈xu|xu〉

=
〈xt|A|xu〉

〈xu|xu〉〈xt|xt〉
= δt,u,

and this relation shows that the k column vectors of the matrix (Uij) are orthonormal.
If k < n, then we can append further columns to get a n × n unitary, see Exercise 13.
(One can see in (2.8) that if |xj〉 = 0, then Uij does not play any role.)

In the general situation

A =
n
∑

j=1

|zj〉〈zj| =
n
∑

i=1

|yi〉〈yi|

we can make a unitary U from an orthogonal family to |yi〉’s and and a unitary V from
the same orthogonal family to |zi〉’s and UV ∗ goes from |zi〉’s to |yi〉’s. �

Example 2.5 Let A ∈ B(H) be a self-adjoint operator with eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λn (counted with multiplicity). Then

λ1 = max{〈v, Av〉 : v ∈ H, ‖v‖ = 1}. (2.9)

We can take the Schmidt decomposition (2.6). Assume that

max{〈v, Av〉 : v ∈ H, ‖v‖ = 1} = 〈w,Aw〉

for a unit vector w. This vector has the expansion

w =

n
∑

i=1

ci|vi〉

and we have

〈w,Aw〉 =
n
∑

i=1

|ci|2λi ≤ λ1.

The equality holds if and only if λi < λ1 implies ci = 0. The maximizer should be an
eigenvector with eigenvalue λ1.

Similarly,

λn = min{〈v, Av〉 : v ∈ H, ‖v‖ = 1}. (2.10)

The formulas (2.9) and (2.10) will be extended below. �
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Theorem 2.4 (Poincaré’s inequality) Let A ∈ B(H) be a self-adjoint operator with
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn (counted with multiplicity) and let K be a k-dimensional
subspace of H. Then there are unit vectors x, y ∈ K such that

〈x,Ax〉 ≤ λk and 〈y, Ay〉 ≥ λk.

Proof: Let vk, . . . , vn be orthonormal eigenvectors corresponding to the eigenvalues
λk, . . . , λn. They span a subspace M of dimension n−k+1 which must have intersection
with K. Take a unit vector x ∈ K,M which has the expansion

x =

n
∑

i=k

civi

and it has the required property:

〈x,Ax〉 =
n
∑

i=k

|ci|2λi ≤ λk

n
∑

i=k

|ci|2 = λk.

To find the other vector y, the same argument can be used with the matrix −A. �

The next result is a minimax principle.

Theorem 2.5 Let A ∈ B(H) be a self-adjoint operator with eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λn (counted with multiplicity). Then

λk = min
{

max{〈v, Av〉 : v ∈ K, ‖v‖ = 1} : K ⊂ H, dimK = n+ 1− k
}

.

Proof: Let vk, . . . , vn be orthonormal eigenvectors corresponding to the eigenvalues
λk, . . . , λn. They span a subspace K of dimension n+1− k. According to (2.9) we have

λk = max{〈v, Av〉 : v ∈ K}
and it follows that in the statement of the theorem ≥ is true.

To complete the proof we have to show that for any subspace K of dimension n+1−k
there is a unit vector v such that λk ≤ 〈v, Av〉, or −λk ≥ 〈v, (−A)v〉. The decreasing
eigenvalues of −A are −λn ≥ −λn−1, . . . ,−λ1 where the ℓth is −λn+1−ℓ. The existence of
a unit vector v is guaranted by the Poincaré’s inequality and we take ℓ with the property
n + 1− ℓ = k. �

2.3 Trace and determinant

When {e1, . . . , en} is an orthonormal basis of H, the trace TrA of A ∈ B(H) is defined
as

TrA :=
n
∑

i=1

〈ei, Aei〉.

It will be shown that the definition is independent of the choice of an orthonormal basis
and TrAB = TrBA for all A,B ∈ B(H). We have

TrAB =

n
∑

i=1

〈ei, ABei〉 =
n
∑

i=1

〈A∗ei, Bei〉 =
n
∑

i=1

n
∑

j=1

〈ej , A∗ei〉〈ej , Bei〉
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=

n
∑

j=1

n
∑

i=1

〈ei, B∗ej〉〈ei, Aej〉 =
n
∑

j=1

〈ej, BAej〉 = TrBA.

Now, let {f1, . . . , fn} be another orthonormal basis of H. Then a unitary U is defined
by Uei = fi, 1 ≤ i ≤ n, and we have

n
∑

i=1

〈fi, Afi〉 =
n
∑

i=1

〈Uei, AUei〉 = TrU∗AU = TrAUU∗ = TrA,

which says that the definition of TrA is actually independent of the choice of an or-
thonormal basis.

When A ∈ Mn, the trace of A is nothing but the sum of the principal diagonal entries
of A:

TrA = A11 + A22 + . . .+ Ann.

If A is normal, then the trace is the sum of the eigenvalues.

Computation of the trace is very simple, the case of the determinant (1.2) is very
different. In the terms of the Jordan canonical form described in Theorem 2.1, we have

TrX =

m
∑

j=1

kjλj and detX =

m
∏

j=1

λ
kj
j .

Example 2.6 On the linear space Mn we can define a linear mapping α : Mn → Mn as
α(A) = V AV ∗, where V ∈ Mn is a fixed matrix. We are interested in detα.

Let V = SJS−1 be the canonical Jordan decomposition and set

α1(A) = S−1A(S−1)∗, α2(B) = JBJ∗, α3(C) = SCS∗.

Then α = α3 ◦ α2 ◦ α1 and detα = detα3 × detα2 × detα1. Since α1 = α−1
3 , we have

detα = detα2, so only the Jordan block part has influence to the determinant.

The following example helps to understand the situation. Let

J =

[

λ1 x
0 λ2

]

, A1 =

[

1 0
0 0

]

, A2 =

[

0 1
0 0

]

, A3 =

[

0 0
1 0

]

, A4 =

[

0 0
0 1

]

.

Then {A1, A2, A3, A4} is a basis in M2. If α(A) = JAJ∗, then from the data

α(A1) = λ21A1, α(A2) = λ1xA1 + λ1λ2A2,

α(A3) = λ1xA1 + λ1λ2A3, α(A4) = x2A1 + xλ2A2 + xλ2A3 + λ22A4

we can observe that the matrix of α is upper triangular:








λ21 xλ1 xλ1 x2

0 λ1λ2 0 xλ2
0 0 λ1λ2 xλ2
0 0 0 λ22









,

So its determinat is the product of the diagonal entries:

λ21(λ1λ2)(λ1λ2)λ
2
2 = λ41λ

4
2 = (det V )4.
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Now let J ∈ Mn and assume that only the entries Jii and Ji,i+1 can be non-zero. In
Mn we choose the basis of the matrix units,

E(1, 1), E(1, 2), . . . , E(1, n), E(2, 1), . . . , E(2, n), . . . , E(3, 1), . . . , E(n, n).

We want to see that the matrix of α is upper triangular.

From the computation

JE(j, k))J∗ = Jj−1,jJk−1,k E(j − 1, k − 1) + Jj−1,jJk,k E(j − 1, k)

+JjjJk−1,k E(j, k − 1) + JjjJk,k E(j, k)

we can see that the matrix of the mapping A 7→ JAJ∗ is upper triangular. (In the
lexicographical order of the matrix units E(j − 1, k − 1), E(j − 1, k), E(j, k − 1) are
before E(j, k).) The determinant is the product of the diagonal entries:

n
∏

j,k=1

JjjJkk =
m
∏

k=1

(det J)Jkk
n
= (det J)ndet J

n

It follows that the determinant of α(A) = V AV ∗ is (det V )ndet V
n
, since the determinant

of V equals to the determinant of its block matrix. If β(A) = V AV t, then the argument
is similar, det β = (det V )2n, only the conjugate is missing.

Next we deal with the space M of real symmetric n× n matrices. Set γ : M → M,
γ(A) = V AV t. The canonical Jordan decomposition holds also for real matrices and it
gives again that the Jordan block J of V determines the determinant of γ.

To have a matrix of A 7→ JAJ t, we need a basis in M. We can take

{E(j, k) + E(k, j) : 1 ≤ j ≤ k ≤ n}

Similarly to the above argument, one can see that the matrix is upper triangular. So
we need the diagonal entries. J(E(j, k) + E(k, j))J∗ can be computed from the above
formula and the coefficient of E(j, k) + E(k, j) is JkkJjj. The determinant is

∏

1≤j≤k≤n

JkkJjj = (det J)n+1 = (det V )n+1

�

Theorem 2.6 The determinant of a positive matrix A ∈ Mn does not exceed the product
of the diagonal entries:

detA ≤
n
∏

i=1

Aii

This is a consequence of the concavity of the log function, see Example 8.7 (or Example
4.5).

If A ∈ Mn and 1 ≤ i, j ≤ n, then in the next theorems [A]ij denotes the (n−1)×(n−1)
matrix which is obtained from A by striking out the ith row and the jth column.
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Theorem 2.7 Let A ∈ Mn and 1 ≤ j ≤ n. Then

detA =
n
∑

i=1

(−1)i+jAij det([A]
ij).

The determinant has an important role in the computation of the inverse. The next
result is called Cramer’s rule.

Theorem 2.8 Let A ∈ Mn be invertible. Then

(A−1)ki = (−1)i+k
det([A]ik)

detA

for 1 ≤ i, k ≤ n.

2.4 Notes and remarks

Computation of the determinant of concreate special matrices had a huge literature.
Theorem 2.6 is the Hadamard inequality from 1893.

Example 2.6 is related to the Hunyadi-Scholtz determinant theorem from 1870’s.

2.5 Exercises

1. Show that

[

λ+ z x− iy
x+ iy λ− z

]−1

=
1

λ2 − x2 − y2 − z2

[

λ− z −x+ iy
−x− iy λ+ z

]

for real parameters λ, x, y, z.

2. Let m ≤ n, A ∈ Mn, B ∈ Mm, Y ∈ Mn×m and Z ∈ Mm×n. Assume that A and
B are invertible. Show that A+ Y BZ is invertible if and only if B−1 + ZA−1Y is
invertible. Moreover,

(A+ Y BZ)−1 = A−1 − A−1Y (B−1 + ZA−1Y )−1ZA−1.

3. Let λ1, λ2, . . . , λn be the eigenvalues of the matrix A ∈ Mn(C). Show that A is
normal if and only if

n
∑

i=1

|λi|2 =
n
∑

i,j=1

|Aij|2.

4. Show that A ∈ Mn is normal if an only if A∗ = AU for a unitary U ∈ Mn.

5. Give an example such that A2 = A, but A is not an orthogonal projection.

6. A ∈ Mn is called idempotent if A2 = A. Show that each eigenvalue of a idempotent
matrix is either 0 or 1.
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7. Compute the eigenvalues and eigenvectors of the Pauli matrices:

σ1 =

[

0 1
1 0

]

, σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0
0 −1

]

. (2.11)

8. Show that the Pauli matrices (2.11) are orthogonal to each other (with respect to
the Hilbert–Schmidt inner product). What are the matrices which orthogonal to
all Pauli matrices?

9. Let λ be an eigenvalue of a unitary operator. Show that |λ| = 1.

10. Let A be an n × n matrix and let k ≥ 1 be an integer. Assume that Aij = 0 if
j ≥ i+ k. Show that An−k is the 0 matrix.

11. Show that | detU | = 1 for a unitary U .

12. Let U ∈ Mn and u1, . . . , un be n column vectors of U , i.e., U = [u1 u2 . . . un].
Prove that U is a unitary matrix if and only if {u1, . . . , un} is an orthonormal basis
of Cn.

13. Let the U = [u1 u2 . . . un] ∈ Mn matrix be described by column vectors. Assume
that that {u1, . . . , uk} are given and orthonormal in Cn. Show that uk+1, . . . , un
can be chosen in such a way that U will be a unitary matrix.

14. Compute det(λI − A) when A is the tridiagonal matrix (2.4).

15. Let U ∈ B(H) be a unitary. Show that

lim
n→∞

1

n

n
∑

i=1

Unx

exists for every vector x ∈ H. (Hint: Consider the subspaces {x ∈ H : Ux = x}
and {Ux− x : x ∈ H}.) What is the limit

lim
n→∞

1

n

n
∑

i=1

Un ?

(This is the ergodic theorem.)



Chapter 3

Tensor products

Let H be the linear space of polynomials in the variable x and with degree less than n.
A natural basis consists of the powers 1, x, x2, . . . , xn. Similarly, let K be the space of
polynomials in y of degree less than m. Its basis is 1, y, y2, . . . , ym. The tensor product of
these two spaces is the space of polynomials of two variables with basis xiyj, i ≤ n, j ≤ m.
This simple example contains the essential ideas.

3.1 Algebraic tensor product

Let H and K be Hilbert spaces. Their algebraic tensor product consists of the formal
finite sums

∑

i,j

xi ⊗ yj (xi ∈ H, yi ∈ K).

Computing with these sums, one should use the following rules:

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y, (λx)⊗ y = λ(x⊗ y) ,
x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2, x⊗ (λy) = λ(x⊗ y) . (3.1)

The inner product is defined as
〈

∑

i,j

xi ⊗ yj,
∑

k,l

zk ⊗ wl

〉

=
∑

i,j,k,l

〈xi, zk〉〈yj, wl〉.

When H and K are finite dimensional spaces, then we arrived at the tensor product
Hilbert space H⊗K, otherwise the algebraic tensor product must be completed in order
to get a Banach space.

Example 3.1 L2[0, 1] is the Hilbert space of the square integrable functions on [0, 1]. If
f, g ∈ L2[0, 1], then the elementary tensor f ⊗ g can be interpreted as a function of two
variables, f(x)g(y) defined on [0, 1] × [0, 1]. The computational rules (3.1) are obvious
in this approach. �

The tensor product of finitely many Hilbert spaces is defined similarly.

If e1, e2, . . . and f1, f2, . . . are bases in H and K, respectively, then {ei ⊗ fj : i, j} is
a basis in the tensor product space. This basis is called product basis. An arbitrary
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vector x ∈ H ⊗K admits an expansion

x =
∑

i,j

cij ei ⊗ fj (3.2)

for some coefficients cij ,
∑

i,j |cij|2 = ‖x‖2. This kind of expansion is general, but
sometimes it is not the best.

Lemma 3.1 Any unit vector x ∈ H ⊗K can be written in the form

x =
∑

k

√
pk gk ⊗ hk, (3.3)

where the vectors gk ∈ H and hk ∈ K are orthonormal and (pk) is a probability distribu-
tion.

Proof: We can define a conjugate-linear mapping Λ : H → K as

〈Λα, β〉 = 〈Ψ, α⊗ β〉

for every vector α ∈ H and β ∈ K. In the computation we can use the bases (ei)i in H
and (fj)j in K. If x has the expansion (3.2), then

〈Λei, fj〉 = cij

and the adjoint Λ∗ is determined by

〈Λ∗fj, ei〉 = cij .

(Concerning the adjoint of a conjugate-linear mapping, see (1.16).)

One can compute that the partial trace of the matrix |x〉〈x| is D := Λ∗Λ. It is enough
to check that

〈x|ek〉〈eℓ|x〉 = TrΛ∗Λ|ek〉〈eℓ|
for every k and ℓ.

Choose now the orthogonal unit vectors gk such that they are eigenvectors of D with
corresponding non-zero eigenvalues pk, Dgk = pkgk. Then

hk :=
1√
pk

|Λgk〉

is a family of pairwise orthogonal unit vectors. Now

〈x, gk ⊗ hℓ〉 = 〈Λgk, hℓ〉 =
1√
pℓ
〈Λgk,Λgℓ〉 =

1√
pℓ
〈gℓ,Λ∗Λgk〉 = δk,ℓ

√
pℓ

and we arrived at the orthogonal expansion (3.3). �

The product basis tells us that

dim (H⊗K) = dim (H)× dim (H).
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Example 3.2 In the quantum formalism the orthonormal basis in the two dimensional
Hilbert space H is denoted as | ↑〉, | ↓〉. Instead of | ↑〉 ⊗ | ↓〉, the notation | ↑↓〉 is used.
Therefore the product basis is

| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉.
Sometimes ↓ is replaced 0 and ↑ by 1.

Another basis
1√
2
(|00〉+ |11〉), 1√

2
(|01〉+ |10〉), i√

2
(|10〉 − |01〉), 1√

2
(|00〉 − |11〉) (3.4)

is often used, it is called Bell basis. �

Example 3.3 In the Hilbert space L2(R2) we can get a basis if the space is considered
as L2(R)⊗ L2(R). In the space L2(R) the Hermite functions

ϕn(x) = exp(−x2/2)Hn(x)

form a good basis, where Hn(x) is the appropriately normalized Hermite polynomial.
Therefore, the two variable Hermite functions

ϕnm(x, y) := e−(x2+y2)/2Hn(x)Hm(y) (n,m = 0, 1, . . .) (3.5)

form a basis in L2(R2). �

3.2 Tensor product of linear mappings

The tensor product of linear transformations can be defined as well. If A : V1 → W1 és
B : V2 → W2 are linear transformations, then there is a unique linear transformation
A⊗B : V1 ⊗ V2 →W1 ⊗W2 such that

(A⊗ B)(v1 ⊗ v2) = Av1 ⊗Bv2 (v1 ∈ V1, v2 ∈ V2).

Since the linear mappings (between finite dimensional Hilbert spaces) are identified
with matrices, the tensor product of matrices appears as well.

Example 3.4 Let {e1, e2, e3} be a basis in H and {f1, f2} be a basis in K. If [Aij ] is the
matrix of A ∈ B(H1) and [Bkl] is the matrix of B ∈ B(H2), then

(A⊗ B)(ej ⊗ fl) =
∑

i,k

AijBklei ⊗ fk .

It is useful to order the tensor product bases lexicographically: e1 ⊗ f1, e1 ⊗ f2, e2 ⊗
f1, e2 ⊗ f2, e3 ⊗ f1, e3 ⊗ f2. Fixing this ordering, we can write down the matrix of A⊗B
and we have

























A11B11 A11B12 A12B11 A12B12 A13B11 A13B12

A11B21 A11B22 A12B21 A12B22 A13B21 A13B22

A21B11 A21B12 A22B11 A22B12 A23B11 A23B12

A21B21 A21B22 A22B21 A22B22 A23B21 A23B22

A31B11 A31B12 A32B11 A32B12 A33B11 A33B12

A31B21 A31B22 A32B21 A32B22 A33B21 A33B22

























.
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In the block matrix formalism we have

A⊗B =





A11B A12B A13B
A21B A22B A23B
A31B A32B A33B



 , (3.6)

see Chapter 6.

The tensor product of matrices is also called Kronecker product. �

Example 3.5 When A ∈ Mn and B ∈ Mm, the matrix

Im ⊗A +B ⊗ In ∈ Mnm

is called the Kronecker sum of A and B.

If u is an eigenvector of A with eigenvalue λ and v is an eigenvector of B with
eigenvalue µ, then

(Im ⊗ A+B ⊗ In)(u⊗ v) = λ(u⊗ v) + µ(u⊗ v) = (λ+ µ)(u⊗ v).

So u⊗ v is an eigenvector of the Kronecker sum with eigenvalue λ+ µ. �

The computation rules of the tensor product of Hilbert spaces imply straightforward
properties of the tensor product of matrices (or linear mappings).

Theorem 3.1 The following rules hold:

(1) (A1 + A2)⊗ B = A1 ⊗ B + A2 ⊗B,

(2) B ⊗ (A1 + A2) = B ⊗A1 +B ⊗ A2,

(3) (λA)⊗ B = A⊗ (λB) = λ(A⊗ B) (λ ∈ C),

(4) (A⊗ B)(C ⊗D) = AC ⊗BD,

(5) (A⊗ B)∗ = A∗ ⊗ B∗,

(6) (A⊗ B)−1 = A−1 ⊗ B−1,

(6) ‖A⊗ B‖ = ‖A‖ ‖B‖.

For example, the tensor product of self-adjoint matrices is self-adjoint, the tensor
product of unitaries is unitary.

The linear mapping Mn ⊗Mn → Mn defined as

Tr2 : A⊗B 7→ (TrB)A

is called partial trace. The other partial trace is

Tr1 : A⊗ B 7→ (TrA)B.
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Example 3.6 Assume that A ∈ Mn and B ∈ Mm. Then A⊗B is an nm× nm-matrix.
Let C ∈ Mnm. How can we decide if it has the form of A ⊗ B for some A ∈ Mn and
B ∈ Mm?

First we study how to recognize A and B from A⊗ B. (Of course, A and B are not
uniquely determined, since (λA)⊗ (λ−1B) = A⊗ B.) If we take the trace of all entries
of (3.6), then we get





A11TrB A12TrB A13TrB
A21TrB A22TrB A23TrB
A31TrB A32TrB A33TrB



 = TrB





A11 A12 A13

A21 A22 A23

A31 A32 A33



 = (TrB)A.

The sum of the diagonal entries is

A11B + A12B + A13B = (TrA)B.

If X = A⊗B, then

(TrX)X = (Tr2X)⊗ (Tr1X).

For example, the matrix

X :=









0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0









in M2 ⊗M2 is not a tensor product. Indeed,

Tr1X = Tr2X =

[

1 0
0 1

]

and their tensor product is the identity in M4. �

Let H be a Hilbert space. The k-fold tensor product H ⊗ . . . ⊗ H is called the kth
tensor power of H, in notation H⊗k. When A ∈ B(H), then A(1) ⊗ A(2) . . . ⊗ A(k) is a
linear operator on H⊗k and it is denoted by A⊗k.

3.3 Symmetric and antisymmetric tensor powers

H⊗k has two important subspaces, the symmetric and the antisymmetric ones. If
v1, v2, . . . , vk ∈ H are vectors, then their antisymmetric tensor-product is the linear
combination

v1 ∧ v2 ∧ . . . ∧ vk :=
1√
k!

∑

π

(−1)σ(π)vπ(1) ⊗ vπ(2) ⊗ . . .⊗ vπ(k) (3.7)

where the summation is over all permutations π of the set {1, 2, . . . , k} and σ(π) is
the number of inversions in π. The terminology “antisymmetric” comes from the prop-
erty that an antisymmetric tensor changes its sign if two elements are exchanged. In
particular, v1 ∧ v2 ∧ . . . ∧ vk = 0 if vi = vj for different i and j.



3.3. SYMMETRIC AND ANTISYMMETRIC TENSOR POWERS 33

The computational rules for the antisymmetric tensors are similar to (3.1):

λ(v1 ∧ v2 ∧ . . . ∧ vk) = v1 ∧ v2 ∧ . . . ∧ vℓ−1 ∧ (λvℓ) ∧ vℓ+1 ∧ . . . ∧ vk

for every ℓ and

(v1 ∧ v2 ∧ . . . ∧ vℓ−1 ∧ v ∧ vℓ+1 ∧ . . . ∧ vk) +
+ (v1 ∧ v2 ∧ . . . ∧ vℓ−1 ∧ v′ ∧ vℓ+1 ∧ . . . ∧ vk) =
= v1 ∧ v2 ∧ . . . ∧ vℓ−1 ∧ (v + v′) ∧ vℓ+1 ∧ . . . ∧ vk .

Lemma 3.2 The inner product of v1∧v2∧. . .∧vk and w1∧w2∧. . .∧wk is the determinant
of the k × k matrix whose (i, j) entry is 〈vi, wj〉.

Proof: The inner product is

1

k!

∑

π

∑

κ

(−1)σ(π)(−1)σ(κ)〈vπ(1), wκ(1)〉〈vπ(2), wκ(2)〉 . . . 〈vπ(k), wκ(k)〉

=
1

k!

∑

π

∑

κ

(−1)σ(π)(−1)σ(κ)〈v1, wκπ−1(1)〉〈v2, wκπ−1(2)〉 . . . 〈vk, wκπ−1(k)〉

=
1

k!

∑

π

∑

κ

(−1)σ(κπ
−1)〈v1, wκπ−1(1)〉〈v2, wκπ−1(2)〉 . . . 〈vk, wκπ−1(k)〉

=
∑

π

(−1)σ(π)〈v1, wπ(1)〉〈v2, wπ(2)〉 . . . 〈vk, wπ(k)〉

This is the determinant. �

The subspace spanned by the vectors v1∧ v2∧ . . .∧ vk is called the kth antisymmetric
tensor power of H, in notation ∧kH. So ∧kH ⊂ ⊗kH and this subspace can be defined
also in a different way.

Example 3.7 A transposition is a permutation of 1, 2, . . . , n which exchanges the place
of two entries. For a transposition κ, there is a unitary Uκ : ⊗kH → ⊗kH such that

Uκ(v1 ⊗ v2 ⊗ . . .⊗ vn) = vκ(1) ⊗ vκ(2) ⊗ . . .⊗ vκ(n).

Then
∧k H = {x ∈ ⊗kH : Uκx = −x for every κ}. (3.8)

The terminology “antisymmetric “ comes from this description. �

If A ∈ B(H), then the transformation ⊗kA leaves the subspace ∧kH invariant. Its
restriction is denoted by ∧kA which is equivalently defined as

∧k A(v1 ∧ v2 ∧ . . . ∧ vk) = Av1 ∧Av2 ∧ . . . ∧ Avk. (3.9)

If e1, e2, . . . , en is a basis in H, then

{ei(1) ∧ ei(2) ∧ . . . ∧ ei(k) : 1 ≤ i(1) < i(2) < . . . < i(k)) ≤ n} (3.10)

is a basis in ∧kH. It follows that the dimension of ∧kH is
(

n

k

)

if k ≤ n,
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otherwise for k > n the power ∧kH has dimension 0. Consequently, ∧nH has dimension
1 and for any operator A ∈ B(H), we have

∧n A = λ× identity (3.11)

Theorem 3.2 For A ∈ Mn, the constant λ in (3.11) is detA.

Proof: If e1, e2, . . . , en is a basis in H, then in the space ∧nV the vector e1∧e2∧. . .∧en
forms a basis. We should compute (∧nA)(e1 ∧ e2 ∧ . . . ∧ en).

(∧nA)(e1 ∧ e2 ∧ . . . ∧ en) = (Ae1) ∧ (Ae2) ∧ . . . ∧ (Aen) =

=
(

n
∑

i(1)=1

Ai(1),1ei(1)

)

∧
(

n
∑

i(2)=1

Ai(2),2ei(2)

)

∧ . . . ∧
(

n
∑

i(n)=1

Ai(n),nei(n),n

)

=

=

n
∑

i(1),i(2),...,i(n)=1

Ai(1),1Ai(2),2 . . . Ai(n),nei(1) ∧ . . . ∧ ei(n) =

=
∑

π

Aπ(1),1Aπ(2),2 . . . Aπ(n),neπ(1) ∧ . . . ∧ eπ(n) =

=
∑

π

Aπ(1),1Aπ(2),2 . . . Aπ(n),n(−1)σ(π)e1 ∧ . . . ∧ en .

Here we used that ei(1) ∧ . . . ∧ ei(n) can be non-zero if the vectors ei(1), . . . , ei(n) are all
different, in other words, this is a permutation of e1, e2, . . . , en. �

The symmetric tensor product of the vectors v1, v2, . . . , vk ∈ H is

v1 ∨ v2 ∨ . . . ∨ vk :=
1√
k!

∑

π

vπ(1) ⊗ vπ(2) ⊗ . . .⊗ vπ(k) ,

where the summation is over all permutations π of the set {1, 2, . . . , k} again. The linear
span of the symmetric tensors is the symmetric tensor power ∨kH. Similarly to (3.8),
we have

∨k H = {x ∈ ⊗kH : Uκx = x for every κ}. (3.12)

It follows immediately, that ∨kH ⊥ ∧kH. Let u ∈ ∨kH and v ∈ ∧kH. Then

〈u, v〉 = 〈Uκu,−Uκv〉 = −〈u, v〉
and 〈u, v〉 = 0.

If e1, e2, . . . , en is a basis in H, then ∨kH has the basis

{ei(1) ∨ ei(2) ∨ . . . ∨ ei(k) : 1 ≤ i(1) ≤ i(2) ≤ . . . ≤ i(k) ≤ n}. (3.13)

Similarly to the proof of Lemma 3.2 we have

〈v1 ∨ v2 ∨ . . . ∨ vk, w1 ∨ w2 ∨ . . . ∨ wk〉 =
∑

π

〈v1, wπ(1)〉〈v2, wπ(2)〉 . . . 〈vk, wπ(k)〉 (3.14)

The right-hand-side is similar to a determinant, but the sign is not changing. This is
called the permanent of the k × k matrix whose (i, j) entry is 〈vi, wj〉. So

perA =
∑

π

A1,π(1)A2,π(2) . . . An,π(n).
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3.4 Notes and remarks

Note that the Kronecker sum is often denoted by A ⊕ B in the literature, but in this
book ⊕ is the notation for the direct sum.

3.5 Exercises

1. Let

|β0〉 =
1√
2
(|00〉+ |11〉) ∈ C

2 ⊗ C
2

and

|βi〉 = (σi ⊗ I2)|β0〉 (i = 1, 2, 3)

by means of the Pauli matrices σi. Show that {|βi〉 : 0 ≤ i ≤ 3} is the Bell basis.

2. Show that the vectors of the Bell basis are eigenvectors of the matrices σi ⊗ σi,
1 ≤ i ≤ 3.

3. Show the identity

|ψ〉 ⊗ |β0〉 =
1

2

3
∑

k=0

|βk〉 ⊗ σk|ψ〉 (3.15)

in C2 ⊗ C2 ⊗ C2, where |ψ〉 ∈ C2 and |βi〉 ∈ C2 ⊗ C2 is defined above.

4. Write the so-called Dirac matrices in the form of elementary tensor (of two 2×2
matrices):

γ1 =









0 0 0 −i
0 0 −i 0
0 −i 0 0
−i 0 0 0









, γ2 =









0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0









,

γ3 =









0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0









, γ4 =









1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









.

5. Give the dimension of ∨kH if dim (H) = n.

6. Let A ∈ B(H) and B ∈ B(H) be operators on the finite dimensional spaces H and
K. Show that

det(A⊗ B) = (detA)m(detB)n,

where n = dimH and m = dimK. (Hint: The determinant is the product of the
eigenvalues.)

7. Show that ‖A⊗ B‖ = ‖A‖ · ‖B‖.
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8. Use Theorem 3.2 to prove that det(AB) = detA × detB. (Hint: Show that
∧k(AB) = (∧kA)(∧kB).)

9. Let xn + c1x
n−1 + . . .+ cn be the characteristic polynomial of A ∈ Mn. Show that

ck = Tr ∧k A.

10. Show that
H⊗H = (H ∨H)⊕ (H ∧H)

for a Hilbert space H.

11. Show that
|per (AB)|2 ≤ per (AA∗)per (B∗B).

12. Let A ∈ Mn and B ∈ Mm. Show that

Tr (Im ⊗A +B ⊗ In) = mTrA+ nTrB.

13. For a vector f ∈ H the linear operator a+(f) : ∨kH → ∨k+1H is defined as

a+(f) v1 ∨ v2 ∨ . . . ∨ vk = f ∨ v1 ∨ v2 ∨ . . . ∨ vk. (3.16)

Compute the adjoint of a+(f) which is denoted by a(f).

14. For A ∈ B(H) let F(A) : ∨kH → ∨kH be defined as

F(A) v1 ∨ v2 ∨ . . . ∨ vk =
k
∑

i=1

v1 ∨ v2 ∨ . . . ∨ vi−1 ∨Avi ∨ vi+1 ∨ . . . ∨ vk.

Show that
F(|f〉〈g|) = a+(f)a(g)

for f, g ∈ H. (Recall that a and a+ are defined in the previous exercise.)



Chapter 4

Positive matrices

Mostly the statements and definitions are formulated in the Hilbert space setting. The
Hilbert space is always assumed to be finite dimensional, so instead of operators one can
consider a matrices.

4.1 Positivity and square root

Let H be a (complex) Hilbert space and T : H → H be a bounded linear operator. T
is called positive (or positive semidefinite) if 〈x, Tx〉 ≥ 0 for every vector x ∈ H, in
notation T ≥ 0. It follows from the definition that a positive operator is self-adjoint:
Since 〈x, Tx〉 ∈ R,

〈x, Tx〉 = 〈x, Tx〉 = 〈Tx, x〉.

(The argument used the complex structure. In the real case any scalar product is real.
So in the real-valued case the positivity of T needs the requirement of the self-adjoint
property as well.)

If T1 and T2 are positive operators, then T1 + T2 is positive as well.

Theorem 4.1 Let T ∈ B(H) be an operator. The following conditions are equivalent.

(1) T is positive.

(2) T = T ∗ and the spectrum of T lies in R+.

(3) T is of the form A∗A for some operator A ∈ B(H).

An operator T is positive if and only if UTU∗ is positive for a unitary U . The
positivity of an operator is equivalent to the positivity of its matrix (with respect to any
orthonormal basis).

Theorem 4.2 Let T be a positive operator. Then there is a unique positive operator B
such that B2 = T . If the self-adjoint operator A commutes with T , then it commutes
with B as well.



38 CHAPTER 4. POSITIVE MATRICES

Proof: We restrict ourselves to the finite dimensional case. In this case it is enough
to find the eigenvalues and the eigenvectors. If Bx = λx, then x is an eigenvector of T
with eigenvalue λ2. This determines B uniquely, T and B have the same eigenvectors.

AB = BA holds if for any eigenvector x of B the vector Ax is an eigenvector, too. If
TA = AT , then this follows. �

B is called the square root of T , T 1/2 is a notation. It follows from the theorem
that the product of commuting positive operators T and A is positive. Indeed,

TA = T 1/2T 1/2A1/2A1/2 = T 1/2A1/2A1/2T 1/2 = (A1/2T 1/2)∗A1/2T 1/2.

Example 4.1 For each A ∈ B(H), we have A∗A ≥ 0. So, define |A| := (A∗A)1/2 that
is called the absolute value of A. The mapping

|A|x 7→ Ax

is norm preserving:

‖ |A|x‖2 = 〈|A|x, |A|x〉 = 〈x, |A|2x〉 = 〈x,A∗Ax〉 = 〈Ax,Ax〉 = ‖Ax‖2

It can be extended to a unitary U . So A = U |A| and this is called polar decomposition.

The definition |A| := (A∗A)1/2 makes sense also if A : H1 → H2. Then |A| ∈ B(H1).
The above argument tells that |A|x 7→ Ax is norm preserving, but it is not sure that it
can be extended to a unitary. If dimH1 ≤ dimH2, then |A|x 7→ Ax can be extended to
an isometry V : H1 → H2. Then A = V |A|, where V ∗V = I.

The eigenvalues of |A| are called the singular values of A. �

Example 4.2 Let T be a positive operator acting on a finite dimensional Hilbert space
such that ‖T‖ ≤ 1. We want to show that there is unitary operator U such that

T =
1

2
(U + U∗).

We can choose an orthonormal basis e1, e2, . . . , en consisting of eigenvectors of T and
in this basis the matrix of T is diagonal, say, Diag(t1, t2, . . . , tn), 0 ≤ tj ≤ 1 from the
positivity. For any 1 ≤ j ≤ n we can find a real number θj such that

tj =
1

2
(eiθj + e−iθj ).

Then the unitary operator U with matrix Diag(exp(iθ1)), . . . , exp(iθn)) will have the
desired property. �

If T acts on a finite dimensional Hilbert space which has an orthonormal basis
e1, e2, . . . , en, then T is uniquely determined by its matrix

[〈ei, T ej〉]ni,j=1.

T is positive if and only if its matrix is positive (semi-definite).
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Example 4.3 Let

A =









λ1 λ2 . . . λn
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0









.

Then
[A∗A]i,j = λiλj (1 ≤ i, j ≤ n)

and this matrix is positive. Every positive matrix is the sum of matrices of this form.
(The minimum number of the summands is the rank of the matrix.) �

Example 4.4 Take numbers λ1, λ2, . . . , λn > 0 and set

Aij =
1

λi + λj
(1 ≤ i, j ≤ n). (4.1)

A is called a Cauchy matrix. We have

1

λi + λj
=

∫ ∞

0

e−tλie−tλj dt

and the matrix
A(t)ij := e−tλie−tλj

is positive for every t ∈ R due to Example 4.3. Therefore

A =

∫ ∞

0

A(t) dt

is positive as well. �

Theorem 4.3 Let T ∈ B(H) be an invertible self-adjoint operator and e1, e2, . . . , en be
a basis in the Hilbert space H. T is positive if and only if for any 1 ≤ k ≤ n the
determinant of the k × k matrix

[〈ei, T ej〉]kij=1

is positive (that is, ≥ 0).

An invertible positive matrix is called positive definite. Such matrices appear in
probability theory in the concept of Gaussian distribution. The work with Gaussian
distributions in probability theory requires the experience with matrices. (This is in the
next example, but also in Example 6.1.)

Example 4.5 Let M be a positive definite n × n real matrix and x = (x1, x2, . . . , xn).
Then

fM(x) :=

√

DetM

(2π)n
exp

(

− 1
2
〈x,Mx〉

)

(4.2)

is a multivariate Gaussian probability distribution (with 0 expectation, see, for example,
III.6 in [18]). The matrix M will be called the quadratic matrix of the Gaussian
distribution.
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For an n× n matrix B, the relation
∫

〈x, Bx〉fM(x) dx = TrBM−1 (4.3)

holds.

We first note that if (4.3) is true for a matrix M , then
∫

〈Bx,x〉fU∗MU(x) dx =

∫

〈BU∗x, U∗x〉fM(x) dx

= Tr (UBU∗)M−1

= TrB(U∗MU)−1

for a unitary U , since the Lebesgue measure on Rn is invariant under unitary transfor-
mation. This means that (4.3) holds also for U∗MU . Therefore to check (4.3), we may
assume that M is diagonal. Another reduction concerns B: We may assume that B is a
matrix unit Eij. Then the n variable integral reduces to integrals on R and the known
integrals

∫

R

t exp
(

− 1

2
λt2
)

dt = 0 and

∫

R

t2 exp
(

− 1

2
λt2
)

dt =

√
2π

λ

can be used.

Formula (4.3) has an important consequence. When the joint distribution of the
random variables (ξ1, ξ2, . . . , ξn) is given by (4.2), then the covariance matrix is M−1.

The Boltzmann entropy of a probability density f(x) is defined as

h(f) := −
∫

f(x) log f(x) dx (4.4)

if the integral exists. For a Gaussian fM we have

h(fM) =
n

2
log(2πe)− 1

2
log DetM.

Assume that fM is the joint distribution of the (number-valued) random variables ξ1, ξ2, . . . ,
ξn. Their joint Boltzmann entropy is

h(ξ1, ξ2, . . . , ξn) =
n

2
log(2πe) + logDetM−1

and the Boltzmann entropy of ξi is

h(ξi) =
1

2
log(2πe) +

1

2
log(M−1)ii.

The subadditivity of the Boltzmann entropy is the inequality

h(ξ1, ξ2, . . . , ξn) ≤ h(ξ1) + h(ξ2) + . . .+ h(ξn)

which is

logDetA ≤
m
∑

i=1

logAii
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in our particular Gaussian case, A = M−1. What we obtained is the Hadamard
inequality

DetA ≤
m
∏

i=1

Aii

for a positive definite matrix A, cf. Theorem 2.6. �

Example 4.6 If the matrix X ∈ Mn can be written in the form

X = SDiag(λ1, λ2, . . . , λn)S
−1,

with λ1, λ2, . . . , λn > 0, then X is called weakly positive. Such a matrix has n lin-
early independent eigenvectors with strictly positive eigenvalues. If the eigenvectors are
orthogonal, then the matrix is positive definite. Since

X =
(

SDiag(
√

λ1,
√

λ2, . . . ,
√

λn)S
∗
)(

(S∗)−1Diag(
√

λ1,
√

λ2, . . . ,
√

λn)S
−1
)

,

this is the product of two positive definite matrices.

Although this X is not positive, but the eigenvalues are strictly positive. Therefore
we can define the square root as

X1/2 = SDiag(
√

λ1,
√

λ2, . . . ,
√

λn)S
−1.

(See also 5.6). �

4.2 Relation to tensor product

If 0 ≤ A ∈ Mn and 0 ≤ B ∈ Mm, then 0 ≤ A ⊗ B. More generally if 0 ≤ Ai ∈ Mn and
0 ≤ Bi ∈ Mm, then

k
∑

i=1

Ai ⊗ Bi

is positive. These matrices in Mn ⊗Mm are called separable positive matrices. Is it
true that every positive matrix in Mn ⊗Mm is separable? A counterexample follows.

Example 4.7 Let M4 = M2 ⊗M2 and

D :=
1

2









0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0









.

D is a rank 1 positive operator, it is a projection. If D =
∑

iDi, then Di = λiD. If D
is separable, then it is a tensor product. If D is a tensor product, then up to a constant
factor it equals to (Tr2D)⊗ (Tr1D). We have

Tr1D = Tr2D =
1

2

[

1 0
0 1

]

.

Their tensor product has rank 4 and it cannot be λD. It follows that this D is not
separable. �
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In quantum theory the non-separable positive operators are called entangled. The
positive operator D is maximally entangled if it has minimal rank (it means rank 1)
and the partial traces have maximal rank. The matrix D in the previous example is
maximally entangled.

It is interesting that there is no procedure to decide if a positive operator in a tensor
product space is separable or entangled.

4.3 Partial ordering

Let A,B ∈ B(H) be self-adjoint operators. The partial ordering A ≤ B holds if B − A
is positive, or equivalently

〈x,Ax〉 ≤ 〈x,Bx〉

for all vectors x. From this formulation one can easily see that A ≤ B implies XAX∗ ≤
XBX∗ for every operator X .

Example 4.8 Assume that for the orthogonal projections P andQ the inequality P ≤ Q
holds. If Px = x for a unit vector x, then 〈x, Px〉 ≤ 〈x,Qx〉 ≤ 1 shows that 〈x,Qx〉 = 1.
Therefore the relation

‖x−Qx‖2 = 〈x−Qx, x−Qx〉 = 〈x, x〉 − 〈x,Qx〉 = 0

gives that Qx = x. The range of Q contains the range of P . �

Let An be a sequence of operators on a finite dimensional Hilbert space. Fix a basis
and let [An] be the matrix of An. Similarly, the matrix of the operator A is [A]. Let
the Hilbert space m-dimensional, so the matrices are m ×m. Recall that the following
conditions are equivalent:

(1) ‖A− An‖ → 0.

(2) Anx→ Ax for every vector x.

(3) 〈x,Any〉 → 〈x,Ay〉 for every vectors x and y.

(4) 〈x,Anx〉 → 〈x,Ax〉 for every vector x.

(5) Tr (A− An)
∗(A− An) → 0

(6) [An]ij → [A]ij for every 1 ≤ i, j ≤ m.

These conditions describe in several ways the convergence of a sequence of operators
or matrices.

Theorem 4.4 Let An be an increasing sequence of operators with an upper bound: A1 ≤
A2 ≤ . . . ≤ B. Then there is an operator A ≤ B such that An → A.
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Proof: Let φn(x, y) := 〈x,Any〉 be a sequence of complex bilinear functionals. limn φn(x, x)
is a bounded increasing real sequence and it is convergent. Due to the polarization iden-
tity φn(x, y) is convergent as well and the limit gives a complex bilinear functional φ. If
the corresponding operator is denoted by A, then

〈x,Any〉 → 〈x,Ay〉

for every vectors x and y. This is the convergence An → A. The condition 〈x,Ax〉 ≤
〈x,Bx〉 means A ≤ B. �

Example 4.9 Assume that 0 ≤ A ≤ I for an operator A. Define a sequence Tn of
operators by recursion. Let T1 = 0 and

Tn+1 = Tn +
1

2
(A− T 2

n) (n ∈ N) .

Tn is a polynomial of A with real coefficients. So these operators commute with each
other. Since

I − Tn+1 =
1

2
(I − Tn)

2 +
1

2
(I −A) ,

induction shows that Tn ≤ I.

We show that T1 ≤ T2 ≤ T3 ≤ . . . by mathematical induction. In the recursion

Tn+1 − Tn =
1

2
((I − Tn−1)(Tn − Tn−1) + (I − Tn)(Tn − Tn−1))

I − Tn−1 ≥ 0 and Tn − Tn−1 ≥ 0 due to the assumption. Since they commute their
product is positive. Similarly (I − Tn)(Tn − Tn−1) ≥ 0. It follows that the right-hand-
side is positive.

Theorem 4.4 tells that Tn converges to an operator B. The limit of the recursion
formula yields

B = B +
1

2
(A− B2) ,

therefore A = B2. �

Theorem 4.5 Assume that 0 < A,B ∈ Mn are invertible matrices and A ≤ B. Then
B−1 ≤ A−1

Proof: The condition A ≤ B is equivalent to B−1/2AB−1/2 ≤ I and the statement
B−1 ≤ A−1 is equivalent to I ≤ B1/2A−1B1/2. If X = B−1/2AB−1/2, then we have to
show that X ≤ I implies X−1 ≥ I. The condition X ≤ I means that all eigenvalues of
X are in the interval (0, 1]. This implies that all eigenvalues of X−1 are in [1,∞). �

Assume that A ≤ B. It follows from (2.9) that the largest eigenvalue of A is smaller
than the largest eigenvalue of B. Let λ(A) = (λ1(A), . . . , λn(A)) denote the vector of
the eigenvalues of A in decreasing order (with counting multiplicities).

The next result is called Weyl’s monotonicity theorem.

Theorem 4.6 If A ≤ B, then λk(A) ≤ λk(B) for all k.

This is a consequence of the minimax principle, Theorem 2.5.
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4.4 Hadamard product

Theorem 4.7 (Schur theorem) Let A and B be positive n× n matrices. Then

Cij = AijBij (1 ≤ i, j ≤ n)

determines a positive matrix.

Proof: If Aij = λiλj and Bij = µiµj, then Cij = λiµiλjµj and C is positive due to
Example 4.3. The general case is reduced to this one. �

The matrix C of the previous theorem is called the Hadamard (or Schur) product
of the matrices A and B. In notation, C = A ◦B.

Corollary 4.1 Assume that 0 ≤ A ≤ B and 0 ≤ C ≤ D. Then A ◦ C ≤ B ◦D.

Proof: The equation

B ◦D = A ◦ C + (B − A) ◦ C + (D − C) ◦ A+ (B − A) ◦ (D − C)

implies the statement. �

Example 4.10 Let A ∈ Mn be a positive matrix. The mapping SA : B 7→ A◦B sends a
positive matrix to a positive matrix, therefore it is a positive mapping. A linear mapping
α : Mn → Mn is called completely positive if it has the form

α(B) =
k
∑

i=1

V ∗
i AVi

for some matrices Vi. The sum of completely positive mappings is completely positive.

We want to show that SA is completely positive. SA is additive in A, hence it is
enough to show the case Aij = λiλj. Then

SA(B) = Diag(λ1, λ2, . . . , λn)BDiag(λ1, λ2, . . . , λn)

and SA is completely positive. �

Example 4.11 Take numbers t, λ1, λ2, . . . , λn > 0 and set

Aij =
1

(λi + λj)t
(1 ≤ i, j ≤ n). (4.5)

For t = 1 this A is a Cauchy matrix which is positive, see Example 4.4. If t is an integer,
the Schur theorem gives the positivity of the Hadamard powers. Actually, A > 0 for
every t > 0. It is easy to prove for a 2× 2 matrix. �

4.5 Lattice of projections

Let K be a closed subspace of a Hilbert space H. Any vector x ∈ H can be written
in the form x0 + x1, where x0 ∈ K and x1 ⊥ K. The linear mapping P : x 7→ x0 is
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called (orthogonal) projection onto K. The orthogonal projection P has the properties
P = P 2 = P ∗. If an operator P ∈ B(H) satisfies P = P 2 = P ∗, then it is an (orthogonal)
projection (onto its range). Instead of orthogonal projection the expression ortho-
projection is also used.

If P and Q are projections, then the relation P ≤ Q means that the range of P
is contained in the range of Q. An equivalent algebraic formulation is PQ = P . The
largest projection is the identity I and the smallest one is 0. Therefore 0 ≤ P ≤ I for
any projection P .

If P is a projection, then I − P is a projection as well and it is often denoted by P⊥,
since the range of I − P is the orthogonal complement of the range of P .

Example 4.12 Let P and Q be projections. The relation P ⊥ Q means that the range
of P is orthogonal to the range of Q. An equivalent algebraic formulation is PQ = 0.
Since the orthogonality relation is symmetric, PQ = 0 if and only if QP = 0. (We can
arrive at this statement by taking adjoint as well.)

We show that P ⊥ Q if and only if P +Q is a projection as well. P +Q is self-adjoint
and it is a projection if

(P +Q)2 = P 2 + PQ+QP +Q2 = P +Q+ PQ+QP = P +Q

or equivalently
PQ+QP = 0.

This is true if P ⊥ Q. On the other hand, the condition PQ + QP = 0 implies that
PQP + QP 2 = PQP + QP = 0 and QP must be self-adjoint. We can conclude that
PQ = 0 which is the orthogonality. �

Assume that P and Q are projections on the same Hilbert space. Among the projec-
tions which are smaller than P and Q there is a largest, it is the orthogonal projection
onto the intersection of the ranges of P and Q. This has the notation P ∧Q.

Theorem 4.8 Assume that P and Q are ortho-projections. Then

P ∧Q = lim
n→∞

(PQP )n = lim
n→∞

(QPQ)n.

Proof: The operator A := PQP is a positive contraction. Therefore the sequence An

is monotone decreasing and Theorem 4.4 implies that An has a limit R. The operator
R is selfadjoint. Since (An)2 → R2 we have R = R2, in other words, R is an ortho-
projection. If Px = x and Qx = x for a vector x, then Ax = x and it follows that
Rx = x. This means that R ≥ P ∧Q.

From the inequality (PQP )n ≤ Q, R ≤ Q follows. Taking the limit of the relation
(QPQ)n = Q(PQP )n−1Q, we have

lim
n→∞

(QPQ)n = QRQ = R.

Similarly to the above argument we have that R ≤ P .

It has been proved that R ≤ P,Q and R ≥ P ∧ Q. So R = P ∧ Q is the only
possibility. �
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Corollary 4.2 Assume that P and Q are ortho-projections and 0 ≤ H ≤ P,Q. Then
H ≤ P ∧Q.

Proof: One can show that PHP = H,QHQ = H . This implies H ≤ (PQP )n and
the limit n→ ∞ gives the result. �

Let P and Q be ortho-projections. If the ortho-projection R has the property R ≥
P,Q, then the image of R contains the images of P and Q. The smallest such R projects
to the linear space generated by the images of P and Q. This ortho-projection is denoted
by P ∨Q. The set of ortho-projections becomes a lattice with the operations ∧ and ∨.

4.6 Kernel functions

Let X be a nonempty set. A function ψ : X ×X → C is often called a kernel. A kernel
ψ : X × X → C is called positive definite if

n
∑

j,k=1

cjckψ(xj, xk) ≥ 0

for all finite sets {c1, c2, . . . , cn} ⊂ C and {x1, x2, . . . , xn} ⊂ X .

Example 4.13 It follows from the Schur theorem that the product of positive definite
kernels is a positive definite kernel as well.

If ψ : X ×X → C is positive definite, then

eψ =

∞
∑

n=0

1

n!
ψm

and ψ̄(x, y) = f(x)ψ(x, y)f(y) are positive definite for any function f : X → C. �

The function ψ : X × X → C is called conditionally negative definite kernel if
ψ(x, y) = ψ(y, x) and

n
∑

j,k=1

cjckψ(xj, xk) ≤ 0

for all finite sets {c1, c2, . . . , cn} ⊂ C and {x1, x2, . . . , xn} ⊂ X when
∑n

j=1 cj = 0.

The above properties of a kernel depend on the matrices








ψ(x1, x1) ψ(x1, x2) . . . ψ(x1, xn)
ψ(x2, x1) ψ(x2, x2) . . . ψ(x2, xn)

...
...

. . .
...

ψ(xn, x1) ψ(xn, x2) . . . ψ(xn, xn)









.

If a kernel f is positive definite, then −f is conditionally negative definite, but the
converse is not true.

Lemma 4.1 Assume that the function ψ : X×X → C has the property ψ(x, y) = ψ(y, x)
and fix x0 ∈ X . Then

ϕ(x, y) := −ψ(x, y) + ψ(x, x0) + ψ(x0, y)− ψ(x0, x0)

is positive definite if and only if ψ is conditionally negative definite.
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The proof is rather straightforward, but an interesting particular case is below.

Example 4.14 Assume that f : R+ → R is a C1-function with the property f(0) =
f ′(0) = 0. Let ψ : R+ × R+ → R be defined as

ψ(x, y) =











f(x)− f(y)

x− y
if x 6= y,

f ′(x) if x = y.

(This is the so-called kernel of divided difference.) Assume that this is conditionally
negative definite. Now we apply the lemma with x0 = ε:

−f(x)− f(y)

x− y
+
f(x)− f(ε)

x− ε
+
f(ε)− f(y)

ε− y
− f ′(ε)

is positive definite and from the limit ε→ 0, we have the positive definite kernel

−f(x)− f(y)

x− y
+
f(x)

x
+
f(y)

y
= −f(x)y

2 − f(y)x2

x(x− y)y
.

The multiplication by xy/(f(x)f(y)) gives a positive definite kernel

x2

f(x)
− y2

f(y)

x− y

which is again a divided difference of the function g(x) := x2/f(x). �

Theorem 4.9 (Schoenberg theorem) Let X be a nonempty set and let ψ : X×X → C

be a kernel. Then ψ is conditionally negative definite if and only if exp(−tψ) is positive
definite for every t > 0.

Proof: If exp(−tψ) is positive definite, then 1− exp(−tψ) is negative definite and so
is

ψ = lim
t→0

1

t
(1− exp(−tψ)).

Assume now that ψ is conditionally negative definite. Take x0 ∈ X and set

ϕ(x, y) := −ψ(x, y) + ψ(x, x0) + ψ(x0, x)− ψ(x0, x0)

which is positive definite due to the previous lemma. Then

e−ψ(x,y) = eϕ(x,y)e−ψ(x,x0)e−ψ(y,x0)e−ψ(x0,x0)

is positive definite. This was t = 1, for general t > 0 the argument is similar. �

The kernel functions are a kind of generalization of matrices. If A ∈ Mn, then the
corresponding kernel function has X := {1, 2, . . . , n} and

ψA(i, j) = Aij (1 ≤ i, j ≤ n).

Therefore the results of this section have matrix consequences.
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4.7 Notes and remarks

Weakly positive matrices were introduced by Eugene P. Wigner in 1963. He showed
that if the product of two or three weakly positive matrices is self-adjoint, then it is
positive definite.

Eugene Paul Wigner (1902–1995)

Wigner was born in Budapest, he attended a high-school together with John
von Neumann whose Hungarian name is Neumann János. They became
good friends, both of them studied first chemistry in university. Wigner
received the Nobel Prize in Physics in 1963.

Example 4.11 is related to the concept of infinite divisibility, there is a good overview
in the paper R. Bhatia and H. Kosaki, Mean matrices and infinite divisibility, Linear
Algebra Appl. 424(2007), 36–54.

The lattice of ortho-projections has applications in quantum theory. An important
results says that if ψ is a positive real valued function on the ortho-projections of Mn

with n ≥ 3 and ψ(P + Q) = ψ(P ) + ψ(Q) for all orthogonal ortho-projections, then ψ
has a linear extension to Mn. This is the Gleason theorem, see R. Cooke, M. Keane and
W. Moran: An elementary proof of Gleason’s theorem. Math. Proc. Cambridge Philos.
Soc. 98 1985), 117–128.

Positive and conditionally negative definite kernel function are well discussed in the
book C. Berg, J.P.R. Christensen and P. Ressel: Harmonic analysis on semigroups. The-
ory of positive definite and related functions. Graduate Texts in Mathematics, 100.
Springer-Verlag, New York, 1984. (It is remarkable that the conditionally negative defi-
nite is called there negative definite.)

4.8 Exercises

1. Give an example of A ∈ Mn(C) such that the spectrum of A is in R+ and A is not
positive.
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2. Let A ∈ Mn(C). Show that A is positive if and only if X∗AX is positive for every
X ∈ Mn(C).

3. Let A ∈ B(H). Prove the equivalence of the following assertions: (i) ‖A‖ ≤ 1, (ii)
A∗A ≤ I, and (iii) AA∗ ≤ I.

4. Let A ∈ Mn(C). Show that A is positive if and only if TrXA is positive for every
positive X ∈ Mn(C).

5. Let ‖A‖ ≤ 1. Show that there are unitaries U and V such that

A =
1

2
(U + V ).

(Hint: Use Example 4.2.)

6. Show that a matrix is weakly positive if and only if it is the product of two positive
definite matrices.

7. Let V : Cn → Cn ⊗ Cn be defined as V ei = ei ⊗ ei. Show that

V ∗(A⊗B)V = A ◦B (4.6)

for A,B ∈ Mn(C). Conclude the Schur theorem.

8. Let A be a positive 2× 2 matrix with real entries. Show that

Bij = (Aij)
t

is a positive matrix for every t > 0. Give a counter example that the similar
statement is not true for 3× 3 matrices.

9. Assume that P and Q are projections. Show that P ≤ Q is equivalent to PQ = P .

10. Assume that P1, P2, . . . , Pn are projections and P1 + P2 + . . .+ Pn = I. Show that
the projections are pairwise orthogonal.

11. Let U |A| be the polar decomposition of A ∈ Mn. Show that M is normal if and
only if U |A| = |A|U .

12. Let P ∈ Mn be idempotent, P 2 = P . Show that P is an ortho-projection if and
only if ‖P‖ ≤ 1.

13. Show that the kernels ψ(x, y) = cos(x − y), cos(x2 − y2), (1 + |x − y|)−1 are
positive semidefinite on R× R.

14. Assume that the kernel ψ : X × X → C is positive definite and ψ(x, x) > 0 for
every x ∈ X . Show that

ψ̄(x, y) =
ψ(x, y)

ψ(x, x)ψ(y, y)

is a positive definite kernel.



50 CHAPTER 4. POSITIVE MATRICES

15. Assume that the kernel ψ : X × X → C is negative definite and ψ(x, x) ≥ 0 for
every x ∈ X . Show that

log(1 + ψ(x, y))

is a negative definite kernel.

16. Show that the kernel ψ(x, y) = (sin(x− y))2 is negative semidefinite on R× R.



Chapter 5

Functional calculus for matrices

Let A ∈ Mn(C) and p(x) :=
∑

i cix
i be a polynomial. It is quite obvious that by p(A)

one means the matrix
∑

i ciA
i.

5.1 The exponential function

The Taylor expansion of the exponential function can be used to define eA for a matrix
A ∈ Mn(C):

eA :=
∞
∑

n=0

An

n!
. (5.1)

(The right-hand-side is an absolutely convergent series.)

Theorem 5.1 If AB = BA, then

eA+B = eAeB.

Proof: We can compute the product eAeB by multiplying term by term the series:

eAeB =
∞
∑

m,n=0

1

m!n!
AmBn.

Therefore,

eAeB =

∞
∑

k=0

1

k!
Ck,

where

Ck :=
∑

m+n=k

k!

m!n!
AmBn.

Due to the commutation relation AB = BA, the binomial formula holds and Ck =
(A+B)k. We conclude

eAeB =
∞
∑

k=0

1

k!
(A +B)k

which is the statement.
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We can give another proof by differentiation. It follows from the expansion (5.1) that
the derivative of the matrix-valued function t 7→ etA defined on R is etAA. Therefore,

∂

∂t
etAeC−tA = etAAeC−tA − etAAeC−tA = 0

if AC = CA. Therefore, the function t 7→ etAeC−tA is constant. In particular,

eAeC−A = eC .

If we put A+B in place of C, we get the statement. �

Example 5.1 In case of 2× 2 matrices, the use of the Pauli matrices

σ1 =

[

0 1
1 0

]

, σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0
0 −1

]

is efficient, together with I they form an orthogonal system.

Let A ∈ Msa
2 be such that

A = c1σ1 + c2σ2 + c3σ3, c21 + c22 + c23 = 1

in the representation with Pauli matrices. It is simple to check that A2 = I. Therefore,
for even powers A2n = I, but for odd powers A2n+1 = A. Choose c ∈ R and combine the
two facts with the knowledge of the relation of the exponential to sine and cosine:

eicA =
∞
∑

n=0

incnAn

n!
=

∞
∑

n=0

(−1)nc2nA2n

(2n)!
+ i

∞
∑

n=0

(−1)nc2n+1A2n+1

(2n+ 1)!
= (cos c)I + i(sin c)A

A general matrix has the form C = c0I + cA and

eiC = eic0(cos c)I + ieic0(sin c)A.

(eC is similar, see Exercise 3.) �

The next theorem gives the so-called Lie-Trotter formula.

Theorem 5.2 Let A,B ∈ Mn(C). Then

eA+B = lim
n→∞

(

eA/neB/n
)n

Proof: First we observe that the identity

Xn − Y n =

n−1
∑

j=0

Xn−1−j(X − Y )Y j

implies the norm estimate

‖Xn − Y n‖ ≤ ntn−1‖X − Y ‖ (5.2)
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for the submultiplicative operator norm when the constant t is chosen such that ‖X‖, ‖Y ‖ ≤
t.

Now we choose Xn := exp((A + B)/n) and Yn := exp(A/n) exp(B/n). From the
above estimate we have

‖Xn
n − Y n

n ‖ ≤ nu‖Xn − Yn‖, (5.3)

if we can find a constant u such that ‖Xn‖n−1, ‖Yn‖n−1 ≤ u. Since

‖Xn‖n−1 ≤ ( exp((‖A‖+ ‖B‖)/n))n−1 ≤ exp(‖A‖+ ‖B‖)

and

‖Yn‖n−1 ≤ ( exp(‖A‖/n))n−1 × ( exp(‖B‖/n))n−1 ≤ exp ‖A‖ × exp ‖B‖,

u = exp(‖A‖+ ‖B‖) can be chosen to have the estimate (5.3).

The theorem follows from (5.3) if we show that n‖Xn − Yn‖ → 0. The power series
expansion of the exponential function yields

Xn = I +
A+B

n
+

1

2

(

A+B

n

)2

+ . . .

and

Yn =

(

I +
A

n
+

1

2

(

A

n

)2

+ . . .

)

×
(

I +
B

n
+

1

2

(

B

n

)2

+ . . .

)

.

If Xn − Yn is computed by multiplying the two series in Yn, one can observe that all
constant terms and all terms containing 1/n cancel. Therefore

‖Xn − Yn‖ ≤ c

n2

for some positive constant c. �

If A and B are self-adjoint matrices, then it can be better to reach eA+B as the limit
of self-adjoint matrices.

Corollary 5.1

eA+B = lim
n→∞

(

e
A
2n e

B
n e

A
2n

)n

Proof: We have
(

e
A
2n e

B
n e

A
2n

)n

= e−
A
2n

(

eA/neB/n
)n
e

A
2n

and the limit n→ ∞ gives the result. �

Theorem 5.3 For matrices A,B ∈ Mn the Taylor expansion of the function R ∋ t 7→
eA+tB is

∞
∑

k=0

tkAk(1) ,

where A0(s) = esA and

Ak(s) =

∫ s

0

dt1

∫ t1

0

dt2 . . .

∫ tk−1

0

dtke
(s−t1)ABe(t1−t2)AB . . .BetkA

for s ∈ R.
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Proof: To make differentiation easier we write

Ak(s) =

∫ s

0

e(s−t1)ABAk−1(t1) dt1 = esA
∫ s

0

e−t1ABAk−1(t1) dt1

for k ≥ 1. It follows that

d

ds
Ak(s) = AesA

∫ s

0

e−t1ABAk−1(t1) dt1 + esA
d

ds

∫ s

0

e−t1ABAk−1(t1) dt1

= AAk(s) +BAk−1(s).

Therefore

F (s) :=
∞
∑

k=0

Ak(s)

satisfies the differential equation

F ′(s) = (A+B)F (s), F (0) = I.

Therefore F (s) = es(A+B). If s = 1 and we write tB in place of B, then we get the
expansion of eA+tB . �

Corollary 5.2
∂

∂t
eA+tB

∣

∣

∣

t=0
=

∫ 1

0

euABe(1−u)A du.

The following result is Lieb’s extension of the Golden-Thompson inequality.

Theorem 5.4 (Golden-Thompson-Lieb) Let A, B and C be self-adjoint matrices. Then

Tr eA+B+C ≤
∫ ∞

0

Tr eA(t+ e−C)−1eB(t+ e−C)−1 dt .

When C = 0, the we have

Tr eA+B ≤ Tr eAeB (5.4)

which is the original Golden-Thompson inequality. If BC = CB, then in the right-hand-
side, the integral

∫ ∞

0

(t+ e−C)−2 dt

appears. This equals to eC and we have Tr eA+B+C ≤ Tr eAeBeC . Without the assump-
tion BC = CB, this inequality is not true.

An example of the application of the Golden-Thompson-Lieb inequality is the strong
subadditivity of the von Neumann entropy (defined by (5.5)).

Example 5.2 The partial trace Tr1 : Mk ⊗Mm → Mm is a linear mapping which is
defined by the formula Tr1(A⊗B) = (TrA)B on elementary tensors. It is called partial
trace, since trace of the first tensor factor was taken. Tr2 : Mk ⊗Mm → Mk is similarly
defined. We shall need this concept for three-fold tensor product.
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Recall that D ∈ Mk is a density matrix if 0 ≤ D and TrD = 1. The von Neumann
entropy of a density matrix D is S(D) = −TrD logD (see also in (5.26)).

Let D123 be a density matrix in Mk ⊗ Ml ⊗ Mm. The reduced density matrices are
defined by the partial traces

D12 := Tr1D123 ∈ Mk ⊗Ml, D2 := Tr13D123 ∈ Ml and D23 := Tr1D123 ∈ Mk

The strong subadditivity is the inequality

S(D123) + S(D2) ≤ S(D12) + S(D23). (5.5)

which is equivalent to

TrD123 (logD123 − (logD12 − logD2 + logD23)) ≥ 0.

The operator
exp(logD12 − logD2 + logD23)

is positive and can be written as λD for a density matrix D. Actually,

λ = Tr exp(logD12 − logD2 + logD23).

We have

S(D12) + S(D23)− S(D123)− S(D2)
= TrD123 (logD123 − (logD12 − logD2 + logD23))
= S(D123‖λD) = S(D123‖D)− log λ (5.6)

Here S(X‖Y ) := TrX(logX − log Y ) is the relative entropy. If X and Y are density
matrices, then S(X‖Y ) ≥ 0. Therefore, λ ≤ 1 implies the positivity of the left-hand-side
(and the strong subadditivity). Due to Theorem 5.4, we have

Tr exp(logD12 − logD2 + logD23)) ≤
∫ ∞

0

TrD12(tI +D2)
−1D23(tI +D2)

−1 dt

Applying the partial traces we have

TrD12(tI +D2)
−1D23(tI +D2)

−1 = TrD2(tI +D2)
−1D2(tI +D2)

−1

and that can be integrated out. Hence
∫ ∞

0

TrD12(tI +D2)
−1D23(tI +D2)

−1 dt = TrD2 = 1.

and λ ≤ 1 is obtained and the strong subadditivity is proven.

If the equality holds in (5.5), then exp(logD12 − logD2 + logD23) is a density matrix
and

S(D123‖ exp(logD12 − logD2 + logD23)) = 0

implies

logD123 = logD12 − logD2 + logD23. (5.7)

This is the necessary and sufficient condition for the equality. �



56 CHAPTER 5. FUNCTIONAL CALCULUS FOR MATRICES

A function f : R+ → R is the Laplace transform of a measure µ on [0,∞) ⊂ R if

f(t) =

∫ ∞

0

e−tx dµ(x) (t ∈ R
+).

According to the Bernstein theorem such a measure µ exists if and only if the nth
derivative of f has the sign (−1)n on the whole R+ and for every n ∈ N. (Such a function
is often called completely monotone.)

Statement (ii) in the next theorem is the Bessis-Moussa-Villani conjecture from 1975.
The theorem is due to Lieb and Seiringer. It gives equivalent conditions, property (i)
has a very simple formulation.

Theorem 5.5 Let A,B ∈ Msa
n and let t ∈ R. The following statements are equivalent:

(i) The polynomial t 7→ Tr (A + tB)p has only positive coefficients for every A and
B ≥ 0 and all p ∈ N.

(ii) For every A and B ≥ 0, the function t 7→ Tr exp (A− tB) is the Laplace transform
of a positive measure supported in [0,∞).

(iii) For every A > 0, B ≥ 0 and all p ≥ 0, the function t 7→ Tr (A + tB)−p is the
Laplace transform of a positive measure supported in [0,∞).

Proof: (i)⇒(ii): We have

Tr exp (A− tB) = e−‖A‖

∞
∑

k=0

1

k!
Tr (A + ‖A‖I − tB)k (5.8)

and it follows from Bernstein’s theorem and (i) that the right-hand-side is the Laplace
transform of a positive measure supported in [0,∞).

(ii)⇒(iii): This follows from taking the trace of the matrix equation

(A+ tB)−p =
1

Γ(p)

∫ ∞

0

exp [−u(A + tB)] up−1du . (5.9)

(iii)⇒(i): It suffices to assume (iii) only for p ∈ N. For invertible A we observe
that the r-th derivative of Tr (A0 + tB0)

−p at t = 0 is related to the coefficient of tr in
Tr (A+ tB)p as given by (5.31) with A,A0, B, B0 related as in Lemma 5.1. The left side
of (5.31) has the sign (−1)r because it is the derivative of a function that is the Laplace
transform of a positive measure supported in [0,∞). Thus the right-hand-side has the
correct sign as stated in item (i). The case of non-invertible A follows from continuity
argument. �

5.2 Other functions

All reasonable functions can be approximated by polynomials. Therefore, it is basic to
compute p(X) for a matrix X ∈ Mn and for a polynomial p. The canonical Jordan
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decomposition

X = S









Jk1(λ1) 0 · · · 0
0 Jk2(λ2) · · · 0
...

...
. . .

...
0 0 · · · Jkm(λm)









S−1 = SJS−1,

gives that

p(X) = S









p(Jk1(λ1)) 0 · · · 0
0 p(Jk2(λ2)) · · · 0
...

...
. . .

...
0 0 · · · p(Jkm(λm))









S−1 = Sp(J)S−1.

The crucial point is the computation of (Jk(λ))
m. Since Jk(λ) = λIn + Jk(0) = λIn + Jk

is the sum of commuting matrices, to compute the mth power, we can use the binomial
formula:

(Jk(λ))
m = λmIn +

m
∑

j=1

(

m

j

)

λm−jJ jk

The powers of Jk are known, see Example 2.1. Let m > 3, then the example

J4(λ)
m =























λm mλm−1 m(m− 1)λm−2

2!

m(m− 1)(m− 2)λm−3

3!

0 λm mλm−1 m(m− 1)λm−2

2!

0 0 λm mλm−1

0 0 0 λm























.

shows the point. In another formulation,

p(J4(λ)) =























p(λ) p′(λ)
p′′(λ)

2!

p(3)(λ)

3!

0 p(λ) p′(λ)
p′′(λ)

2!

0 0 p(λ) p′(λ)

0 0 0 p(λ)























.

which is actually correct for all polynomials and for every smooth function. We conclude
that if the canonical Jordan form is known for X ∈ Mn, then f(X) is computable. In
particular, the above argument gives the following result.

Theorem 5.6 For X ∈ Mn the relation

det eX = exp(TrX)

holds between trace and determinant.
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The matrix A ∈ Mn is diagonizable if

A = SDiag(λ1, λ2, . . . , λn)S
−1

with an invertible matrix S. Observe that this condition means that in the Jordan canon-
ical form all Jordan blocks are 1× 1 and the numbers λ1, λ2, . . . , λn are the eigenvalues
of A. In this case

f(A) = S Diag(f(λ1), f(λ2), . . . , f(λn))S
−1 (5.10)

when the complex-valued function f is defined on the set of eigenvalues of A.

Example 5.3 We consider the matrix

X =

[

1 + z x− yi
x+ yi 1− z

]

≡
[

1 + z w
w̄ 1− z

]

when x, y, x ∈ R. From the characteristic polynomial we have the eigenvalues

λ1 = 1 +R and λ2 = 1− R,

where R =
√

x2 + y2 + z2. If R < 1, then X is positive and invertible. The eigenvectors
are

u1 = (R + z, w̄) and u2 = (R− z,−w̄).

Set

∆ =

[

1 +R 0
0 1−R

]

, S =

[

R + z R− z
w̄ −w̄

]

.

We can check that XS = S∆, hence

X = S∆S−1.

To compute S−1 we use the formula

[

a b
c d

]−1

=
1

ad− bc

[

d −b
−c a

]

.

Hence

S−1 =
1

2w̄R

[

w̄ R− z
w̄ −R− z

]

.

It follows that

X t = at

[

bt + z w
w̄ bt − z

]

,

where

at =
(1 +R)t − (1− R)t

2R
, bt = R

(1 +R)t + (1−R)t

(1 +R)t − (1− R)t
.

The matrix X/2 is a density matrix and has applications in quantum theory. �
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The function used are typically continuous. By Cn-function on an interval of the real
line we mean n-times differentiable function whose nth derivative is still continuous.

Remember that self-adjoint matrices are diagonalizable and they have a spectral
decomposition. Let A =

∑

i λiPi be the spectral decomposition of the self-adjoint
A ∈ Mn(C). (λi are the different eigenvalues and Pi are the corresponding eigenpro-
jections, the rank of Pi is the multiplicity of λi.) Then

f(A) =
∑

i

f(λi)Pi . (5.11)

Usually we assume that f is continuous on an interval containing the eigenvalues of A.

Example 5.4 Consider

f+(t) := max{t, 0} and f−(t) := max{−t, 0} for t ∈ R.

For each A ∈ B(H)sa define

A+ := f+(A) and A− := f−(A).

Since f+(t), f−(t) ≥ 0, f+(t)− f−(t) = t and f+(t)f−(t) = 0, we have

A+, A− ≥ 0, A = A+ − A−, A+A− = 0.

These A+ and A− are called the positive part and the negative part of A, respectively,
and A = A+ + A− is called the Jordan decomposition of A. �

Theorem 5.7 If fk and gk are functions (α, β) → R such that for some ck ∈ R

∑

k

ckfk(x)gk(y) ≥ 0

for every x, y ∈ (α, β), then

∑

k

ckTr fk(A)gk(B) ≥ 0

whenever A,B are self-adjoint matrices with spectrum in (α, β).

Proof: Let A =
∑

i λipi and B =
∑

j µjqj be the spectral decompositions. Then

∑

k

ckTr fk(A)gk(B) =
∑

k

∑

i,j

ckTr pifk(A)gk(B)qj

=
∑

i,j

Tr piqj
∑

k

ckfk(λi)gk(µj) ≥ 0

due to the hypothesis. �

Example 5.5 In order to show the application of the previous theorem, assume that f
is convex. Then

f(x)− f(y)− (x− y)f ′(y) ≥ 0
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and

Tr f(A) ≥ Tr f(B) + Tr (A−B)f ′(B) . (5.12)

Replacing f by η(t) = −t log t we have

−TrA logA ≥ −TrB logB − Tr (A−B)− Tr (A− B) logB

or equivalently

TrA(logA− logB) ≥ Tr (A− B). (5.13)

The left-hand-side is the relative entropy of the positive matrices A and B. If TrA =
TrB = 1, then the lower bound is 0.

Concerning the relative entropy we can have a better estimate. If TrA = TrB = 1,
then all eigenvalues are in [0, 1]. Analysis tells us that for some ξ ∈ (x, y)

− η(x) + η(y) + (x− y)η′(y) = −1

2
(x− y)2η′′(ξ) ≥ 1

2
(x− y)2 (5.14)

when x, y ∈ [0, 1]. According to Theorem 5.7 we have

TrA(logA− logB) ≥ 1
2
Tr (A− B)2. (5.15)

The Streater inequality (5.15) has the consequence that A = B if the relative entropy
is 0. �

Let f be holomorphic inside and on a positively oriented simple contour Γ in the
complex plane and let A be an n × n matrix such that its eigenvalues are inside of Γ.
Then

f(A) :=
1

2πi

∫

Γ

f(z)(zI − A)−1 dz (5.16)

is defined by a contour integral. When A is self-adjoint, then (5.11) makes sense and it
is an exercise to show that it gives the same result as (5.16).

Example 5.6 We can define the square root function on the set

C
+ := {Reiϕ ∈ C : R > 0, −π/2 < ϕ < π/2}

as
√
Reiϕ :=

√
Reiϕ/2 and this is a holomorphic function on C+.

WhenX = S Diag(λ1, λ2, . . . , λn)S
−1 ∈ Mn is a weakly positive matrix, then λ1, λ2, . . . , λn >

0 and to use (5.16) we can take a positively oriented simple contour Γ in C+ such that
the eigenvalues are inside. Then

√
X =

1

2πi

∫

Γ

√
z(zI −X)−1 dz

= S

(

1

2πi

∫

Γ

√
zDiag(1/(z − λ1), 1/(z − λ2), . . . , 1/(z − λn)) dz

)

S−1

= S Diag(
√

λ1,
√

λ2, . . . ,
√

λn)S
−1.

�
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5.3 Derivation

This section contains derivatives of number-valued and matrix-valued functions. From
the latter one number-valued can be obtained by trace, for example.

Example 5.7 Assume that A ∈ Mn is invertible. Then A + tT is invertible as well for
T ∈ Mn and for small real number t. The identity

(A+ tT )−1 − A−1 = (A+ tT )−1(A− (A+ tT ))A−1 = −t(A + tT )−1TA−1,

gives

lim
t→0

1

t

(

(A+ tT )−1 − A−1
)

= −A−1TA−1.

The derivative is computed at t = 0, but if A+ tT is invertible, then

d

dt
(A + tT )−1 = −(A + tT )−1T (A+ tT )−1 (5.17)

by similar computation. We can continue the derivation:

d2

dt2
(A + tT )−1 = 2(A+ tT )−1T (A+ tT )−1T (A+ tT )−1 (5.18)

d3

dt3
(A+ tT )−1 = −6(A+ tT )−1T (A+ tT )−1T (A+ tT )−1T (A+ tT )−1 (5.19)

So the Taylor expansion is

(A+ tT )−1 = A−1 − tA−1TA−1 + t2A−1TA−1TA−1 − t3A−1TA−1TA−1TA−1 + . . .

=

∞
∑

n=0

(−t)nA−1/2(A−1/2TA−1/2)nA−1/2. (5.20)

Since

(A + tT )−1 = A−1/2(I + tA−1/2TA−1/2)−1A−1/2

we can get the Taylor expansion also from the Neumann series of (I + tA−1/2TA−1/2)−1,
see Example 1.4. �

Example 5.8 Assume that A ∈ Mn is positive invertible. Then A + tT is positive
invertible as well for T ∈ Msa

n and for a small real number t. Therefore log(A + tT ) is
defined and it is expressed as

log(A+ tT ) =

∫ ∞

0

(x+ 1)−1I − (x+ A + tT )−1 dx.

This is a convenient formula for the derivation (with respect to t ∈ R):

d

dt
log(A+ tT ) =

∫ ∞

0

(x+ A+ tT )−1T (x+ A + tT )−1 dx
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from the derivative of the inverse. The derivation can be continued and we have the
Taylor expansion

log(A+ tT ) = logA + t

∫ ∞

0

(x+ A)−1T (x+ A)−1 dx

−t2
∫ ∞

0

(x+ A)−1T (x+ A)−1T (x+ A)−1 dx+ . . .

= logA−
∞
∑

n=1

(−t)n
∫ ∞

0

(x+ A)−1/2((x+ A)−1/2T (x+ A)−1/2)n(x+ A)−1/2 dx

�

Theorem 5.8 Let A,B ∈ Mn(C) be self-adjoint matrices and t ∈ R. Assume that
f : (α, β) → R is a continuously differentiable function defined on an interval and
assume that the eigenvalues of A+ tB are in (α, β) for small t− t0. Then

d

dt
Tr f(A+ tB)

∣

∣

∣

t=t0
= Tr (Bf ′(A+ t0B)) .

Proof: One can verify the formula for a polynomial f by an easy direct computation:
Tr (A + tB)n is a polynomial of the real variable t. We are interested in the coefficient
of t which is

Tr (An−1B + An−2BA+ . . .+ ABAn−2 +BAn−1) = nTrAn−1B.

We have the result for polynomials and the formula can be extended to a more general
f by means of polynomial approximation. �

Example 5.9 Let f : (α, β) → R be a continuous increasing function and assume that
the spectrum of the self-adjoint matrices B and C lies in (α, β). We use the previous
theorem to show that

A ≤ C implies Tr f(A) ≤ Tr f(C). (5.21)

We may assume that f is smooth and it is enough to show that the derivative of
Tr f(A + tB) is positive when B ≥ 0. (To observe (5.21), one takes B = C − A.)
The derivative is Tr (Bf ′(A + tB)) and this is the trace of the product of two positive
operators. Therefore, it is positive. �

For a holomorphic function f , we can compute the derivative of f(A+tB) on the basis
of (5.16), where Γ is a positively oriented simple contour satisfying the properties required
above. The derivation is reduced to the differentiation of the resolvent (zI− (A+ tB))−1

and we obtain

X :=
d

dt
f(A+ tB)

∣

∣

∣

t=0
=

1

2πi

∫

Γ

f(z)(zI − A)−1B(zI − A)−1 dz . (5.22)

When A is self-adjoint, then it is not a restriction to assume that it is diagonal, A =
Diag(t1, t2, . . . , tn), and we compute the entries of the matrix (5.22) using the Frobenius
formula

f [ti, tj] :=
f(ti)− f(tj)

ti − tj
=

1

2πi

∫

Γ

f(z)

(z − ti)(z − tj)
dz .
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Therefore,

Xij =
1

2πi

∫

Γ

f(z)
1

z − ti
Bij

1

z − tj
dz =

f(ti)− f(tj)

ti − tj
Bij .

A C1 function can be approximated by polynomials, hence we have the following result.

Theorem 5.9 Assume that f : (α, β) → R is C1 function and A = Diag(t1, t2, . . . , tn)
with α < ti < β (1 ≤ i ≤ n). If B = B∗, then the derivative t 7→ f(A + tB) is an
Hadamard product:

d

dt
f(A+ tB)

∣

∣

∣

t=0
= D ◦B, (5.23)

where D is the divided difference matrix,

Dij =











f(ti)− f(tj)

ti − tj
if ti − tj 6= 0,

f ′(ti) if ti − tj = 0.

(5.24)

Let f : (α, β) → R be a continuous function. It is called matrix monotone if

A ≤ C implies f(A) ≤ f(C) (5.25)

when the spectrum of the self-adjoint matrices B and C lies in (α, β).

Theorem 4.5 tells us that f(x) = −1/x is matrix monotone function. Matrix mono-
tonicity means that f(A + tB) is an increasing function when B ≥ 0. The increasing
property is equivalent to the positivity of the derivative. We use the previous theorem
to show that the function f(x) =

√
x is matrix monotone.

Example 5.10 Assume that A > 0 is diagonal: A = Diag(t1, t2, . . . , tn). Then deriva-
tive of the function

√
A+ tB is D ◦B, where

Dij =















1√
ti +

√
tj

if ti − tj 6= 0,

1

2
√
ti

if ti − tj = 0.

This is a Cauchy matrix, see Example 4.4 and it is positive. If B is positive, then so is
the Hadamard product. We have shown that the derivative is positive, hence f(x) =

√
x

is matrix monotone.

The idea of another proof is in Exercise 18. �

A subset K ⊂ Mn is convex if for A,B ∈ K and for a real number 0 < λ < 1

λA+ (1− λ)B ∈ K.

The functional F : K → R is convex if for A,B ∈ K and for a real number 0 < λ < 1
the inequality

F (λA+ (1− λ)B) ≤ λF (A) + (1− λ)F (B)

holds. This inequality is equivalent to the convexity of the function

G : [0, 1] → R, G(λ) := F (B + λ(A− B)).

It is well-known in analysis that the convexity is related to the second derivative.
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Theorem 5.10 Let K be the set of self-adjoint n × n matrices with spectrum in the
interval (α, β). Assume that the function f : (α, β) → R is a convex C2 function. Then
the functional A 7→ Tr f(A) is convex on K.

Proof: The stated convexity is equivalent with the convexity of the numerical functions

t 7→ Tr f(tX1 + (1− t)X2) = Tr (X2 + t(X1 −X2)) (t ∈ [0, 1]).

It is enough to prove that the second derivative of t 7→ Tr f(A+ tB) is positive at t = 0.

The first derivative of the functional t 7→ Tr f(A+ tB) is Tr f ′(A+ tB)B. To compute
the second derivative we differentiate f ′(A+ tB). We can assume that A is diagonal and
we differentiate at t = 0. We have to use (5.23) and get

[ d

dt
f ′(A+ tB)

∣

∣

∣

t=0

]

ij
=
f ′(ti)− f ′(tj)

ti − tj
Bij ,

Therefore,

d2

dt2
Tr f(A+ tB)

∣

∣

∣

t=0
= Tr

[ d

dt
f ′(A+ tB)

∣

∣

∣

t=0

]

B

=
∑

ik

[ d

dt
f ′(A+ tB)

∣

∣

∣

t=0

]

ik
Bki

=
∑

ik

f ′(ti)− f ′(tk)

ti − tk
BikBki

=
∑

ik

f ′′(sik)|Bik|2,

where sik is between ti and tk. The convexity of f means f ′′(sik) ≥ 0. Therefore we
conclude the positivity. �

Note that another, less analytic, proof is sketched in Exercise 14.

Example 5.11 The function

η(x) =

{

−x log x if 0 < x,
0 if x = 0

is continuous and concave on R+. For a positive matrix D ≥ 0

S(D) := Tr η(D) (5.26)

is called von Neumann entropy. It follows from the previous theorem that S(D) is a
concave function of D. If we are very rigorous, then we cannot apply the theorem, since
η is not differentiable at 0. Therefore we should apply the theorem to f(x) := η(x+ ε),
where ε > 0 and take the limit ε → 0. �

Example 5.12 Let a self-adjoint matrix H be fixed. The state of a quantum system is
described by a density matrix D which has the properties D ≥ 0 and TrD = 1. The
equilibrium state is minimizing the energy

F (D) = TrDH − 1

β
S(D),



5.3. DERIVATION 65

where β is a positive number. To find the minimizer, we solve the equation

∂

∂t
F (D + tX)

∣

∣

∣

t=0
= 0

for self-adjoint matrices X with the property TrX = 0. The equation is

TrX

(

H +
1

β
logD +

1

β
I

)

= 0

and

H +
1

β
logD +

1

β
I

must be cI. Hence the minimizer is

D =
e−βH

Tr e−βH
(5.27)

which is called Gibbs state. �

Example 5.13 Next we restrict ourselves to the self-adjoint case A,B ∈ Mn(C)
sa in

the analysis of (5.22).

The space Mn(C)
sa can be decomposed as MA⊕M⊥

A, where MA := {C ∈ Mn(C)
sa :

CA = AC} is the commutant of A and M⊥
A is its orthogonal complement. When the

operator LA : X 7→ i(AX − XA) ≡ i[A,X ] is considered, MA is exactly the kernel of
LA, while M⊥

A is its range.

When B ∈ MA, then

1

2πi

∫

Γ

f(z)(zI − A)−1B(zI −A)−1 dz =
B

2πi

∫

Γ

f(z)(zI − A)−2 dz = Bf ′(A)

and we have
d

dt
f(A+ tB)

∣

∣

∣

t=0
= Bf ′(A) . (5.28)

When B = i[A,X ] ∈ M⊥
A, then we use the identity

(zI −A)−1[A,X ](zI − A)−1 = [(zI − A)−1, X ]

and we conclude
d

dt
f(A+ ti[A,X ])

∣

∣

∣

t=0
= i[f(A), X ] . (5.29)

To compute the derivative in an arbitrary direction B we should decompose B as
B1 ⊕ B2 with B1 ∈ MA and B2 ∈ M⊥

A. Then

d

dt
f(A+ tB)

∣

∣

∣

t=0
= B1f

′(A) + i[f(A), X ] , (5.30)

where X is the solution of the equation B2 = i[A,X ]. �

Lemma 5.1 Let A0, B0 ∈ Msa
n and assume A0 > 0. Define A = A−1

0 and B =

A
−1/2
0 B0A

−1/2
0 , and let t ∈ R. For all p, r ∈ N

dr

dtr
Tr (A0 + tB0)

−p

∣

∣

∣

∣

t=0

=
p

p+ r
(−1)r

dr

dtr
Tr (A+ tB)p+r

∣

∣

∣

∣

t=0

. (5.31)
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Proof: By induction it is easy to show that

dr

dtr
(A+ tB)p+r = r!

∑

0≤i1,...,ir+1≤p
∑

j ij=p

(A+ tB)i1B . . .B(A + tB)ir+1 .

By taking the trace at t = 0 we obtain

I1 ≡
dr

dtr
Tr (A+ tB)p+r

∣

∣

∣

∣

t=0

= r!
∑

0≤i1,...,ir+1≤p
∑

j ij=p

TrAi1B · · ·BAir+1 .

Moreover, by similar arguments,

dr

dtr
(A0 + tB0)

−p = (−1)rr!
∑

1≤i1,...,ir+1≤p
∑

j ij=p+r

(A0 + tB0)
−i1B0 · · ·B0(A0 + tB0)

−ir+1 .

By taking the trace at t = 0 and using cyclicity, we get

I2 ≡
dr

dtr
Tr (A0 + tB0)

−p

∣

∣

∣

∣

t=0

= (−1)rr!
∑

0≤i1,...,ir+1≤p−1
∑

j ij=p−1

TrAAi1B · · ·BAir+1 .

We have to show that
I2 =

p

p+ r
(−1)rI1 .

To see this we rewrite I1 in the following way. Define p+ r matrices Mj by

Mj =

{

B for 1 ≤ j ≤ r
A for r + 1 ≤ j ≤ r + p .

Let Sn denote the permutation group. Then

I1 =
1

p!

∑

π∈Sp+r

Tr

p+r
∏

j=1

Mπ(j) .

Because of the cyclicity of the trace we can always arrange the product such that Mp+r

has the first position in the trace. Since there are p + r possible locations for Mp+r to
appear in the product above, and all products are equally weighted, we get

I1 =
p+ r

p!

∑

π∈Sp+r−1

TrA

p+r−1
∏

j=1

Mπ(j) .

On the other hand,

I2 = (−1)r
1

(p− 1)!

∑

π∈Sp+r−1

TrA

p+r−1
∏

j=1

Mπ(j) ,

so we arrive at the desired equality. �
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5.4 Notes and remarks

The first proof of (5.5) is due to E.H. Lieb and M.B. Ruskai, see the book [40]. The
presented proof is from J. Pitrik.

The Bessis, Moussa and Villani conjecture (or BMV conjecture) was published in the
paper D. Bessis, P. Moussa and M. Villani: Monotonic converging variational approxi-
mations to the functional integrals in quantum statistical mechanics, J. Math. Phys. 16,
2318–2325 (1975). Theorem 5.5 is from E. H. Lieb and R. Seiringer: Equivalent forms
of the Bessis-Moussa-Villani conjecture, J. Statist. Phys. 115, 185–190 (2004).

The contour integral representation (5.16) was found by Henri Poincaré in 1899.

5.5 Exercises

1. Prove the Golden-Thompson inequality using the trace inequality

Tr (CD)n ≤ TrCnDn (n ∈ N) (5.32)

for C,D ≥ 0.

2. Let A and B be self-adjoint matrices. Show that

|Tr eA+iB| ≤ Tr eA . (5.33)

3. Let
C = c0I + c(c1σ1 + c2σ2 + c3σ3) with c21 + c22 + c23 = 1,

where σ1, σ2, σ3 are the Pauli matrices and c0, c1, c2, c3 ∈ R. Show that

eC = ec0 ((cosh c)I + (sinh c)(c1σ1 + c2σ2 + c3σ3)) .

4. Let A,B ∈ Mn and ‖A‖, ‖B‖ ≤ λ. Prove that

‖eA − eB‖ ≤ ‖A−B‖eλ .

(Hint: Show first that ‖Am −Bm‖ ≤ mλm−1‖A−B‖.)

5. Assume that

eA =

[

cos t − sin t
sin t cos t

]

.

What is the matrix A?

6. Let A ∈ M3 have eigenvalues λ, λ, µ with λ 6= µ. Show that

etA = eλt(I + t(A− λI)) +
eµt − eλt

(µ− λ)2
(A− λI)2 − teλt

µ− λ
(A− λI)2.

7. Assume that A ∈ M3 has different eigenvalues λ, µ, ν. Show that

etA = eλt
(A− µI)(A− νI)

(λ− µ)(λ− ν)
+ eµt

(A− λI)(A− νI)

(µ− λ)(µ− ν)
+ eνt

(A− λI)(A− µI)

(ν − λ)(ν − µ)
.
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8. Assume that the n× n matrix A is diagonalizable and let f(t) = tm with m ∈ N.
Show that (5.10) and (5.16) are the same matrices.

9. Prove Corollary 5.2 directly in the case B = AX −XA.

10. Let 0 < D ∈ Mn be a fixed invertible positive matrix. Show that the inverse of
the linear mapping

JD : Mn → Mn, JD(B) = 1
2
(DB +BD) (5.34)

is the mapping

J
−1
D (A) =

∫ ∞

0

e−tD/2Ae−tD/2 dt (5.35)

.

11. Let 0 < D ∈ Mn be a fixed invertible positive matrix. Show that the inverse of
the linear mapping

JD : Mn → Mn, JD(B) =

∫ 1

0

DtBD1−t dt (5.36)

is the mapping

J
−1
D (A) =

∫ ∞

0

(D + t)−1A(D + t)−1 dt. (5.37)

12. Prove (5.23) directly for the case f(t) = tn, n ∈ N.

13. Let f : [α, β] → R be a convex function. Show that

Tr f(B) ≥
∑

i

f(TrB pi) . (5.38)

for a pairwise orthogonal family (pi) of minimal projections with
∑

i pi = I and for a
self-ajoint matrix B with spectrum in [α, β]. (Hint: Use the spectral decomposition
of B.)

14. Prove Theorem 5.10 using formula (5.38). (Hint: Take the spectral decomposition
of B = λB1 + (1− λ)B2 and show λTr f(B1) + (1− λ)Tr f(B2) ≥ Tr f(B).)

15. Show that

d2

dt2
log(A+ tK)

∣

∣

∣

t=0
= −2

∫ ∞

0

(A+ s)−1K(A+ s)−1K(A+ s)−1 ds. (5.39)

16. Show that

∂2 logA(X1, X2) = −
∫ ∞

0

(A+ s)−1X1(A+ s)−1X2(A + s)−1 ds

−
∫ ∞

0

(A+ s)−1X2(A+ s)−1X1(A + s)−1 ds

for a positive invertible variable A.
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17. Show that

∂2A−1(X1, X2) = A−1X1A
−1X2A

−1 + A−1X2A
−1X1A

−1

for an invertible variable A.

18. Differentiate the equation

√
A+ tB

√
A+ tB = A+ tB

and show that for positive A and B

d

dt

√
A+ tB

∣

∣

∣

t=0
≥ 0.

19. For a real number 0 < α 6= 1 the Rényi entropy is defined as

Sα(D) =
1

1− α
log TrDα (5.40)

for a positive matrix D such that TrD = 1. Show that Sα(D) is a decreasing
function of α. What is the limit limα→1 Sα(D)? Show that Sα(D) is a concave
functional of D for 0 < α < 1.

20. Fix a positive invertible matrix D ∈ Mn and set a linear mapping Mn → Mn by
JD(A) = DAD. Consider the differential equation

∂

∂t
D(t) = JD(t)T, D(0) = ρ0, (5.41)

where ρ0 is positive invertible and T is self-adjoint in Mn. Show that D(t) =
(ρ−1

0 − tT )−1 is the solution of the equation.

21. When f(x) = xk with k ∈ N, verify that

f [n][x1, x2, . . . , xn+1] =
∑

u1,u2,...,un+1≥0

u1+u2+...+un+1=k−n

xu11 x
u2
2 · · ·xunn x

un+1

n+1 .



Chapter 6

Block matrices

A block matrix means a matrix whose entries are not numbers but matrices. For example,

[

A B
C D

]

=





1 2 3
4 5 6
7 8 9





when

A =

[

1 2
4 5

]

, B =

[

3
6

]

, C = [ 7 8 ] , D = [ 9 ] .

6.1 Direct sum of Hilbert spaces

If H1 and H2 are Hilbert spaces, then H1 ⊕ H2 consists of all the pairs (f1, f2), where
f1 ∈ H1 and f2 ∈ H2. The linear combinations of a pair is computed entry-wise and the
inner product is defined as

〈(f1, f2), (g1, g2)〉 := 〈f1, g1〉+ 〈f2, g2〉.

It follows that the subspaces {(f1, 0) : f1 ∈ H1} and {(0, f2) : f2 ∈ H2} are orthogonal
and span the direct sum H1 ⊕H2.

Assume that H = H1 ⊕ H2, K = K1 ⊕ K2 and A : H → K is a linear operator. A
general element of H has the form (f1, f2) = (f1, 0)+ (0, f2). We have A(f1, 0) = (g1, g2)
and A(0, f2) = (g′1, g

′
2) for some g1, g

′
1 ∈ K1 and g2, g

′
2 ∈ K2. The linear mapping A is

determined uniquely by the following 4 linear mappings:

Ai1 : f1 7→ gi, Ai1 : H1 → Ki (1 ≤ i ≤ 2)

and
Ai2 : f2 7→ g′i, Ai2 : H2 → Ki (1 ≤ i ≤ 2).

We write A in the form
[

A11 A12

A21 A22

]

.

The advantage of this notation is the formula
[

A11 A12

A21 A22

](

f1
f2

)

=

(

A11f1 + A12f2
A21f1 + A22f2

)

.
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(The right-hand side is A(f1, f2) written in the form of a coloum vector.)

Assume that ei1, e
i
2, . . . , e

i
m(i) is a basis in Hi and f j1 , f

j
2 , . . . , f

j
n(j) is a basis in Kj,

1 ≤ i, j ≤ 2. The linear operators Aij : Hj → Ki have a matrix [Aij] with respect to
these bases. Since

{(e1t , 0) : 1 ≤ t ≤ m(1)} ∪ {0, e2u) : 1 ≤ u ≤ m(2)}

is a basis in H and similarly

{(f 1
t , 0) : 1 ≤ t ≤ n(1)} ∪ {(0, f 2

u) : 1 ≤ u ≤ m(2)}

is a basis in K, the operator A has an (m(1) +m(2)) × (n(1) + n(2)) matrix which is
expressed by the n(i)×m(j) matrices [Aij] as

[A] =

[

[A11] [A12]
[A21] [A22]

]

.

This is a 2× 2 matrix with matrix entries and it is called block matrix.

The computation with block matrices is similar to that of ordinary matrices.
[

[A11] [A12]
[A21] [A22]

]∗

=

[

[A11]
∗ [A21]

∗

[A12]
∗ [A22]

∗

]

,

[

[A11] [A12]
[A21] [A22]

]

+

[

[B11] [B12]
[B21] [B22]

]

=

[

[A11] + [B11] [A12] + [B12]
[A21] + [B21] [A22] + [B22]

]

and
[

[A11] [A12]
[A21] [A22]

]

×
[

[B11] [B12]
[B21] [B22]

]

=

[

[A11] · [B11] + [A12] · [B21] [A11] · [B12] + [A12] · [B22]
[A21] · [B11] + [A22] · [B21] [A21] · [B12] + [A22] · [B22]

]

.

6.2 Positivity and factorization

If we do not emphasize that the entries of the block matrix are matrices, we can write
[

A B
C D

]

.

This matrix is self-adjoint if and only if A = A∗, B∗ = C and D = D∗. (These conditions
include that A and D are square matrices.)

For a 2× 2 matrix, it is very easy to check the positivity:
[

a b
b̄ c

]

≥ 0 if a ≥ 0 and bb̄ ≤ ac. (6.1)

If the entries are matrices, then the condition for positivity is similar but it is a bit more
complicated. It is obvious that a diagonal block matrix

[

A 0
0 D

]

.

is positive if and only if the diagonal entries A and D are positive.
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Theorem 6.1 Assume that A is invertible. The self-adjoint block matrix

[

A B
B∗ C

]

(6.2)

positive if and only if A is positive and

B∗A−1B ≤ C.

Proof: First assume that A = I. The positivity of

[

I B
B∗ C

]

is equivalent to the condition

〈(f1, f2),
[

I B
B∗ C

]

(f1, f2)〉 ≥ 0

for every vector f1 and f2. Computation gives that this condition is

〈f1, f1〉+ 〈f2, Cf2〉 ≥ −2Re 〈Bf2, f1〉.

If we replace f1 by eiϕf1 with real ϕ, then the left-hand-side does not change, while
the right-hand-side becomes 2|〈Bf2, f1〉| for an appropriate ϕ. Choosing f1 = Bf2, we
obtain the condition

〈f2, Cf2〉 ≥ 〈f2, B∗Bf2〉
for every f2. This means that positivity implies the condition C ≥ B∗B. The converse
is also true, since the right-hand side of the equation

[

I B
B∗ C

]

=

[

I 0
B∗ 0

] [

I B
0 0

]

+

[

0 0
0 C −B∗B

]

is the sum of two positive block matrices.

For a general positive invertible A, the positivity of (6.2) is equivalent to the positivity
of the block matrix

[

A−1/2 0
0 I

] [

A B
B∗ C

] [

A−1/2 0
0 I

]

=

[

I A−1/2B
B∗A−1/2 C

]

.

This gives the condition C ≥ B∗A−1B. �

Theorem 6.1 has applications in different areas, see for example the Cramér-Rao
inequality, Section 6.3.

Theorem 6.2 For an invertible A, we have the so-called Schur factorization

[

A B
C D

]

=

[

I 0
CA−1 I

]

·
[

A 0
0 D − CA−1B

]

·
[

I A−1B
0 I

]

. (6.3)



6.2. POSITIVITY AND FACTORIZATION 73

The proof is simply the computation of the product on the right-hand-side.

Since
[

I 0
CA−1 I

]−1

=

[

I 0
−CA−1 I

]

is invertible, the positivity of the left-hand-side of (6.3) is equivalent to the positivity of
the middle factor of the right-hand-side. This fact gives a second proof of Theorem 6.1.

In the Schur factorization the first factor is lower triangular, the second factor is
block diagonal and the third one is upper triangular. This structure allows and easy
computation of the determinant and the inverse.

Theorem 6.3 The determinant can be computed as follows.

Det

[

A B
C D

]

= DetA Det (D − CA−1B).

If

M =

[

A B
C D

]

,

then D−CA−1B is called the Schur complement of A in M , in notationM/A. Hence
the determinant formula becomes DetM = DetA× Det (M/A).

Theorem 6.4 Let

M =

[

A B
B∗ C

]

be a positive invertible matrix. Then

sup

{

X ≥ 0 :

[

X 0
0 0

]

≤
[

A B
B∗ C

]}

is A− BC−1B∗ =M/C.

Proof: The condition
[

A−X B
B∗ C

]

≥ 0

is equivalent to

A−X ≥ BC−1B∗

and this gives the result. �

It follows from the factorization that for an invertible block matrix
[

A B
C D

]

,

both A and D − CA−1B must be invertible. This implies that

[

A B
C D

]−1

=

[

I −A−1B
0 I

]

×
[

A−1 0
0 (D − CA−1B)−1

]

×
[

I 0
−CA−1 I

]
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After multiplication on the right-hand-side, we have the following.

[

A B
C D

]−1

=

[

A−1 + A−1BW−1CA−1 −A−1BW−1

−W−1CA−1 W−1

]

=

[

V −1 −V −1BD−1

−D−1CV −1 D−1 +D−1CV −1BD−1

]

(6.4)

where W =M/A := D − CA−1B and V =M/D := A− BD−1C.

Example 6.1 Let X1, X2, . . . , Xm+k be random variables with (Gaussian) joint proba-
bility distribution

fM(z) :=

√

DetM

(2π)m+k
exp

(

− 1
2
〈z,Mz〉

)

, (6.5)

where z = (z1, z2, . . . , zn+k) andM is a positive definite (m+k)×(m+k) matrix, see Ex-
ample 4.5. We want to compute the distribution of the random variables X1, X2, . . . , Xm.

Let

M =

[

A B
B∗ D

]

be written in the form of a block matrix, A is m×m and D is k × k. Let z = (x1,x2),
where x1 ∈ Rm and x2 ∈ Rk. Then the marginal of the Gaussian probability distribution

fM (x1,x2) =

√

DetM

(2π)m+k
exp

(

− 1
2
〈(x1,x2),M(x1,x2)〉

)

on Rm is the distribution

f1(x1) =

√

DetM

(2π)mDetD
exp

(

− 1
2
〈x1, (A−BD−1B∗)x1〉

)

. (6.6)

We have

〈(x1,x2),M(x1,x2)〉 = 〈Ax1 +Bx2,x1〉+ 〈B∗x1 +Dx2,x2〉
= 〈Ax1,x1〉+ 〈Bx2,x1〉+ 〈B∗x1,x2〉+ 〈Dx2,x2〉
= 〈Ax1,x1〉+ 2〈B∗x1,x2〉+ 〈Dx2,x2〉
= 〈Ax1,x1〉+ 〈D(x2 +Wx1), (x2 +Wx1)〉 − 〈DWx1,Wx1〉,

where W = D−1B∗. We integrate on Rk as

∫

exp
(

− 1
2
(x1,x2)M(x1,x2)

t
)

dx2 = exp
(

− 1
2
(〈Ax1,x1〉 − 〈DWx1,Wx1〉)

)

×
∫

exp
(

− 1
2
〈D(x2 +Wx1), (x2 +Wx1)〉

)

dx2

= exp
(

− 1

2
〈(A− BD−1B∗)x1,x1〉

)

√

(2π)k

DetD

and obtain (6.6).
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This computation gives a proof of Theorem 6.3 as well. If we know that f1(x1)
is Gaussian, then its quadratic matrix can be obtained from formula (6.4). The co-
variance of X1, X2, . . . , Xm+k is M−1. Therefore, the covariance of X1, X2, . . . , Xm is
(A − BD−1B∗)−1. It follows that the quadratic matrix is the inverse: A − BD−1B∗ ≡
M/D. �

Theorem 6.5 Let A be a positive n×n block matrix with k×k entries. Then A is the sum
of block matrices B of the form [B]ij = X∗

iXj for some k × k matrices X1, X2, . . . , Xn.

Proof: A can be written as C∗C for some

C =









C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
. . .

...
Cn1 Cn2 . . . Cnn









.

Let Bi be the block matrix such that its ith raw is the same as in C and all other elements
are 0. Then C = B1 +B2 + . . .+Bn and for t 6= i we have B∗

tBi = 0. Therefore,

A = (B1 +B2 + . . .+Bn)
∗(B1 +B2 + . . .+Bn) = B∗

1B1 +B∗
2B2 + . . .+B∗

nBn.

The (i, j) entry of B∗
tBt is C

∗
tiCtj , hence this matrix is of the required form. �

As an application of the block matrix technique, we consider the following result,
called UL-factorization.

Theorem 6.6 Let X be an n × n invertible positive matrix. Then there is a unique
upper triangle matrix T with positive diagonal such that X = TT ∗.

Proof: The proof can be done by mathematical induction for n. For n = 1 the
statement is clear. We assume that the factorization is true for (n−1)× (n−1) matrices
and write X in the form

[

A B
B∗ C

]

, (6.7)

where A is an (invertible) (n− 1)× (n− 1) matrix and C is a number. If

T =

[

T11 T12
0 T22

]

is written in a similar form, then

TT ∗ =

[

T11T
∗
11 + T12T

∗
12 T12T

∗
22

T22T
∗
12 T22T

∗
22

]

The condition X = TT ∗ leads to the equations

T11T
∗
11 + T12T

∗
12 = A,

T12T
∗
22 = B,

T22T
∗
22 = C.

If T22 is positive (number), then T22 =
√
C is the unique solution, moreover

T12 = BC−1/2 and T11T
∗
11 = A−BC−1B∗.

From the positivity of (6.7), we have A − BC−1B∗ ≥ 0. The induction hypothesis
gives that the latter can be written in the form of T11T

∗
11 with an upper triangular T11.

Therefore T is upper triangular, too. �
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6.3 Cramér-Rao inequality

The Cramér-Rao inequality is a basic result in statistics. Assume that θ = (θ1, θ2) ∈ R2

are unknown parameters of a probability distribution fθ(x). Some random variables ξ1
and ξ2 are used to estimate θ1 and θ2. The unbiased conditions are

Eθ(ξi) =

∫

fθ(x)ξi(x) dx = θi (i = 1, 2)

which means that the expectation value of ξi is the parameter θi. Differentiating the
above equations with respect to θ1 and θ2, we have

∫

[∂ifθ(x)]ξi(x) dx = δ(i, j) (i, j = 1, 2).

The Cramér-Rao inequality is

C :=

[

Eθ(ξ
2
1) Eθ(ξ1ξ2)

Eθ(ξ1ξ2) Eθ(ξ
2
1)

]

≤





∫ (∂1fθ)
2

fθ
dx

∫ (∂1fθ)(∂2fθ)
fθ

dx

∫ (∂1fθ)(∂2fθ)
fθ

dx
∫ (∂1fθ)

2

fθ
dx





−1

=: F−1,

where C is called the covariance and F is the Fisher information matrix. Note
that in the literature the identity

∫

(∂1fθ)
2

fθ
dx =

∫

(∂1 log fθ)
2fθ dx

appears.

The dyadic matrix









ξ1(fθ)
1/2

ξ2(fθ)
1/2

(∂1fθ)(fθ)
−1/2

(∂1fθ)(fθ)
−1/2









[

ξ1(fθ)
1/2 ξ2(fθ)

1/2 (∂1fθ)(fθ)
−1/2 (∂1fθ)(fθ )

−1/2
]

is positive and the integration entrywise yields

[

C I2
I2 F

]

≥ 0.

(Of course, it should be assumed that all integrals are finite.) According to Theorem
6.1, the positivity of the matrix gives C ≥ F−1.

In the quantum setting the probability distribution is replaced by a positive matrix
of trace 1, called density matrix. The random variables ξi are replaced by selfadjoint
matrices. Therefore, the role of matrices is deeper in the quantum formalism.

Let M := {Dθ : θ ∈ G} be a smooth m-dimensional manifold of n × n density
matrices. FormallyG ⊂ Rm is an open set including 0. If θ ∈ G, then θ = (θ1, θ2, . . . , θm).
The Riemannian structure on M is given by the inner product

γD(A,B) = TrAJ−1
D (B) (6.8)
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of the tangent vectors A and B at the foot point D ∈ M, where JD : Mn → Mn is a
positive mapping when Mn is regarded as a Hilbert space with the Hilbert-Schmidt inner
product. (This means TrAJD(A)

∗ ≥ 0.)

Assume that a collection A = (A1, . . . , Am) of self-adjoint matrices is used to estimate
the true value of θ. The expectation value of Ai with respect to the density matrix D is
TrDAi. A is an unbiased estimator if

TrDθAi = θi (1 ≤ i ≤ n). (6.9)

(In many cases an unbiased estimator A = (A1, . . . , Am) does not exist, therefore a
weaker condition is more useful.)

The (generalized) covariance matrix of the estimator A is a positive definite matrix
C,

Cij(D) = Tr (D − (TrDAi)I)JD(D − (TrDAj)I).

The Fisher information matrix of the estimator A is a positive definite matrix F ,

Fij(D) = TrLiJD(Lj), where Li = J
−1
D (∂iDθ).

Both C and F depend on the actual state D, when we formulate on the manifold they
are parametrized by θ.

The next theorem is the quantum version of the Cramér-Rao inequality. The
point is that the right-hand-side does not depend on the estimators.

Theorem 6.7 Let A = (A1, . . . , Am) be an unbiased estimator of θ. Then for the above
defined matrices the inequality

C(Dθ) ≥ F (Dθ)
−1

holds.

Proof: In the proof the block-matrix method is used and we restrict ourselves for
m = 2 for the sake of simplicity and assume that θ = 0. The matrices A1, A2, L1, L2

are considered as vectors and from the inner product 〈A,B〉 = TrAJD(B)∗ we have the
positive matrix

X :=









TrA1JD(A1) TrA1JD(A2) TrA1JD(L1) TrA1JD(L2)
TrA2JD(A1) TrA2JD(A2) TrA2JD(L1) TrA2JD(L2)
TrL1JD(A1) TrL1JD(A2) TrL1JD(L1) TrL1JD(L2)
TrL2JD(A1) TrL2JD(A2) TrL2JD(L1) TrL2JD(L2)









.

From the condition (6.9), we have

TrAiJD(Li) =
∂

∂θi
TrDθAi = 1

for i = 1, 2 and

TrAiJD(Lj) =
∂

∂θj
TrDθAi = 0
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if i 6= j. Hence the matrix X has the form

[

C(0) I2
I2 I(0)

]

, (6.10)

where

C(0) =

[

TrA1JD(A1) TrA1JD(A2)
TrA2JD(A1) TrA2JD(A2)

]

, F (0) =

[

TrL1JD(L1) TrL1JD(L2)
TrL2JD(L1) TrL2JD(L2)

]

.

The positivity of (6.10) implies the statement of the theorem. �

If we analyze the off-diagonal part of X , then a generalization can be obtained. The
bias of the estimator is defined as

b(θ) = (b1(θ), b2(θ)) = (TrDθ(A1 − θ1),TrDθ(A2 − θ2)).

(Note that for an unbiased estimator we have b(θ) = 0.) From the bias vector we form
a bias matrix

Bij(θ) := ∂θibj(θ) = ∂θiTrDθAj − ∂θiθj

Then
[

TrA1JD(L1) TrA1JD(L2)
TrA2JD(L1) TrA2JD(L2)

]

=

[

1 +B11(θ) B12(θ)
B21(θ) 1 +B22(θ)

]

= I2 +B

and the block-matrix (6.10) becomes

[

C(0) I2 +B
I2 +B∗ F (0)

]

, (6.11)

and we have
C(0) ≥ (I +B(θ))I(0)−1(I +B(θ)∗) (6.12)

as the generalization of the previous theorem. For a locally unbiased estimator at
θ = 0, we have B(0) = 0.

6.4 Notes and remarks

6.5 Exercises

1. Show that ‖(f1, f2)‖2 = ‖f1‖2 + ‖f2‖2.

2. Give the analogue of Theorem 6.1 when C is assumed to be invertible.

3. Let 0 ≤ A ≤ I. Find the matrices B and C such that

[

A B
B∗ C

]

is a projection.
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4. Let

M =

[

A B
B A

]

and assume that A and B are self-adjoint. Show that M is positive if and only if
−A ≤ B ≤ A.

5. Give the analogue of the factorization (6.3) when D is assumed to be invertible.

6. Show that the self-adjoint invertible matrix





A B C
B∗ D 0
C∗ 0 E





has inverse in the form




Q−1 −P −R
−P ∗ D−1(I +B∗P ) D−1B∗R
−R∗ R∗BD−1 E−1(I + C∗R



 ,

where

Q = A−BD−1B∗ − CE−1C∗, P = Q−1BD−1, R = Q−1CE−1.

7. Find the determinant and the inverse of the block matrix
[

A 0
a 1

]

.

8. Let A be an invertible matrix. Show that

Det

[

A b
c d

]

= (c− cA−1b)DetA.



Chapter 7

Geometric mean

The inequality √
ab ≤ a + b

2
is well-known for the geometric and arithmetic mean of positive numbers. In this chapter
the geometric mean will be generalized for positive matrices.

7.1 Motivation by a Riemannian manifold

The positive definite matrices might be considered as the variance of multivariate normal
distributions and the information geometry of Gaussians yields a natural Riemannian
metric. Those distributions (with 0 expectation) are given by a positive definite matrix
A ∈ Mn in the form

fA(x) :=
1

√

(2π)n detA
exp (− 〈A−1x, x〉/2) (x ∈ C

n). (7.1)

The set P of positive definite matrices can be considered as an open subset of an Euclidian
space Rn2

and they form a manifold. The tangent vectors at a footpoint A ∈ P are the
self-adjoint matrices Msa

n .

A standard way to construct an information geometry is to start with an information
potential function and to introduce the Riemannian metric by the Hessian of the
potential. The information potential is the Boltzmann entropy

S(fA) := −
∫

fA(x) log fA(x) dx = C +
1

2
Tr logA (C is a constant). (7.2)

The Hessian is
∂2

∂s∂t
S(fA+tH1+sH2

)
∣

∣

∣

t=s=0
= TrA−1H1A

−1H2

and the inner product on the tangent space at A is

gA(H1, H2) = TrA−1H1A
−1H2 . (7.3)

We note here that this geometry has many symmetries, each similarity transformation
of the matrices becomes a symmetry. Namely,

gS−1AS−1(S−1H1S
−1, S−1H2S

−1) = gA(H1, H2). (7.4)
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A differentiable function γ : [0, 1] → P is called curve, its tangent vector at t is γ′(t)
and the length of the curve is

∫ 1

0

√

gγ(t)(γ′(t), γ′(t)) dt.

Given A,B ∈ P the curve

γ(t) = A1/2(A−1/2BA−1/2)tA1/2 (0 ≤ t ≤ 1) (7.5)

connects these two points: γ(0) = A, γ(1) = B. This is the shortest curve connecting
the two points, it is called geodesic.

Lemma 7.1 The geodesic connecting A,B ∈ P is (7.5) and the geodesic distance is

δ(A,B) = ‖ log(A−1/2BA−1/2)‖2 ,

where ‖ · ‖2 stands for the Hilbert–Schmidt norm.

Proof: Due to the property (7.4) we may assume that A = I, then γ(t) = Bt. Let
ℓ(t) be a curve such that ℓ(0) = ℓ(1) = 0. This will be used for the perturbation of the
curve γ(t) in the form γ(t) + εℓ(t).

We want to differentiate the length
∫ 1

0

√

gγ(t)+εℓ(t)(γ′(t) + εℓ′(t), γ′(t) + εℓ′(t)) dt

with respect to ε at ε = 0. This is
∫ 1

0

1

2

(

gγ(t)(γ
′(t), γ′(t)

)−1/2 ∂

∂ε
gγ(t)+εℓ(t)(γ

′(t) + εℓ′(t), γ′(t) + εℓ′(t)) dt

=
1

2
√

Tr (logB)2

∫ 1

0

∂

∂ε
Tr (Bt+εℓ(t))−1(Bt logB+εℓ′(t))(Bt+εℓ(t))−1(Bt logB+εℓ′(t)) dt

=
1

√

Tr (logB)2

∫ 1

0

Tr (−Bt(logB)2ℓ(t) +B−t(logB)ℓ′(t)) dt.

Since we want to remove ℓ′(t), we integrate by part the second term:
∫ 1

0

TrB−t(logB)ℓ′(t) dt =
[

TrB−t(logB)ℓ(t)
]1

0
+

∫ 1

0

TrB−t(logB)2ℓ(t) dt

Since ℓ(0) = ℓ(1) = 0, the first term wanishes here and the derivative at ε = 0 is 0 for
every perturbation ℓ(t). On the other hand

gγ(t)(γ
′(t), γ′(t)) = TrB−tBt(logB)B−tBt logB = Tr (logB)2

does not depend on t, we can conclude that γ(t) = Bt is the geodesic curve between I
and B. The distance is

∫ 1

0

√

Tr (logB)2 dt =
√

Tr (logB)2.

The lemma is proved. �

The midpoint of the curve (7.5) will be called geometric mean of A,B ∈ P.
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7.2 Geometric mean of two matrices

Let A,B ≥ 0 and assume that A is invertible. We want to study the positivity of the
matrix

[

A X
X B

]

. (7.6)

for a positive X . The positivity of the block matrix implies

B ≥ XA−1X,

see Theorem 6.1. From the matrix monotonicity of the square root function (Example
5.10), we obtain (A−1/2BA−1/2)1/2 ≥ A−1/2XA−1/2, or

A1/2(A−1/2BA−1/2)1/2A1/2 ≥ X.

The left-hand-side is defined to be the geometric mean of A and B, in notation A#B.
It is easy to see that for X = A#B, the block matrix (7.6) is positive. Therefore, A#B
is the largest positive matrix X such that (7.6) is positive. This can be the definition
for non-invertible A. An equivalent possibility is

A#B := lim
ε→+0

(A + εI)#B.

If AB = BA, then A#B = A1/2B1/2(= (AB)1/2). The inequality between geometric
and arithmetic means holds also for matrices, see Exercise 1.

Example 7.1 The partial ordering ≤ of operators has a geometric interpretation for
projections. The relation P ≤ Q is equivalent to RngP ⊂ RngQ, that is P projects
to a smaller subspace than Q. This implies that any two projections P and Q have a
largest lower bound denoted by P ∧Q. This operator is the orthogonal projection to the
(closed) subspace RngP ∩ RngQ.

We want to show that P#Q = P ∧Q. First we show that the block matrix

[

P P ∧Q
P ∧Q Q

]

is positive. This is equivalent to the relation

[

P + εP⊥ P ∧Q
P ∧Q Q

]

≥ 0 (7.7)

for every constant ε > 0. Since

(P ∧Q)(P + εP⊥)−1(P ∧Q) = P ∧Q

is smaller than Q, the positivity (7.7) is true due to Theorem 6.1. We conclude that
P#Q ≥ P ∧Q.

The positivity of
[

P + εP⊥ X
X Q

]
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gives the condition

Q ≥ X(P + ε−1P⊥)X = XPX + ε−1XP⊥X.

Since ε > 0 is arbitrary, XP⊥X = 0. The latter condition gives X = XP . Therefore,
Q ≥ X2. Symmetrically, P ≥ X2 and Corollary 4.2 tells us that P ∧ Q ≥ X2 and so
P ∧Q ≥ X . �

Theorem 7.1 Assume that A1, A2, A3, A4 are positive matrices and A1 ≤ A2, A3 ≤ A4.
Then A1#A3 ≤ A2#A4.

Proof: The statement is equivalent to the positivity of the block matrix
[

A2 A1#A3

A1#A3 A4

]

.

This is a sum of positive matrices:
[

A1 A1#A3

A1#A3 A3

]

+

[

A2 − A1 0
0 A4 − A3

]

The proof is complete. �

Theorem 7.2 (Löwner theorem) Assume that for the matrices A and B the inequal-
ities 0 ≤ A ≤ B hold and 0 < t < 1 is a real number. Then At ≤ Bt.

Proof: Due to the continuity, it is enough to show the case t = k/2n, that is, t is a
dyadic rational number. We use Theorem 7.1 to deduce from the inequalities A ≤ B
and I ≤ I the inequality

A1/2 = A#I ≤ B#I = B1/2.

A second application of Theorem 7.1 gives similarly A3/4 ≤ B3/4. The procedure can
be continued to cover all dyadic rational powers. Arbitrary t ∈ [0, 1] can be the limit of
dyadic numbers. �

Theorem 7.3 The geometric mean of matrices is jointly concave, that is,

A1 + A3

2
#
A2 + A4

2
≥ A1#A2 + A3#A4

2
.

Proof: The block matrices
[

A1 A1#A2

A1#A2 A2

]

and

[

A3 A3#A4

A4#A3 A4

]

are positive and so is there arithmetic mean,
[

1
2
(A1 + A3)

1
2
(A1#A2 + A3#A4)

1
2
(A1#A2 + A3#A4)

1
2
(A2 + A4)

]

.

Therefore the off-diagonal entry is smaller than the geometric mean of the diagonal
entries. �

The next theorem of Ando [4] is the generalization of Example 7.1. For the sake of
simplicity the formulation is in block-matrices.
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Theorem 7.4 The geometric mean of the orthogonal projection

P =

[

I 0
0 0

]

and the positive invertible matrix

R =

[

R11 R12

R21 R22

]

is
[

(R11 − R12R
−1
22 R21)

−1/2 0
0 0

]

,

or P#R = (PR−1P )−1/2.

Proof: We have already P and R in block-matrix form. Due to (7.6) we are looking
for matrices

X =

[

X11 X12

X21 X22

]

such that

[

P X
X R

]

=









I 0 X11 X12

0 0 X21 X22

X11 X12 R11 R12

X21 X22 R21 R22









should be positive. From the positivity X12 = X21 = X22 = 0 follows and the necessary
and sufficient condition is

[

I 0
0 0

]

≥
[

X11 0
0 0

]

R−1

[

X11 0
0 0

]

,

or

I ≥ X11(R
−1)11X11.

It was shown at the beginning of the section that this is equivalent to

X11 ≤
(

(R−1)11

)−1/2

.

The inverse of a block-matrix is described in (6.4) and the proof is complete. �

7.3 Geometric mean for more matrices

The arithmetic mean is simpler, than the geometric mean: for (positive) matrices A and
B it is

A(A1, A2, . . . , An) :=
A1 + A2 + . . .+ An

n
.

Only the linear structure plays role. The arithmetic mean is a good example to show
how to move from the means of two variables to three variables.
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Suppose we have a device which can compute the mean of two matrices. How to
compute the mean of three? Assume that we aim to obtain the mean of A,B and C.
We can make a new device

W : (A,B,C) 7→ (A(A,B),A(A,C),A(B,C)) (7.8)

which applied to (A,B,C) many times gives the mean of A,B and C:

W n(A,B,C) → A(A,B,C) as n→ ∞. (7.9)

Indeed, W n(A,B,C) is a convex combination of A,B and C,

W n(A,B,C) = (An, Bn, Cn) = λ
(n)
1 A+ λ

(n)
2 B + λ

(n)
3 C.

One can compute the coefficients λ
(n)
i explicitly and show that λ

(n)
i → 1/3. The idea is

shown by a picture and will be extended to the geometric mean.
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Figure 7.1: The triangles ∆0, ∆1 and ∆2.

Theorem 7.5 Let A,B,C ∈ Mn be positive definite matrices and set a recursion as

A0 = A, B0 = B, C0 = C,

An+1 = An#Bn, Bn+1 = An#Cn, Cn+1 = Bn#Cn.

Then the limits

G3(A,B,C) := lim
n
An = lim

n
Bn = lim

n
Cn (7.10)

exist.

Proof: First we assume that A ≤ B ≤ C.
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From the monotonicity property of the geometric mean, see Theorem 7.1, we ob-
tain that An ≤ Bn ≤ Cn. It follows that the sequence (An) is increasing and (Cn) is
decreasing. Therefore, the limits

L := lim
n→∞

An and U = lim
n→∞

Cn

exist. We claim that L = U .

Assume that L 6= U . By continuity, Bn → L#U =:M , where L ≤M ≤ U . Since

Bn#Cn = Cn+1,

the limit n→ ∞ gives M#U = U , therefore M = U . This contradicts to M 6= U .

The general case can be reduced to the case of ordered triplet. If A,B,C are arbitrary,
we can find numbers λ and µ such that A ≤ λB ≤ µC and use the formula

(αX)#(βY ) =
√

αβ(X#Y ) (7.11)

for positive numbers α and β.

Let
A′

1 = A, B′
1 = λB, C ′

1 = µC,

and
A′
n+1 = A′

n#B
′
n, B′

n+1 = A′
n#C

′
n, C ′

n+1 = B′
n#C

′
n.

It is clear that for the numbers

a := 1, b := λ and c := µ

the recursion provides a convergent sequence (an, bn, cn) of triplets.

(λµ)1/3 = lim
n
an = lim

n
bn = lim

n
cn.

Since
An = A′

n/an, Bn = B′
n/bn and Cn = C ′

n/cn

due to property (7.11) of the geometric mean, the limits stated in the theorem must
exist and equal G(A′, B′, C ′)/(λµ)1/3. �

The geometric mean of the positive definite matrices A,B,C ∈ Mn is defined as
G3(A,B,C) in (7.10). Explicit formula is not known and the same procedure can be
used to make definition of the geometric mean of n matrices.

7.4 Notes and remarks

The geometric mean of operators first appeared in the paper of Wieslaw Pusz and
Stanislav L. Woronowicz (Functional calculus for sesquilinear forms and the purifica-
tion map, Rep. Math. Phys., (1975), 159–170.) and the detailed study was in the paper
Tsuyoshi Ando and Fumio Kubo [31]. The geometric mean for more matrices is from
the paper [5]. A popularization of the subject is the paper Rajendra Bhatia and John
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Holbrook: Noncommutative geometric means. Math. Intelligencer 28(2006), no. 1,
32–39.

Lajos Molnár proved that if a bijection α : M+
n → M+

n preserves the geometric mean,
then for n > 2 α(A) = SAS−1 for a linear or conjugate linear mapping S (Maps pre-
serving the geometric mean of positive operators. Proc. Amer. Math. Soc. 137(2009),
1763–1770.)

7.5 Exercises

1. Show that for positive invertible matrices A and B the inequalities

2(A−1 +B−1)−1 ≤ A#B ≤ 1

2
(A+B)

hold. (Hint: Reduce the general case to A = I.)

2. Show that

A#B =
1

π

∫ 1

0

(tA−1 + (1− t)B−1)−1

√

t(1− t)
dt.

3. Let A,B > 0. Show that A#B = A implies A = B.

4. Let A ≥ 0 and P be a projection of rank 1. Show that A#P =
√
TrAPP .

5. Argue that the natural map

(A,B) 7−→ exp
( logA+ logB

2

)

would not be a good definition for geometric mean.

6. Let A and B be positive matrices and assume that there is a unitary U such that
A1/2UB1/2 ≥ 0. Show that A#B = A1/2UB1/2.

7. Let A and B be positive definite matrices. Set A0 := A, B0 := B and define
recurrently

An =
An−1 +Bn−1

2
and Bn = 2(A−1

n−1 +B−1
n−1)

−1 (n = 1, 2, . . .).

Show that

lim
n→∞

An = lim
n→∞

Bn = A#B.

8. Show that

Det (A#B) =
√
DetADetB.

9. Assume that A and B are invertible positive matrices. Show that

(A#B)−1 = A−1#B−1.
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10. Let

A :=

[

3/2 0
0 3/4

]

and B :=

[

1/2 1/2
1/2 1/2

]

.

Show that A ≥ B ≥ 0 and for p > 1 the inequality Ap ≥ Bp does not hold.

11. Show that

Det
(

G(A,B,C)
)

=
(

Det ADet BDet C
)1/3

.

12. Show that
G(αA, βB, γC) = (αβγ)1/3G(A,B,C)

for positive numbers α, β, γ.

13. Show that A1 ≥ A2, B1 ≥ B2, C1 ≥ C2 imply

G(A1, B1, C1) ≥ G(A2, B2, C2).

14. Show that
G(A,B,C) = G(A−1, B−1, C−1)−1.

15. Show that

3(A−1 +B−1 + C−1)−1 ≤ G(A,B,C) ≤ 1

3
(A +B + C).



Chapter 8

Convexity

Convex sets are subsets of linear spaces. Number-valued convex functions defined on an
interval are treated in analysis. Here the functionals are typically matrix-valued or they
are defined on a subset of matrices. Convexity is defined by inequalities and it has many
applications in different areas.

8.1 Convex sets

Let V be a vector space (over the real numbers). If u, v ∈ V , then they are called the
endpoints of the line-segment

[u, v] := {λu+ (1− λ)v : λ ∈ R, 0 ≤ λ ≤ 1}.
A subset A ⊂ V is convex if for u, v ∈ A the line-segment [u, v] is contained in A. It is
easy to check that a set A ⊂ V is convex if and only if

n
∑

i=1

λivi ∈ A.

for every finite subset {v1, v2, . . . , vn} ⊂ A and for every family of real positive numbers
λ1, λ2, . . . , λn with sum 1,

∑

j λi = 1. The intersection of convex sets is a convex set.

Example 8.1 Let V be a vector space and ‖ · ‖ : V → R+ be a norm. Then

{v ∈ V : ‖v‖ ≤ 1}
is a convex set. Indeed, if ‖u‖, ‖v‖ ≤ 1, then

‖λu+ (1− λ)v‖ ≤ ‖λu‖+ ‖(1− λ)v‖ = λ‖u‖+ (1− λ)‖v‖ ≤ 1.

�

Example 8.2 In the vector space Mn the self-adjoint matrices and the positive matrices
form a convex set. Let (a, b) be a real intervall. Then

{A ∈ M
sa
n : σ(A) ⊂ (a, b)}

is a convex set. This follows from the fact that σ(A) ⊂ (a, b) is equivalent to the property
aIn ≤ A ≤ bIn. �
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Example 8.3 Set

Sn := {D ∈ M
sa
n : D ≥ 0 and TrD = 1}.

This is a convex set, in quantum theory it is called state space.

If n = 2, then a popular parametrization of the matrices in S2 is

1

2

[

1− λ3 λ1 − iλ2
λ1 + iλ2 1− λ3

]

=
1

2
(I + λ1σ1 + λ2σ2 + λ3σ3),

where σ1, σ2, σ3 are the Pauli matrices, see (2.11), and the necessary and sufficient con-
dition to be in S2 is

λ21 + λ22 + λ23 ≤ 1.

This shows that the convex set S2 can be viewed as the unit ball in R3. If n > 2, then
the geometric picture of Sn is not so clear. �

If A is a subset of the vectorspace V , then its convex hull is the smallest convex set
containg A, it is denoted by coA.

coA =

{

n
∑

i=1

λivi : vi ∈ A, λi ≥ 0, 1 ≤ i ≤ n,
n
∑

i=1

λi = 1, n ∈ N

}

.

Let A ⊂ V be a convex set. The vector v ∈ A is an extreme point of A if the
conditions

v1, v2 ∈ A, 0 < λ < 1, λv1 + (1− λ)v2 = v

imply that v1 = v2 = v.

In the convex set S2 the extreme points corresponds to the parameters satisfying
λ21 + λ22 + λ23 = 1. (If S2 is viewed as a ball in R3, then the extreme points are in the
boundary of the ball.)

8.2 Convex functionals

Let J ⊂ R be an interval. A function f : J → R is said to be convex if

f(ta + (1− t)b) ≤ tf(a) + (1− t)f(b) (8.1)

for all a, b ∈ J and 0 ≤ t ≤ 1. This inequality is equivalent to the positivity of the
second divided difference

f [a, b, c] =
f(a)

(a− b)(a− c)
+

f(b)

(b− a)(b− c)
+

f(c)

(c− a)(c− b)

=
1

c− b

(f(c)− f(a)

c− a
− f(b)− f(a)

b− a

)

(8.2)

for every different a, b, c ∈ J . If f ∈ C2(J), then for x ∈ J we have

lim
a,b,c→x

f [a, b, c] = f ′′(x).
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Hence the convexity is equivalent to the positivity of the second derivative. For a convex
function f the Jensen inequality

f
(

∑

i

tiai

)

≤
∑

i

tif(ai) (8.3)

holds whenever ai ∈ J and for real numbers ti ≥ 0 and
∑

i ti = 1. This inequality has
an integral form

f

(
∫

g(x) dµ(x)

)

≤
∫

f ◦ g(x) dµ(x). (8.4)

For a discrete measure µ this is exactly the Jensen inequality, but it holds for any
normalized (=probabilistic) measure µ and for a bounded function g.

Definition (8.1) makes sense if J is a convex subset of a vector space and f is a real
functional defined on it. So let V be a finite dimensional vector space and A ⊂ V be a
convex subset. The functional F : A → R ∪ {+∞} is called convex if

F (λx+ (1− λ)y) ≤ λF (x) + (1− λ)F (y) (8.5)

for every x, y ∈ A and real number 0 < λ < 1. Let [u, v] ⊂ A be a line-segment and
define the function

F[u,v](λ) = F (λu+ (1− λ)v)

on the interval [0, 1]. F is convex if and only if all function F[u,v] : [0, 1] → R are convex
when u, v ∈ A.

Convexity makes sense if the functional F is matrix-valued. If F : A → Mn(C)
sa,

then (8.5) defines convexity. For a continuous function the convexity (8.5) follows from
the particular case

F

(

x+ y

2

)

≤ F (x) + F (y)

2
. (8.6)

A functional F is concave if −F is convex.

Example 8.4 We show that the functional

A 7→ log Tr eA

is convex on the self-adjoint matrices, cf. Example 8.5.

The statement is equivalent to the convexity of the function

f(t) = logTr (eA+tB) (t ∈ R) (8.7)

for every A,B ∈ Msa
n . To show this we prove that f ′′(0) ≥ 0. It follows from Theorem

5.8 that

f ′(t) =
Tr eA+tBB

Tr eA+tB
.

In the computation of the second derivative we use the identity

eA+tB = eA + t

∫ 1

0

euABe(1−u)(A+tB) du . (8.8)
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In order to write f ′′(0) in a convenient form we introduce the inner product

〈X, Y 〉Bo :=
∫ 1

0

Tr etAX∗e(1−t)AY dt. (8.9)

(This is frequently termed Bogoliubov inner product.) Now

f ′′(0) =
〈I, I〉Bo〈B,B〉Bo − 〈I, B〉2Bo

(Tr eA)2

which is positive due to the Schwarz inequality. �

Let V be a finite dimensional vector space with dual V ∗. Assume that the duality
is given by a bilinear pairing 〈 · , · 〉. For a convex function F : V → R ∪ {+∞} the
conjugate convex function F ∗ : V ∗ → R ∪ {+∞} is given by the formula

F ∗(v∗) = sup{〈v, v∗〉 − F (v) : v ∈ V }.

F ∗ is sometimes called the Legendre transform of F . F ∗ is the supremum of continuous
linear functionals, therefore it is convex and lower semi-continuous. The following result
is basic in convex analysis.

Theorem 8.1 If F : V → R ∪ {+∞} is a lower semi-continuous convex functional,
then F ∗∗ = F .

Example 8.5 The negative von Neumann entropy −S(D) = −Tr η(D) = TrD logD is
continuous and convex on the density matrices. Let

F (X) =

{

TrX logX if X ≥ 0 and TrX = 1,
+∞ otherwise.

This is a lower semicontinuous convex functional on the linear space of all self-adjoint
matrices. The duality is 〈X,H〉 = TrXH . The conjugate functional is

F ∗(H) = sup{TrXH − F (X) : X ∈ M
sa
n }

= − inf{−TrXH − S(D) : D ∈ M
sa
n , D ≥ 0,TrD = 1} .

According to Example 5.12 the minimizer is D = eH/Tr eH , therefore

F ∗(H) = logTr eH .

This is a continuous convex function of H ∈ Msa
n . �

Example 8.6 Fix a density matrix ρ = eH and consider the functional F

F (X) =

{

TrX(logX −H) if X ≥ 0 and TrX = 1
+∞ otherwise.

defined on self-adjoint matrices. F is essentially the relative entropy with respect to
D: S(X‖D) := TrX(logX − logD).
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The duality is 〈X,B〉 = TrXB if X and B are self-adjoint matrices. We want to
show that the functional B 7→ log Tr eH+B is the Legendre transform or the conjugate
function of F :

log Tr eB+H = max{TrXB − S(X‖eH) : X is positive, TrX = 1} . (8.10)

Introduce the notation

f(X) = TrXB − S(X||eH)

for a density matrix X . When P1, . . . , Pn are projections of rank one with
∑n

i=1 Pi = I,
we write

f
(

n
∑

i=1

λiPi

)

=
n
∑

i=1

(λiTrPiB + λiTrPiH − λi log λi) ,

where λi ≥ 0,
∑n

i=1 λi = 1. Since

∂

∂λi
f
(

n
∑

i=1

λiPi

)

∣

∣

∣

∣

∣

λi=0

= +∞ ,

we see that f(X) attains its maximum at a positive matrix X0, TrX0 = 1. Then for any
self-adjoint Z, TrZ = 0, we have

0 =
d

dt
f(X0 + tZ)

∣

∣

∣

∣

t=0

= Tr Z(B +H − logX0) ,

so that B +H − logX0 = cI with c ∈ R. Therefore X0 = eB+H/Tr eB+H and f(X0) =
log Tr eB+H by simple computation.

On the other hand, if X is positive invertible with TrX = 1, then

S(X||eH) = max{TrXB − log Tr eH+B : B is self-adjoint} (8.11)

due to the duality theorem. �

Theorem 8.2 Let α : Mn → Mm be a positive unital linear mapping and f : R → R

be a convex function. Then

Tr f(α(A)) ≤ Trα(f(A))

for every A ∈ Msa
n .

Proof: Take the spectral decompositions

A =
∑

j

νjQj and α(A) =
∑

i

µiPi.

So we have

µi = Tr (α(A)Pi)/TrPi =
∑

j

νjTr (α(Qj)Pi)/TrPi
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whereas the convexity of f yields

f(µi) ≤
∑

j

f(νj)Tr (α(Qj)Pi)/TrPi .

Therefore,

Tr f(α(A)) =
∑

i

f(µi)TrPi ≤
∑

i,j

f(νj)Tr (α(Qj)Pi) = Trα(f(A)) ,

which was to be proven. �

It was stated in Theorem 5.10 that for a convex function f : (α, β) → R, the functional
A 7→ Tr f(A) is convex. It is rather surprising that in the convexity of this functional
the number coefficient 0 < t < 1 can be replaced by a matrix.

Theorem 8.3 Let f : (α, β) → R be a convex function and Ci, Ai ∈ Mn be such that

σ(Ai) ⊂ (α, β) and
k
∑

i=1

CiC
∗
i = I.

Then

Tr f

(

k
∑

i=1

CiAiC
∗
i

)

≤
k
∑

i=1

TrCif(Ai)C
∗
i .

Proof: We prove only the case

Tr f(CAC∗ +DBD∗) ≤ TrCf(A)C∗ + TrDf(B)D∗,

when CC∗ +DD∗ = I. (The more general version can be treated similarly.)

Set F := CAC∗ + DBD∗ and consider the spectral decomposition of A and B as
integrals:

X =
∑

i

µXi P
X
i =

∫

λdEX(λ)

where µXi are eigenvalues, PX
i are eigenprojections and the measure EX is defined on

the Borel subsets S of R as

EX(S) =
∑

{PX
i : µXi ∈ S},

X = A,B.

Assume that A,B,C,D ∈ Mn and for ξ ∈ Rn we define a measure µξ:

µξ(S) = 〈(CEA(S)C∗ +DEB(S)D∗)ξ, ξ〉 = 〈(EA(S)C∗ξ, C∗ξ〉+ 〈(EA(S)D∗ξ,D∗ξ〉.

The reason of the definition of this measure is the formula

〈Fξ, ξ〉 =
∫

λdµξ(λ).

If ξ is a unit eigenvector of F (and f(F )), then

〈f(CAC∗ +DBD)ξ, ξ〉 = 〈f(F )ξ, ξ〉 = f(〈Fξ, ξ〉) = f

(
∫

λdµξ(λ)

)
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≤
∫

f(λ)dµξ(λ)

= 〈(C∗f(A)C +D∗f(B)D)ξ, ξ〉.

The statement follows if the inequalities for an orthonormal basis of eigenvectors of F
are summarized. �

Example 8.7 The log function is concave. If A ∈ Mn is positive and the we set the
projections Pi := E(ii), then from the previous theorem we have

Tr log
n
∑

i=1

PiAPi ≥
n
∑

i=1

TrPi(logA)Pi.

This means
n
∑

i=1

logAii ≥ Tr logA

and the exponential is
n
∏

i=1

Aii ≥ exp(Tr logA) = DetA.

This is the well-known Hadamard inequality for the determinant. �

When F (A,B) is a real valued function of two matrix variables, then F is called
jointly concave if

F (λA1 + (1− λ)A2, λB1 + (1− λ)B2) ≥ λF (A1, B1) + (1− λ)F (A2, B2)

for 0 < λ < 1. The function F (A,B) is jointly concave if and only if the function

A⊕ B 7→ F (A,B)

is concave. In this way the joint convexity and concavity are conveniently studied.

The geometric mean of positive matrices is jointly concave, see Theorem 7.3. A similar
proof gives the following example.

Example 8.8 Assume that X,B ∈ Mn(C) and B is positive invertible. Then

(X,B) 7→ X∗B−1X

is jointly convex. This means that
(

X1 +X2

2

)∗(
B1 +B2

2

)−1(
X1 +X2

2

)

≤ 1

2

(

X∗
1B

−1
1 X1 +X∗

2B
−1
2 X2

)

.

In the proof we use the block matrix method, see Theorem 6.1. We have
[

Bi Xi

X∗
i X∗

i B
−1
i Xi

]

≥ 0 (i = 1, 2).

So is their sum:
1

2

[

B1 +B2 X1 +X2

X∗
1 +X∗

2 X∗
1B

−1
1 X1 +X∗

2B
−1
2 X2

]

≥ 0

This implies our statement due to the positivity theorem. �
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8.3 Matrix convex functions

Let J ⊂ R be an interval. A function f : J → R is said to be matrix convex if

f(tA+ (1− t)B) ≤ tf(A) + (1− t)f(B) (8.12)

for all self-adjoint matrices A and B whose spectra are in J and for all numbers 0 ≤ t ≤ 1.
Actually in case of a continuous function f it is enough to have the inequality for t = 1/2.
We can say that a function f is matrix convex if the functional A 7→ f(A) is convex. f
is matrix concave if −f is matrix convex.

Example 8.9 The function f(t) = t2 is matrix convex on the whole real line. This
follows from the obvious inequality

(

A+B

2

)2

≤ A2 +B2

2
.

�

Example 8.10 The function f(x) = (x + t)−1 is matrix convex on [0,∞) when t > 0.
It is enough to show that

(

A +B

2

)−1

≤ A−1 +B−1

2
(8.13)

which is equivalent with

(

B−1/2AB−1/2 + I

2

)−1

≤ (B−1/2AB−1/2)−1 + I

2
.

This holds, since
(

X + I

2

)−1

≤ X−1 + I

2

is true for an invertible matrix X ≥ 0.

Note that the inequality (8.13) is equivalent to the relation of arithmetic and harmonic
means. �

The classical result is about matrix convex functions on the interval (−1, 1). They
have the integral decomposition

f(x) = β0 + β1x+
1

2
β2

∫ 1

−1

x2(1− αx)−1 dµ(α), (8.14)

where µ is a probability measure and β2 ≥ 0. (In particular, f must be an analytic
function.) An integral representation is used also in the next example.

Example 8.11 The function f(x) = xt is matrix concave on [0,∞) when 0 < t < 1.
The integral representation

xt =
sin πt

π

∫ ∞

0

(

1− s(x+ s)−1
)

st−1 ds

is used. It follows from Example 8.10 that 1−s(x+s)−1st−1 is matrix concave, therefore
the integral is matrix concave as well. �
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Since self-adjoint operators may be approximated by self-adjoint matrices, (8.12) holds
for operators when it holds for matrices. The point in the next theorem that in the convex
combination tA+ (1− t)B the numbers t and 1− t can be replaced by matrices.

Theorem 8.4 Let f : (α, β) → R be a matrix convex function and Ci, Ai = A∗
i ∈ Mn be

such that

σ(Ai) ⊂ (α, β) and
k
∑

i=1

CiC
∗
i = I.

Then

f

(

k
∑

i=1

CiAiC
∗
i

)

≤
k
∑

i=1

Cif(Ai)C
∗
i . (8.15)

Proof: The essential idea is in the case

f(CAC∗ +DBD∗) ≤ Cf(A)C∗ +Df(B)D∗,

when CC∗ +DD∗ = I.

The condition CC∗ +DD∗ = I implies that we can find a unitary block matrix

U :=

[

C D
X Y

]

when the entries X and Y are chosen properly. Then

U

[

A 0
0 B

]

U∗ =

[

CAC∗ +DBD∗ CAX∗ +DBY ∗

XAC∗ + Y BD∗ XAX∗ + Y BY ∗

]

.

It is easy to check that

1

2
V

[

A11 A12

A21 A22

]

V +
1

2

[

A11 A12

A21 A22

]

=

[

A11 0
0 A22

]

for

V =

[

−I 0
0 I

]

.

It follows that the matrix

Z :=
1

2
V U

[

A 0
0 B

]

U∗V +
1

2
U

[

A 0
0 B

]

U∗

is diagonal, Z11 = CAC∗ +DBD∗ and f(Z)11 = f(CAC∗ +DBD∗).

Next we use the matrix convexity of the function f :

f(Z) ≤ 1

2
f

(

V U

[

A 0
0 B

]

U∗V

)

+
1

2
f

(

U

[

A 0
0 B

]

U∗

)

=
1

2
V Uf

([

A 0
0 B

])

U∗V +
1

2
Uf

([

A 0
0 B

])

U∗

=
1

2
V U

[

f(A) 0
0 f(B)

]

U∗V +
1

2
U

[

f(A) 0
0 f(B)

]

U∗
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The right-hand-side is diagonal with Cf(A)C∗+Df(B)D∗ as (1, 1) element. The inequal-
ity implies the inequality between the (1, 1) elements and this is exactly the inequality
(8.15). �

In the proof of (8.15) for n×nmatrices, the ordinary convexity was used for (2n)×(2n)
matrices. This is an important trick. The theorem is due to Hansen and Pedersen [20].

Corollary 8.1 Let f be an matrix convex function on an interval J such that 0 ∈ J . If
‖V ‖ ≤ 1 and f(0) ≤ 0, then

f(V ∗AV ) ≤ V ∗f(A)V (8.16)

if the spectrum of A = A∗ lies in J .

Proof: Choose B = 0 and W such that V ∗V +W ∗W = I. Then

f(V ∗AV +W ∗BW ) ≤ V ∗f(A)V +W ∗f(B)W

holds and gives our statement. �

Example 8.12 From the previous corollary we can deduce that if f : R+ → R is a
matrix convex function and f(0) ≤ 0, then f(x)/x is matrix monotone on the interval
(0,∞).

Assume that 0 < A ≤ B. Then B−1/2A1/2 =: V is a contraction, since

‖V ‖2 = ‖V V ∗‖ = ‖B−1/2AB−1/2‖ ≤ ‖B−1/2BB−1/2‖ = 1.

Therefore the corollary gives

f(A) = f(V ∗BV ) ≤ V ∗f(B)V = A1/2B−1/2f(B)B−1/2A1/2

which is equivalent to A−1f(A) ≤ B−1f(B). �

Example 8.13 Heuristically we can say that Theorem 8.4 replaces all the numbers in
the the Jensen inequality f(

∑

i tiai) ≤
∑

i tif(ai) by matrices. Therefore

f

(

∑

i

aiAi

)

≤
∑

i

f(ai)Ai (8.17)

holds for a matrix convex function f if
∑

iAi = I for the positive matrices Ai ∈ Mn and
for the numbers ai ∈ (α, β).

We want to show that the property (8.17) is equivalent to the matrix convexity

f(tA+ (1− t)B) ≤ tf(A) + (1− t)f(B).

Let
A =

∑

i

λiPi and B =
∑

j

µjQj

be the spectral decompositions. Then

∑

i

tPi +
∑

j

(1− t)Qj = I
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and from (8.17) we obtain

f(tA+ (1− t)B) = f

(

∑

i

tλiPi +
∑

j

(1− t)µjQj

)

≤
∑

i

f(λi)tPi +
∑

j

f(µj)(1− t)Qj

= tf(A) + (1− t)f(B).

This inequality was the aim. �

8.4 Notes and remarks

The integral representation (8.14) was obtained by Julius Bendat and Seymur Sherman
[8]. Theorem 8.4 is from the paper of Frank Hansen and Gert G. Pedersen [20].

8.5 Exercises

1. Show that the extreme points of the set

Sn := {D ∈ M
sa
n : D ≥ 0 and TrD = 1}.

are the orthogonal projections of trace 1. Show that for n > 2 not all points in the
boundary are extreme.

2. Let the block matrix

M =

[

A B
B∗ C

]

be positive and f : R+ → R be a convex function. Show that

Tr f(M) ≥ Tr f(A) + Tr f(C).

3. Show that for A,B ∈ Msa
n the inequality

log Tr eA+B ≥ log Tr eA +
TrBeA

Tr eA

holds. (Hint: Use the function (8.7).)

4. Let the block matrix

M =

[

A B
B∗ C

]

be positive and invertible. Show that

detM ≤ detA · detC.
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5. Show that for A,B ∈ Msa
n the inequality

| log Tr eA+B − log Tr eA| ≤ ‖B‖

holds. (Hint: Use the function (8.7).)

6. Is it true that the function

ηα(x) =
xα − x

1− α
(x > 0) (8.18)

is matrix concave if α ∈ (0, 2)?

7. Let A be a positive invertible operator on a finite dimensional Hilbert space H and
ξ ∈ H. Show that

(ξ, A) 7→ 〈ξ, A−1ξ〉
is jointly convex.



Chapter 9

Matrix monotone functions

Let J ⊂ R be an interval. A function f : J → R is said to be matrix monotone
for n × n matrices if f(A) ≤ f(B) whenever A and B are self-adjoint n × n matrices,
A ≤ B and their eigenvalues are in J . If a function is matrix monotone for every size n,
then it is called matrix monotone. (One can see by an approximation argument that if
a function is matrix monotone for every matrix size, then A ≤ B implies f(A) ≤ f(B)
also for operators of infinite dimensional Hilbert spaces.)

9.1 Examples

Example 9.1 Let t > 0 be a parameter. The function f(x) = −(t + x)−1 is matrix
monotone on [0,∞).

Let A and B positive matrices of the same order. Then At := tI+A and Bt := tI+B
are invertible, and

At ≤ Bt ⇐⇒ B
−1/2
t AtB

−1/2
t ≤ I ⇐⇒ ‖B−1/2

t AtB
−1/2
t ‖ ≤ 1 ⇐⇒ ‖A1/2

t B
−1/2
t ‖ ≤ 1.

Since the adjoint preserves the operator norm, the latest condition is equivalent to
‖B−1/2

t A
1/2
t ‖ ≤ 1 which implies that B−1

t ≤ A−1
t . �

Example 9.2 The function f(x) = log x is matrix monotone on (0,∞).

This follows from the formula

log x =

∫ ∞

0

1

1 + t
− 1

x+ t
dt .

which is easy to verify. The integrand

ft(x) :=
1

1 + t
− 1

x+ t

is matrix monotone according to the previous example. It follows that

n
∑

i=1

cift(i)(x)
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is matrix monotone for any t(i) and positive ci ∈ R. The integral is the limit of such
functions, therefore it is a matrix monotone function as well.

There are several other ways to show the matrix monotonicity of the logarithm. �

Example 9.3 To show that the square root function is matrix monotone, consider the
function

F (t) :=
√
A + tX

defined for t ∈ [0, 1] and for fixed positive matrices A and X . If F is increasing, then
F (0) =

√
A ≤

√
A+X = F (1).

In order to show that F is increasing, it is enough to see that the eigenvalues of F ′(t)
are positive. Differentiating the equality F (t)F (t) = A+ tX , we get

F ′(t)F (t) + F (t)F ′(t) = X.

As the limit of self-adjoint matrices, F ′ is self-adjoint and let F ′(t) =
∑

i λiEi be its
spectral decomposition. (Of course, both the eigenvalues and the projections depend on
the value of t.) Then

∑

i

λi(EiF (t) + F (t)Ei) = X

and after multiplication by Ej from the left and from the right, we have for the trace

2λjTrEjF (t)Ej = TrEjXEj.

Since both traces are positive, λj must be positive as well.

Another approach is based on Theorem 7.1. Assume that A ≤ B. Since I ≤ I,√
A = A#I ≤ B#I =

√
B. Repeating this idea one can see that At ≤ Bt if 0 < t < 1 is

a dyadic rational number, k/2n. �

The previous example contained an important idea. To decide about the matrix
monotonicity of a function f , one has to investigate the derivative of f(A+ tX).

9.2 Characterization and properties

Theorem 9.1 A smooth function f : (a, b) → R is matrix monotone for n× n matrices
if and only if the divided difference matrix D ∈ Mn defined as

Dij =











f(ti)− f(tj)

ti − tj
if ti − tj 6= 0,

f ′(ti) if ti − tj = 0,

(9.1)

is positive semi-definite for t1, t2, . . . , tn ∈ (a, b).

Proof: Let A be a self-adjoint and B be a positive semi-definite n× n matrix. When
f is matrix monotone, the function t 7→ f(A + tB) is increasing function of the real
variable t. Therefore, the derivative, which is a matrix, must be positive semi-definite.
To compute the derivative, we use formula (5.16) of Theorem 5.9. The Schur theorem
implies that the derivative is positive if the divided difference matrix is positive.
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To show the converse, take a matrix B such that all entries are 1. Then positivity of
the derivative D ◦B = D is the positivity of D. �

The assumption about the smooth property in the previous theorem is not essential.
At the beginning of the theory Löwner proved that if the function f : (a, b) → R has the
property that A ≤ B for A,B ∈ M2 implies f(A) ≤ f(B), then f must be a C1 function.

The previous theorem can be reformulated in terms of a positive definite kernel. The
divided difference

ψ(x, y) =











f(x)− f(y)

x− y
if x 6= y,

f ′(x) if x = y

is a (a, b)×(a, b) → R kernel function. f is matrix monotone if and only if ψ is a positive
definite kernel.

Example 9.4 The function f(x) := exp x is not matrix monotone, since the divided
difference matrix







exp x
exp x− exp y

x− y
exp y − exp x

y − x
exp y







does not have positive determinant (for x = 0 and for large y). �

Theorem 9.2 (Löwner theorem) Matrix monotone functions on R+ have a special
integral representation

f(x) = f(0) + βx+

∫ ∞

0

λx

λ+ x
dµ(λ) , (9.2)

where µ is a measure such that
∫ ∞

0

λ

λ+ 1
dµ(λ)

is finite and β ≥ 0.

Since the integrand
λx

λ+ x
= λ− λ2

λ+ x

is a matrix monotone function of x, see Example 9.1, one part of the Löwner theorem is
straightforward. It follows from the theorem that a matrix monotone function is matrix
concave.

Theorem 9.3 If f : R+ → R is matrix monotone, then xf(x) is matrix convex.

Proof: Let λ > 0. First we check the function f(x) = −(x+ λ)−1. Then

xf(x) = − x

λ+ x
= −1 +

λ

λ+ x

and it is well-known that x 7→ (x+ λ)−1 is matrix convex.

For a general matrix monotone f , we use the integral decomposition (9.2) and the
statement follows from the previous special case. �
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Theorem 9.4 If f : (0,∞) → (0,∞), then the following conditions are equivalent:

(1) f is matrix monotone;

(2) x/f(x) is matrix monotone;

(3) f is matrix concave.

Proof: For ε > 0 the functionfε(x) := f(x+ ε) is defined on [0,∞). If the statement
is proved for this function, then the limit ε → 0 gives the result. So we assume f :
[0,∞) → (0,∞).

Recall that (1) ⇒ (3) was already remarked above.

The implication (3) ⇒ (2) is based on Example 8.12. It says that −f(x)/x is matrix
monotone. Therefore x/f(x) is matrix monotone as well.

(2) ⇒ (1): x/f(x) is matrix monotone on [0,∞), then it follows from the Löwvner
representation that divided by x we have

β

x
+

∫ ∞

0

λ

λ+ x
dµ(λ) ,

This multiplied with −1 is the matrix monotone −1/f(x). Therefore f(x) is matrix
monotone as well. �

It was proved that the matrix monotonicity is equivalent to the positive definiteness
of the divided difference kernel. Concavity has somewhat similar property.

Theorem 9.5 Let f : [0,∞) → [0,∞) be a smooth function. If the divided difference
kernel function is conditionally negative definite, then f is matrix convex.

Proof: The Example 4.14 and Theorem 9.1 give that g(x) = x2/f(x) is matrix mono-
tone. Then x/g(x) = f(x)/x matrix monotone due to Theorem 9.4. Multiplying by x
we get a matrix convex function, Theorem 9.3. �

It is not always easy to decide if a function is matrix monotone. An efficient method
is based on holomorphic extension. The set C+ := {a + ib : a, b ∈ R and b > 0} is
called upper half-plain. A function R+ → R is matrix monotone if and only if it has
a holomorphic extension to the upper half-plain such that its range is in the closure of
C+ [11]. (Such functions are studied in the next section.) It is surprising that a matrix
monotone function is very smooth and connected with functions of a complex variable.

Example 9.5 The representation

xt =
sin πt

π

∫ ∞

0

λt−1x

λ+ x
dλ (9.3)

shows that f(x) = xt is matrix monotone when 0 < t < 1. In other words,

0 ≤ A ≤ B imply At ≤ Bt,

which is often called Löwner-Heinz inequality.
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We can arrive at the same conclusion by holomorphic extension. If

a + ib = Reϕi with 0 ≤ ϕ ≤ π,

then a + ib 7→ Rt etϕi is holomorphic and it maps C+ into itself when 0 ≤ t ≤ 1. This
shows that f(x) = xt is matrix monotone for these values of the parameter but not for
any other value. �

Example 9.6 Let

fp(x) = p(1− p)
(x− 1)2

(xp − 1)(x1−p − 1)
. (9.4)

The integral representation

1

fp(x)
=

sin pπ

π

∫ ∞

0

dλ λp−1

∫ 1

0

ds

∫ 1

0

dt
1

x((1− t)λ+ (1− s)) + (tλ + s)
, (9.5)

shows that 1/fp is matrix monotone decreasing when 0 < p < 1, since so is the integrand
as a function of all variables. It follows that fp(x) is matrix monotone. �

Theorem 9.6 A function f : [0,∞) → [0,∞) is matrix monotone decreasing if and
only if

f(x) = α+

∫ ∞

0

1

λ+ x
dµ(λ)

with a constant α ≥ 0 and a Borel measure µ such that the integrals
∫ ∞

0

1

(1 + λ)2
dµ(λ) and

∫ ∞

0

λ

(1 + λ)2
dµ(λ)

are finite.

9.3 Matrix means

The means of numbers is a popular subject. If we move from 1 × 1 matrices to n ×
n matrices, then the arithmetic mean does not require any theory. Historically the
harmonic mean was the first essential subject for matrices.

Example 9.7 It is well-known in electricity that if two resistors with resistance a and
b are connected parallelly, the the total resistance q is the solution of the equation

1

g
=

1

a
+

1

b
.

Then

q = (a−1 + b−1)−1 =
ab

a + b

is the harmonic mean up to a factor 2. More generally, one can consider n-point network,
where the voltage and current vectors are connected by a positive matrix. The parallel
sum

A : B = (A−1 +B−1)−1
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Upper part: An n-point network with the input and output voltage vectors. Below: Two
parallelly connected networks

of two positive definite matrices represents the combined resistance of two n-port net-
works connected in parallel.

One can check that
A : B = A− A(A+B)−1A.

Therefore A : B is the Schur complement of A +B in the block matrix
[

A A
A A+B

]

,

see Theorem 6.4. �

On the basis of the previous example, the harmonic mean of the positive definite
matrices A and B is defined as

H(A,B) := 2(A−1 +B−1)−1. (9.6)

Matrix monotone functions on R+ may be used to define positive matrix means.
A theory of means of positive matrices was developed by Kubo and Ando [31]. Their
theory has many interesting applications. Here we do not go into the details concerning
matrix means but we do confine ourselves to the essentials. Matrix means are binary
operations on matrices, they satisfy the following conditions.



9.3. MATRIX MEANS 107

(1) M(A,A) = A for every A,

(2) M(A,B) =M(B,A) for every A and B,

(3) if A ≤ B, then A ≤M(A,B) ≤ B,

(4) if A ≤ A′ and B ≤ B′, then M(A,B) ≤M(A′, B′),

(5) M is continuous.

Note that the above conditions are not independent, (1) and (4) imply (3).

An important further requirement is the transformer inequality:

(6) CM(A,B)C∗ ≤M(CAC∗, CBC∗)

for all not necessary self-adjoint operator C.

The key issue of the theory is that operator means are in a 1-to-1 correspondence with
operator monotone functions satisfying conditions f(1) = 1 and tf(t−1) = f(t). Given
an operator monotone function f , the corresponding mean is

Mf (A,B) = A1/2f(A−1/2BA−1/2)A1/2 (9.7)

when A is invertible. (When A is not invertible, take a sequence An of invertible operators
approximating A and let Mf (A,B) = limnMf (An, B).) It follows from the definition
(9.7) of means that

if f ≤ g, then Mf (A,B) ≤Mg(A,B). (9.8)

An important example is the geometric mean

A#B = A1/2(A−1/2BA−1/2)1/2A1/2 (9.9)

which corresponds to f(x) =
√
x. The geometric mean A#B is the unique positive

solution of the equation
XA−1X = B (9.10)

and therefore (A#B)−1 = A−1#B−1.

The matrix monotone function f : R+ → R+ will be called standard if f(1) = 1 and
tf(t−1) = f(t). Standard functions are used to define matrix means in (9.7). For the
harmonic mean (9.6) the function is

f(x) =
2x

x+ 1
= 2− 2

x+ 1

which is matrix monotone and standard.

Example 9.8 The function

f(x) =
x− 1

log x

is matrix monotone due to the formula
∫ 1

0

xt dt =
x− 1

log x
.
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The standard property is obvious. The matrix mean induced by the function f(x) is
called logarithmic mean. The logarithmic mean of the positive operators A and B is
denoted by L(A,B).

From the inequality

x− 1

log x
=

∫ 1

0

xt dt =

∫ 1/2

0

(xt + x1−t) dt ≥
∫ 1/2

0

2
√
x dt =

√
x

of the real functions we have the matrix inequality

A#B ≤ L(A,B).

It can be proved similarly that L(A,B) ≤ (A+B)/2. �

Example 9.9 Let A,B ∈ Mn be positive definite matrices and M be a matrix mean.
The block-matrix

[

A M(A,B)
M(A,B) B

]

is positive if and only if M(A,B) ≤ A#B. Similarly,
[

A−1 M(A,B)−1

M(A,B−1) B−1

]

≥ 0.

if and only M(A,B) ≥ A#B.

If λ1, λ2, . . . , λn are positive numbers, then the matrix A ∈ Mn defined as

Aij =
1

L(λi, λj)

is positive for n = 2 according to the above argument. However, this is true for every n
due to the formula

1

L(x, y)
=

∫ 1

0

1

(x+ t)(y + t)
dt. (9.11)

From the harmonic mean we obtain the mean matrix

Bij =
2λiλj
λi + λj

.

This is positive, since the Hadamard product of two positive matrices, one of them is
the Cauchy matrix.

There are many examples of positive mean matrices, but the precise condition is not
known. �

Example 9.10 The Heinz mean

Ht(x, y) =
xty1−t + x1−tyt

2
(0 ≤ t ≤ 1) (9.12)

approximates between the geometric and arithmetic means. The corresponding standard
function

ft(x) =
xt + x1−t

2
is obviously matrix monotone. Therefore we can regard it as a matrix mean. �
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Theorem 9.7 If f : R+ → R+ is a standard matrix monotone function, then

2x

x+ 1
≤ f(x) ≤ x+ 1

2
.

It follows from this theorem that the harmonic mean is the smallest and the arithmetic
mean is the largest mean for matrices.

Theorem 9.8 Let f : R+ → R+ be a standard matrix monotone function. Then f
admits a canonical representation

f(t) = β
1 + t√

2
exp

∫ 1

0

λ2 − 1

λ2 + 1
· 1 + t2

(λ+ t)(1 + λt)
h(λ) dλ (9.13)

where h : [0, 1] → [0, 1] is a measurable function and the real constant β satisfies f(1) = 1.

Example 9.11 Since the integrand is negative h(λ) = 1 gives the smallest function.
From the integral

∫ 1

0

λ2 − 1

λ2 + 1
· 1 + t2

(λ+ t)(1 + λt)
dλ = log

2t

(1 + t)2

we can move to constant case h(λ) = γ ∈ [0, 1] and we have

fγ(x) = β
1 + t√

2

(

2t

(1 + t)2

)γ

= 22γ−1tγ(1 + t)1−2γ .

This is a kind of interpolation between the arithmetic mean and the harmonic mean.
γ = 1/2 gives the geometric mean and

m1/3(x, y) =

(

xy2 + x2y

2

)1/3

is between the arithmetic and geometric means. �

The integral representation (9.5) is not optimal. Hansen’s canonical representa-
tion is true for any standard matrix monotone function [21].

Theorem 9.9 If f : R+ → R+ be a standard matrix monotone function, then

1

f(t)
=

∫ 1

0

1 + λ

2

(

1

t+ λ
+

1

1 + tλ

)

dµ(λ), (9.14)

where µ is a probability measure on [0, 1].

Theorem 9.10 Let f : R+ → R+ be a standard matrix monotone function. Then

f̃(x) :=
1

2

(

(x+ 1)− (x− 1)2
f(0)

f(x)

)

(9.15)

is standard matrix monotone as well.
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9.4 Quasi-entropies

In the mathematical formalism of quantum mechanics, instead of n-tuples of numbers one
works with n× n complex matrices. They form an algebra and this allows an algebraic
approach. In this approach, a probability density is replaced by a positive matrix of
trace 1 which is called density matrix. The eigenvalues of a density matrix give a
probability density.

For positive definite matrices D1, D2 ∈ Mn, for A ∈ Mn and a function f : R+ → R,
the quasi-entropy is defined as

SAf (D1‖D2) := 〈AD1/2
2 , f(∆(D1/D2))(AD

1/2
2 )〉

= TrD
1/2
2 A∗f(∆(D1/D2))(AD

1/2
2 ), (9.16)

where 〈B,C〉 := TrB∗C is the so-calledHilbert-Schmidt inner product and ∆(D1/D2) :
Mn → Mn is a linear mapping acting on matrices:

∆(D1/D2)A = D1AD
−1
2 .

This concept was introduced by Petz in [43, 45].

If we set

LD(X) = DX , RD(X) = XD and J
f
D1,D2

= f(LD1
R

−1
D2
)RD2

, (9.17)

then the quasi-entropy has the form

SAf (D1‖D2) = 〈A, JfD1,D2
A〉 (9.18)

It is clear from the definition that

SAf (λD1‖λD2) = λSAf (D1‖D2)

for positive number λ.

Let α : Mn → Mm be a mapping between two matrix algebras. The dual α∗ : Mm →
Mn with respect to the Hilbert-Schmidt inner product is positive if and only if α is
positive. Moreover, α is unital if and only if α∗ is trace preserving. α : Mn → Mm is
called a Schwarz mapping if

α(B∗B) ≥ α(B∗)α(B) (9.19)

for every B ∈ Mn.

The quasi-entropies are monotone and jointly convex.

Theorem 9.1 Assume that f : R+ → R is a matrix monotone function with f(0) ≥ 0
and α : Mn → Mm is a unital Schwarz mapping. Then

SAf (α
∗(D1)‖α∗(D2)) ≥ S

α(A)
f (D1‖D2) (9.20)

holds for A ∈ Mn and for invertible density matrices D1 and D2 from the matrix algebra
Mm.
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Proof: The proof is based on inequalities for matrix monotone and matrix concave
functions. First note that

SAf+c(α
∗(D1)‖α∗(D2)) = SAf (α

∗(D1)‖α∗(D2)) + cTrD1α(A
∗A))

and
S
α(A)
f+c (D1‖D2) = S

α(A)
f (D1‖D2) + cTrD1(α(A)

∗α(A))

for a positive constant c. Due to the Schwarz inequality (9.19), we may assume that
f(0) = 0.

Let ∆ := ∆(D1/D2) and ∆0 := ∆(α∗(D1)/α
∗(D2)). The operator

V Xα∗(D2)
1/2 = α(X)D

1/2
2 (X ∈ M0) (9.21)

is a contraction:

‖α(X)D
1/2
2 ‖2 = TrD2(α(X)∗α(X))

≤ TrD2(α(X
∗X) = Trα∗(D2)X

∗X = ‖Xα∗(D2)
1/2‖2

since the Schwarz inequality is applicable to α. A similar simple computation gives that

V ∗∆V ≤ ∆0 . (9.22)

Since f is matrix monotone, we have f(∆0) ≥ f(V ∗∆V ). Recall that f is matrix
concave, therefore f(V ∗∆V ) ≥ V ∗f(∆)V and we conclude

f(∆0) ≥ V ∗f(∆)V . (9.23)

Application to the vector Aα∗(D2)
1/2 gives the statement. �

It is remarkable that for a multiplicative α we do not need the condition f(0) ≥ 0.
Moreover, V ∗∆V = ∆0 and we do not need the matrix monotonicity of the function f .
In this case the only required condition is the matrix concavity of f .

Now we apply the monotonicity (9.20) to an embedding α(X) = X ⊕X of Mn into
Mn⊕Mn. Then α

∗(X1 ⊕X2) = X1 +X2. If we take the densities D1 = λE1 ⊕ (1− λ)F1

and D2 = λE2 ⊕ (1− λ)F2, then we obtain the joint concavity of the quasi-entropy:

Corollary 9.1 If f : R+ → R is matrix concave, then

λSAf (E1‖E2) + (1− λ)SAf (F1‖F2) ≤ SAf (λE1 + (1− λ)E2)‖λF1 + (1− λ)F2)

holds.

Example 9.12 The concept of quasi-entropy includes some important special cases. If
f(t) = tα, then

SAf (D1‖D2) = TrA∗Dα
1AD

1−α
2 .

If 0 < α < 1, then f is matrix monotone. The joint concavity in (D1, D2) is the famous
Lieb’s concavity theorem [35].

If D2 and D1 are different and A = I, then we have a kind of relative entropy. For
f(x) = x log x we have Umegaki’s relative entropy S(D1‖D2) = TrD1(logD1 − logD2).
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(If we want a matrix monotone function, then we can take f(x) = log x and then we
get S(D2‖D1).) Umegaki’s relative entropy is the most important example, therefore
the function f will be chosen to be matrix convex. This makes the probabilistic and
non-commutative situation compatible as one can see in the next argument.

Let

fα(x) =
1

α(1− α)
(1− xα).

This function is matrix monotone decreasing for α ∈ (−1, 1). (For α = 0, the limit is
taken and it is − log x.) Then the relative entropies of degree α are produced:

Sα(D2‖D1) :=
1

α(1− α)
Tr (I −Dα

1D
−α
2 )D2.

These quantities are essential in the quantum case. �

9.5 Notes and remarks

The matrix monotonicity of the function (9.4) was recognized in [48], a proof for p ∈
[−1, 2] is in the paper V.E. Sándor Szabó, A class of matrix monotone functions, Linear
Alg. Appl. 420(2007), 79–85.

The matrix means were defined by Fumio Kubo and Tsuyoshi Ando in [31]. Theorem
9.7 is also fro here. Different matrix means are in the book of Fumio Hiai and Hideki
Kosaki [23]. there are several examples of positive mean matrices in the paper Rajendra
Bhatia and Hideki Kosaki, Mean matrices and infinite divisibility, Linear Algebra Appl.
424(2007), 36–54. (Actually the positivity of matrices Aij = m(λi, λj)

t are considered,
t > 0.)

Theorem 9.8 is from the paper F. Hansen, Characterization of symmetric monotone
metrics on the state space of quantum systems, Quantum Information and Computation
6(2006), 597–605.

Quasi-entropy was introduced by Dénes Petz in 1985, see the papers D. Petz, Quasi-
entropies for finite quantum systems, Rep. Math. Phys., 23(1986), 57-65 and D. Petz,
From f -divergence to quantum quasi-entropies and their use, Entropy 12(2010), 304-325.
This concept is the quantum generalization of the f -entropy of Imre Csiszár which is
used in classical information theory (and statistics) [16], see also the paper F. Liese and
I. Vajda, On divergences and informations in statistics and information theory, IEEE
Trans. Inform. Theory 52(2006), 4394-4412.

9.6 Exercises

1. Prove that the function κ : R+ → R, κ(x) = −x log x+(x+1) log(x+1) is matrix
monotone.

2. Let f be a differentiable function on the interval (a, b) such that for some a < c < b
the function f is matrix monotone for 2 × 2 matrices on the intervals (a, c] and
[c, b). Show that f is matrix monotone for 2× 2 matrices on (a,b).
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3. Show that the function

f(x) =
ax+ b

cx+ d
(a, b, c, d ∈ R, ad〉bc)

is matrix monotone on any interval which does not contain −d/c.

4. Show that the canonical representing measure in (9.14) for the standard matrix
monotone function f(x) = (x− 1)/ log x is the measure

dµ(λ) =
2

(1 + λ)2
dλ .

5. The function

logα(x) =
x1−α − 1

1− α
(x > 0, α > 0, α 6= 1) (9.24)

is called α-logarithmic function. Is it matrix monotone?

6. Give an example of a matrix convex function such that the derivative is not matrix
monotone.

7. Show that f(z) = tan z := sin z/ cos z is in P, where cos z := (eiz + e−iz)/2 and
sin z := (eiz − e−iz)/2i.

8. Show that f(z) = −1/z is in P.

9. Show that for positive matrices A : B = A−A(A +B)−1A.

10. Show that for positive matrices A : B ≤ A.

11. Show that 0 < A ≤ B imply A ≤ 2(A : B) ≤ B.

12. Show that L(A,B) ≤ (A+B)/2.

13. Let A,B > 0. Show that if for a matrix mean Mf (A,B) = A, then A = B.

14. Let f, g : R+ → R+ be matrix monotone functions. Show that their arithmetic
and geometric means are matrix monotone as well.

15. Show that the mean matrix

Aij =
1

Ht(λi, λj)

defined by the Heinz mean is positive.



Chapter 10

Matrices in quantum theory

When quantum theory was developed in the 1920’s, it had a strong influence on functional
analysis. The quantum information theory appeared much later and the matrices are
very important in this subject.

10.1 Axioms

The basic postulate of quantum mechanics is about the Hilbert space formalism.

(A0) To each quantum mechanical system a complex Hilbert space H is associated.

The (pure) physical states of the system correspond to unit vectors of the Hilbert
space. This correspondence is not 1-1. When f1 and f2 are unit vectors, then the
corresponding states identical if f1 = zf2 for a complex number z of modulus 1. Such z is
often called phase. The pure physical state of the system determines a corresponding
state vector up to a phase.

Example 10.1 The 2 dimensional Hilbert space C2 is used to describe a 2-level quantum
system called qubit. The canonical basis vectors (1, 0) and (0, 1) are usually denoted
by | ↑〉 and | ↓〉, respectively. (An alternative notation is |1〉 for (0, 1) and |0〉 for (1, 0).)
Since the polarization of a photon is an important example of a qubit, the state | ↑〉
may have the interpretation that the “polarization is vertical” and | ↓〉 means that the
“polarization is horizontal”.

To specify a state of a qubit we need to give a real number x1 and a complex number
z such that x21 + |z|2 = 1. Then the state vector is

x1 | ↑〉+ z | ↓〉 .

(Indeed, multiplying a unit vector z1 | ↑〉+ z2 | ↓〉 by an appropriate phase, we can make
the coefficient of | ↑〉 real and the corresponding state remains the same.)

Splitting z into real and imaginary parts as z = x2 + ix3, we have the constraint
x21 + x22 + x23 = 1 for the parameters (x1, x2, x3) ∈ R3.

Therefore, the space of all pure states of a qubit is conveniently visualized as the
sphere in the three dimensional Euclidean space, it is called the Bloch sphere. �
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Bloch ball

A 2 × 2 density matrix has the form 1
2(I + x1σ1 + x2σ2 + x3σ3), where

x21+x22+x23 ≤ 1. The length of the vectors (x1, x2, x3) is at most 1 and they
form the unit ball, called Bloch ball, in the three dimensional Euclidean
space. The pure states are on the surface.

Traditional quantum mechanics distinguishes between pure states and mixed states.
Mixed states are described by density matrices. A density matrix or statistical opera-
tor is a positive operator of trace 1 on the Hilbert space. This means that the space has
a basis consisting of eigenvectors of the statistical operator and the sum of eigenvalues is
1. (In the finite dimensional case the first condition is automatically fulfilled.) The pure
states represented by unit vectors of the Hilbert space are among the density matrices
under an appropriate identification. If x = |x〉 is a unit vector, then |x〉〈x| is a den-
sity matrix. Geometrically |x〉〈x| is the orthogonal projection onto the linear subspace
generated by x. Note that |x〉〈x| = |y〉〈y| if the vectors x and y differ only in a phase.

(A1) The physical states of a quantum mechanical system are described by statistical
operators acting on the Hilbert space.

Example 10.2 A state of the spin (of 1/2) can be represented by the 2× 2 matrix

1

2

[

1 + x3 x1 − ix2
x1 + ix2 1− x3

]

. (10.1)

This is a density matrix if and only if x21 + x22 + x23 ≤ 1. �

The second axiom is about observables.

(A2) The observables of a quantum mechanical system are described by self-adjoint
operators acting on the Hilbert space.

A self-adjoint operator A on a Hilbert space H is a linear operator H → H which
satisfies

〈Ax, y〉 = 〈x, Ay〉
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for x, y ∈ H. Self-adjoint operators on a finite dimensional Hilbert space Cn are n×n self-
adjoint matrices. A self-adjoint matrix admits a spectral decomposition A =

∑

i λiEi,
where λi are the different eigenvalues of A and Ei is the orthogonal projection onto the
subspace spanned by the eigenvectors corresponding to the eigenvalue λi. Multiplicity
of λi is exactly the rank of Ei.

Example 10.3 In case of a quantum spin (of 1/2) the matrices

σ1 =

[

0 1
1 0

]

, σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0
0 −1

]

are used to describe the spin of direction x, y, z (with respect to a coordinate system).
They are called Pauli matrices. Any 2× 2 self-adjoint matrix is of the form

A(x0,x) := x0σ0 + x1σ1 + x2σ2 + x3σ3

if σ0 stands for the unit matrix I. We also use the shorthand notation x0σ0 + x · σ.
The density matrix (10.1) can be written as

1
2
(σ0 + x · σ), (10.2)

where ‖x‖ ≤ 1. x is called Bloch vector and they form the Bloch ball.

Formula (10.2) makes an affine correspondence between 2 × 2 density matrices and
the unit ball in the Euclidean 3-space. The extreme points of the ball correspond to pure
states and any mixed state is the convex combination of pure states in infinitely many
different ways. In higher dimension the situation is much more complicated. �

Any density matrix can be written in the form

ρ =
∑

i

λi|xi〉〈xi| (10.3)

by means of unit vectors |xi〉 and coefficients λi ≥ 0,
∑

i λi = 1. Since ρ is self-adjoint
such a decomposition is deduced from the spectral theorem and the vectors |xi〉 may
be chosen as pairwise orthogonal eigenvectors and λi are the corresponding eigenvalues.
The decomposition is unique if the spectrum of ρ is non-degenerate, that is, there is no
multiple eigenvalue.

Lemma 10.1 The density matrices acting on a Hilbert space form a convex set whose
extreme points are the pure states.

Proof: Denote by Σ the set of density matrices. It is obvious that a convex combina-
tion of density matrices is positive and of trace one. Therefore Σ is a convex set.

Recall that ρ ∈ Σ is an extreme point if a convex decomposition ρ = λρ1 + (1− λ)ρ2
with ρ1, ρ2 ∈ Σ and 0 < λ < 1 is only trivially possible, that is, ρ1 = ρ2 = ρ. The
Schmidt decomposition (10.3) shows that an extreme point must be a pure state.

Let p be a pure state, p = p2. We have to show that it is really an extreme point.
Assume that p = λρ1 + (1− λ)ρ2. Then

p = λpρ1p+ (1− λ)pρ2p
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and Tr pρip = 1 must hold. Remember that Tr pρip = 〈p, ρi〉, while 〈p, p〉 = 1 and
〈ρi, ρi〉 ≤ 1. In the Schwarz inequality

|〈e, f〉|2 ≤ 〈e, e〉 〈f, f〉

the equality holds if and only if f = ce for some complex number c. Therefore, ρi = cip
must hold. Taking the trace, we get ci = 1 and ρ1 = ρ2 = p. �

Quantum mechanics is not deterministic. If we prepare two identical systems in the
same state, and we measure the same observable on each, then the result of themeasure-
ment may not be the same. This indeterminism or stochastic feature is fundamental.

(A3) Let X be a finite set and for x ∈ X an operator Vx ∈ B(H) be given such that
∑

x V
∗
x Vx = I. Such an indexed family of operators is a model of a measurement

with values in X . If the measurement is performed in a state ρ, then the outcome
x ∈ X appears with probability Tr VxρV

∗
x and after the measurement the state of

the system is
VxρV

∗
x

Tr VxρV ∗
x

.

A particular case is the measurement of an observable described by a self-adjoint
operator A with spectral decomposition

∑

i λiEi. In this case X = {λi} is the set
of eigenvalues and Vi = Ei. One compute easily that the expectation of the random
outcome is Tr ρA. The functional A 7→ Tr ρA is linear and has two important properties:
1. If A ≥ 0, then Tr ρA ≥ 0, 2.Tr ρI = 1. These properties allow to see quantum states
in a different way. If ϕ : B(H) → C is a linear functional such that

ϕ(A) ≥ 0 if A ≥ 0 and ϕ(I) = 1, (10.4)

then there exists a density matrix ρϕ such that

ϕ(A) = Tr ρϕA. (10.5)

The functional ϕ associates the expectation value to the observables A.

The density matrices ρ1 and ρ2 are called orthogonal if any eigenvector of ρ1 is
orthogonal to any eigenvector of ρ2.

Example 10.4 Let ρ1 and ρ2 be density matrices. They can be distinguished with
certainty if there exists a measurement which takes the value 1 with probability 1 when
the system is in the state ρ1 and with probability 0 when the system is in the state ρ2.

Assume that ρ1 and ρ2 are orthogonal and let P be the orthogonal projection onto
the subspace spanned by the non-zero eigenvectors of ρ1. Then V1 := P and V2 := I−P
is a measurement and Tr V1ρ1V

∗
1 = 1 and Tr V1ρ2V

∗
1 = 0.

Conversely, assume that a measurement (Vi) exists such that Tr V1ρ1V
∗
1 = 1 and

Tr V1ρ2V
∗
1 = 0. The first condition implies that V ∗

1 V1 ≥ P , where P us the support
projection of ρ1, defined above. The second condition tells is that V ∗

1 V1 is orthogonal to
the support of ρ2. Therefore, ρ1 ⊥ ρ2. �
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Let e1, e2, . . . , en be an orthonormal basis in a Hilbert space H. The unit vector ξ ∈ H
is complementary to the given basis if

|〈ei, ξ〉| =
1√
n

(1 ≤ i ≤ n). (10.6)

The basis vectors correspond to a measurement, |e1〉〈e1|, . . . , |en〉〈en| are positive opera-
tors and their sum is I. If the pure state |ξ〉〈ξ| the actual state of the quantum system,
then complementarity means that all outputs of the measurement appear with the same
probability.

Two orthonormal bases are called complementary if all vectors in the first basis are
complementary to the other basis.

Example 10.5 First we note that equation (10.6) is equivalent to the relation

Tr |ei〉〈ei| |ξ〉〈ξ| =
1

n
(10.7)

which is about the trace of the product of two projections.

The eigenprojections of the Pauli matrix σi are (I ± σi)/2. We have

Tr
(I ± σi

2

I ± σj
2

)

=
1

2

for 1 ≤ i 6= j ≤ 3. This shows that the eigenbasis of σi is complementary to the eigenbasis
of σj if i and j are different. �

According to axiom (A1), a Hilbert space is associated to any quantum mechanical
system. Assume that a composite system consists of the subsystems (1) and (2), they
are described by the Hilbert spaces H1 and H2. (Each subsystem could be a particle or
a spin, for example.) Then we have

(A4) The composite system is described by the tensor product Hilbert space H1 ⊗H2.

When {ej : j ∈ J} is a basis in H1 and {fi : i ∈ I} is a basis in H2, then
{ej ⊗ fi : j ∈ J, i ∈ I} is a basis of H1 ⊗ H2. Therefore, the dimension of H1 ⊗ H2

is dimH1 × dimH2. If Ai ∈ B(Hi) (i = 1, 2), then the action of the tensor product
operator A1 ⊗A2 is determined by

(A1 ⊗ A2)(η1 ⊗ η2) = A1η1 ⊗A2η2

since the vectors η1 ⊗ η2 span H1 ⊗H2.

When A = A∗ is an observable of the first system, then its expectation value in the
vector state Ψ ∈ H1 ⊗H2, is

〈Ψ, (A⊗ I2)Ψ〉 ,

where I2 is the identity operator on H2.
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Example 10.6 The Hilbert space of a composite system of two spins (of 1/2) is C2⊗C2.
In this space, the vectors

e1 := | ↑〉 ⊗ | ↑〉, e2 := | ↑〉 ⊗ | ↓〉, e3 := | ↓〉 ⊗ | ↑〉, e4 := | ↓〉 ⊗ | ↓〉

form a basis. The vector state

Φ =
1√
2
(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉) (10.8)

has a surprising property. Consider the observable

A :=

4
∑

i=1

i|ei〉〈ei|,

which has eigenvalues 1, 2, 3, 4 and the corresponding eigenvectors are just the basis
vectors. Measurement of this observable yields the values 1, 2, 3, 4 with probabilities
0, 1/2, 1/2 and 0, respectively. The 0 probability occurs when both spins are up or both
are down. Therefore in the vector state Φ the spins are anti-correlated. �

We consider now the composite system H1 ⊗ H2 in a state Φ ∈ H1 ⊗ H2. Let
A ∈ B(H1) be an observable which is localized at the first subsystem. If we want to
consider A as an observable of the total system, we have to define an extension to the
space H1 ⊗H2. The tensor product operator A⊗ I will do, I is the identity operator of
H2.

Lemma 10.2 Assume that H1 and H2 are finite dimensional Hilbert spaces. Let {ej :
j ∈ J} be a basis in H1 and {fi : i ∈ I} be a basis in H2. Assume that

Φ =
∑

i,j

wij ej ⊗ fi

is the expansion of a unit vector Φ ∈ H1⊗H2. Set W for the matrix which is determined
by the entries wkl. Then W ∗W is a density matrix and

〈Φ, (A⊗ I)Φ〉 = TrAW ∗W .

Proof: Let Ekl be an operator onH1 which is determined by the relations Eklej = δljek
(k, l ∈ I). As a matrix, Ekl is called matrix unit, it is a matrix such that (k, l) entry is
1, all others are 0. Then

〈Φ, (Ekl ⊗ I)Φ〉 =

〈

∑

i,j

wij ej ⊗ fi, (Ekl ⊗ I)
∑

t,u

wtu eu ⊗ ft

〉

=

=
∑

i,j

∑

t,u

wijwtu〈ej, Ekleu〉〈fi, ft〉 =

=
∑

i,j

∑

t,u

wijwtu δluδjkδit =
∑

i

wikwil .

Then we arrived at the (k, l) entry of W ∗W . Our computation may be summarized as

〈Φ, (Ekl ⊗ I)Φ〉 = TrEkl(W
∗W ) (k, l ∈ I).
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Since any linear operator A ∈ B(H1) is of the form A =
∑

k,l aklEkl (akl ∈ C), taking
linear combinations of the previous equations, we have

〈Φ, (A⊗ I)Φ〉 = TrA(W ∗W ) .

W ∗W is obviously positive and

TrW ∗W =
∑

i,j

|wij|2 = ‖Φ‖2 = 1 .

Therefore it is a density matrix. �

This lemma shows a natural way from state vectors to density matrices. Given a
density matrix ρ on H1 ⊗H2 there are density matrices ρi ∈ B(Hi) such that

Tr (A⊗ I)ρ = TrAρ1 (A ∈ B(H1)) (10.9)

and
Tr (I ⊗B)ρ = TrBρ2 (B ∈ B(H2)). (10.10)

ρ1 and ρ2 are called reduced density matrices. (They are the quantum analogue of
marginal distributions.)

The proof of Lemma 10.2 contains the reduced density of |Φ〉〈Φ| on the first system,
it is W ∗W . One computes similarly the reduced density on the second subsystem, it is
(WW ∗)T , where XT denotes the transpose of the matrix X . Since W ∗W and (WW ∗)T

have the same non-zero eigenvalues, the two subsystems are very strongly connected if
the total system is in a pure state.

Let H1 and H2 be Hilbert spaces and let dimH1 = m and dimH2 = n. It is well-
known that the matrix of a linear operator on H1 ⊗H2 has a block-matrix form

U = (Uij)
m
i,j=1 =

m
∑

i,j=1

Eij ⊗ Uij ,

relative to the lexicographically ordered product basis, where Uij are n×n matrices. For
example,

A⊗ I = (Xij)
m
i,j=1 , where Xij = AijIn

and
I ⊗ B = (Xij)

m
i,j=1 , where Xij = δijB.

Assume that

ρ = (ρij)
m
i,j=1 =

m
∑

i,j=1

Eij ⊗ ρij

is a density matrix of the composite system written in block-matrix form. Then

Tr (A⊗ I)ρ =
∑

i,j

AijTr Inρij =
∑

i,j

AijTr ρij

and this gives that for the first reduced density matrix ρ1, we have

(ρ1)ij = Tr ρij . (10.11)
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We can compute similarly the second reduced density ρ2. Since

Tr (I ⊗B)ρ =
∑

i

TrBρii

we obtain

ρ2 =

m
∑

i=1

ρii. (10.12)

The reduced density matrices might be expressed by the partial traces. The map-
pings Tr2 : B(H1) ⊗ B(H2) → B(H1) and Tr1 : B(H1) ⊗ B(H2) → B(H2) are defined
as

Tr2(A⊗ B) = ATrB, Tr1(A⊗ B) = (TrA)B . (10.13)

We have
ρ1 = Tr2ρ and ρ2 = Tr1ρ . (10.14)

Axiom (A4) tells about a composite quantum system consisting of two quantum
components. In case of more quantum components, the formalism is similar, but more
tensor factors appear.

It may happen that the quantum system under study has a classical and a quantum
component, assume that the first component is classical. Then the description by tensor
product Hilbert space is still possible. A basis (|ei〉)i of H1 can be fixed and the possible
density matrices of the joint system are of the form

∑

i

pi|ei〉〈ei| ⊗ ρ
(2)
i , (10.15)

where (pi)i is a probability distribution and ρ
(2)
i are densities on H2. Then the reduced

state on the first component is the probability density (pi)i (which may be regarded as

a diagonal density matrix) and
∑

i piρ
(2)
i is the second reduced density.

The next postulate of quantum mechanics tells about the time development of a
closed quantum system. If the system is not subject to any measurement in the time
interval I ⊂ R and ρt denotes the statistical operator at time t, then

(A5) ρt = U(t, s)ρsU(t, s)
∗ (t, s ∈ I),

where the unitary propagator U(t, s) is a family of unitary operators such that

(i) U(t, s)U(s, r) = U(t, r),

(ii) (s, t) 7→ U(s, t) ∈ B(H) is strongly continuous.

The first order approximation of the unitary U(s, t) is the Hamiltonian:

U(t +∆t, t) = I − i

~
H(t)∆t,

where H(t) is the Hamiltonian at time t. If the Hamiltonian is time independent, then

U(s, t) = exp

(

− i

~
(s− t)H

)

.
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In the approach followed here the density matrices are transformed in time, this is the
so-called Schrödinger picture of quantum mechanics. When discrete time development
is considered, a single unitary U gives the transformation of the vector state in the form
ψ 7→ Uψ, or in the density matrix formalism ρ 7→ UρU∗.

Example 10.7 Let |0〉, |1〉, . . . , |n − 1〉 be an orthonormal basis in an n-dimensional
Hilbert space. The transformation

V : |i〉 7→ 1√
n

n−1
∑

j=0

ωij|j〉 (ω = e2πi/n) (10.16)

is a unitary and it is called quantum Fourier transform. �

When the unitary time development is viewed as a quantum algorithm in connection
with quantum computation, the term gate is used instead of unitary.

Example 10.8 Unitary operators are also used to manipulate quantum registers and
to implement quantum algorithms.

The Hadamard gate is the unitary operator

UH :=
1√
2

[

1 1
1 −1

]

. (10.17)

It sends the basis vectors into uniform superposition and vice versa. The Hadamard
gate can establish or destroy the superposition of a qubit. This means that the basis
vector |0〉 is transformed into the vector (|0〉 + |1〉)/

√
2 which is a superposition and

superposition is created.

The controlled-NOT gate is a unitary acting on two qubits. The first qubit is called
a control qubit, and the second qubit is the data qubit. This operator sends the basis
vectors |00〉, |01〉, |10〉, |11〉 of C4 into |00〉, |01〉, |11〉, |10〉. When the first character is 1,
the second changes under the operation. Therefore, the matrix of the controlled-NOT
gate is

Uc−NOT :=









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









. (10.18)

The swap gate moves a product vector |i〉⊗ |j〉 into |j〉⊗ |i〉. Therefore its matrix is









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









. (10.19)

Quantum algorithms involve several other gates. �

Example 10.9 The unitary operators are used to transform a basis into another one.
In the Hilbert space C4 = C2 ⊗ C2 the standard basis is

|00〉, |01〉, |10〉, |11〉.
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The unitary

(UH ⊗ I2)Uc−NOT =
1√
2









1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0









.

moves the standard basis into the so-called Bell basis:

1√
2
(|00〉+ |11〉), 1√

2
(|01〉+ |10〉), 1√

2
(|00〉 − |11〉), 1√

2
(|01〉+ |10〉).

This basis is complementary to the standard product basis.

H

Hadamard gate

The unitary made of the Hadamard gate and the controlled-NOT gate trans-
forms the standard product basis into the Bell basis.

10.2 State Transformations

Assume thatH is the Hilbert space of our quantum system which initially has a statistical
operator ρ (acting on H). When the quantum system is not closed, it is coupled to
another system, called environment. The environment has a Hilbert space He and
statistical operator ρe. Before interaction the total system has density ρe ⊗ ρ. The
dynamical change caused by the interaction is implemented by a unitary and U(ρe⊗ρ)U∗

is the new statistical operator and the reduced density ρ̃ is the new statistical operator
of the quantum system we are interested in. The affine change ρ 7→ ρ̃ is typical for
quantum mechanics and called state transformation. In this way the map ρ 7→ ρ̃ is
defined on density matrices but it can be extended by linearity to all matrices. In this
way we obtain a trace preserving and positivity preserving linear transformation.

The above defined state transformation can be described in several other forms, ref-
erence to the environment could be omitted completely. Assume that ρ is an n × n
matrix and ρe is of the form (zkzl)kl where (z1, z2, . . . , zm) is a unit vector in the m
dimensional space He. (ρe is a pure state.) All operators acting on He⊗H are written in
a block matrix form, they are m×m matrices with n× n matrix entries. In particular,
U = (Uij)

m
i,j=1 and Uij ∈Mn. If U is a unitary, then U∗U is the identity and this implies

that
∑

i

U∗
ikUil = δklIn (10.20)
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Formula (10.12) for the reduced density matrix gives

ρ̃ = Tr 1(U(ρe ⊗ ρ)U∗) =
∑

i

(U(ρe ⊗ ρ)U∗)ii =
∑

i,k,l

Uik(ρe ⊗ ρ)kl(U
∗)li

=
∑

i,k,l

Uik(zkzlρ)(Uil)
∗ =

∑

i

(

∑

k

zkUik

)

ρ
(

∑

l

zlUil

)∗

=
∑

i

AiρA
∗
i ,

where the operators Ai :=
∑

k zkUik satisfy

∑

p

A∗
pAp = I (10.21)

due to (10.20) and
∑

k |zk|2 = 1.

Theorem 10.1 Any state transformation ρ 7→ E(ρ) can be written in the form

E(ρ) =
∑

p

ApρA
∗
p,

where the operator coefficients satisfy (10.21). Conversely, all linear mappings of this
form are state transformations.

The first part of the theorem was obtained above. To prove the converse part, we
need to solve the equations

Ai :=
∑

k

zkUik (i = 1, 2, . . . , m).

Choose simply z1 = 1 and z2 = z3 = . . . = zm = 0 and the equations reduce to Up1 = Ap.
This means that the first column is given from the block matrix U and we need to
determine the other columns such a way that U should be a unitary. Thanks to the
condition (10.21) this is possible. Condition (10.21) tells us that the first column of our
block matrix determines an isometry which extends to a unitary. �

The coefficients Ap in the operator-sum representation are called the operation
elements of the state transformation. The terms quantum (state) operation and chan-
neling transformation are also often used instead of state transformation.

The state transformations form a convex subset of the set of all positive trace pre-
serving linear transformations. (It is not known what the extreme points of this set
are.)

A linear mapping E is called completely positive if E ⊗ idn is positivity preserving
for the identical mapping idn :Mn(C) → Mn(C) on any matrix algebra.

Theorem 10.2 Let E : Mn(C) → Mk(C) be a linear mapping. Then E is completely
positive if and only if it admits a representation

E(A) =
∑

u

VuAV
∗
u (10.22)

by means of some linear operators Vu : C
n → Ck.
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This result was first proven by Kraus. It follows that a state transformation is com-
pletely positive and the operator-sum representation is also called Kraus representa-
tion. Note that this representation is not unique.

Let E : Mn(C) → Mk(C) be a linear mapping. E is determined by the block-matrix
(Xij)1≤i,j≤k, where

Xij = E(Eij) (10.23)

(Here Eij denote the matrix units.) This is the block-matrix representation of E .
The next theorem is due to Choi.

Theorem 10.3 Let E : Mn(C) → Mk(C) be a linear mapping. Then E is completely
positive if and only if the representing block-matrix (Xij)1≤i,j≤k ∈ Mk(C) ⊗ Mn(C) is
positive.

Proof: Instead of the block-matrix formalism, we can use tensor product:

X =
∑

i,j

Eij ⊗ E(Eij).

X is a linear function of E , hence we can assume that E(A) = V AV ∗.

Let
B :=

∑

i,j

Eij ⊗ Eij.

It is easy to check that B = B∗ and B2 = nB, therefore B ≥ 0. On the other hand,

X =
∑

i,j

Eij ⊗ V EijV
∗ = (I ⊗ V )B(I ⊗ V )∗

which is positive.

Assume that the block-matrix X is positive. There are projections Pi from Cnk =
⊕n
ℓ=1C

k to the ith summand (1 ≤ i ≤ n). They are pairwise orthogonal and

PiXP
∗
j = E(Eij).

We have a decomposition

X =
nk
∑

t=1

|ft〉〈ft|,

where |ft〉 are appropriately normalized eigenvectors of X . Since Pi is a partition of
unity, we have

|ft〉 =
n
∑

i=1

Pi|ft〉

and set Vt : Cn → Ck by
Vt|s〉 = Ps|ft〉.

(|s〉 are the canonical basis vectors.) In this notation

X =
∑

t

∑

i,j

Pi|ft〉〈ft|P ∗
j =

∑

i,j

Pi

(

∑

t

Vt|i〉〈j|V ∗
t

)

P ∗
j
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and
E(Eij) = PiXP

∗
j =

∑

t

VtEijV
∗
t .

Since this holds for all matrix units Eij , we obtained

E(A) =
∑

t

VtAV
∗
t

which means the complete positivity. �

Example 10.10 Consider the transpose mapping A 7→ AT on 2× 2 matrices:

[

x y
z w

]

7→
[

x z
y w

]

.

The representing block-matrix is

X =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









.

This is not positive, so the transpose mapping is not completely positive. �

Example 10.11 Consider a positive trace-preserving transformation E : Mn(C) →
Mm(C) such that its range consists of commuting operators. We show that E is au-
tomatically a state transformation.

Since a commutative subalgebra ofMm(C) is the linear span of some pairwise orthog-
onal projections Pk, one can see that E has the form

E(A) =
∑

k

PkTrFkA, (10.24)

where Fk is a positive operator in Mn(C), it induces the coefficient of Pk as a linear
functional on Mn(C).

We want to show the positivity of the representing block-matrix:

∑

ij

Eij ⊗
(

∑

k

PkTr (FkEij)
)

=
∑

k

(

∑

ij

Eij ⊗ Pk

)

◦
(

∑

ij

EijTr (FkEij)⊗ I
)

,

where ◦ denotes the Hadamard (or entry-wise product) of nm×nm matrices. Recall that
according to Schur’s theorem the Hadamard product of positive matrices is positive.
The first factor is

[Pk, Pk, . . . , Pk]
∗[Pk, Pk, . . . , Pk]

and the second factor is Fk ⊗ I, both are positive.

Consider the particular case of (10.24) where each Pk is of rank one and
∑r

k=1 Fk = I.
Such a family of Fk’s describe a measurement which associates the r-tuple (Tr ρF1,Tr ρF2,
. . . ,Tr ρFr) to the density matrix ρ. Therefore a measurement can be formulated as a
state transformation with diagonal outputs. �
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The Kraus representation and the block-matrix representation are convenient ways
to describe a state transformation in any finite dimension. In the 2× 2 case we have the
possibility to expand the mappings in the basis σ0, σ1, σ2, σ3.

Any trace preserving mapping E : M2(C) →M2(C) has a matrix

T =

[

1 0
t T3

]

(10.25)

with respect to this basis, where T3 ∈ M3 and

E(w0σ0 + w · σ) = w0σ0 + (t+ T3w) · σ. (10.26)

Since E sends self-adjoint operators to self-adjoint operators, we may assume that T3 is
a real 3× 3 matrix. It has a singular value decomposition O1ΣO2, where O1 and O2 are
orthogonal matrices and Σ is diagonal. Since any orthogonal transformation on R3 is
induced by a unitary conjugation on M2(C), in the study of state transformations, we
can assume that T3 is diagonal.

The following examples of state transformations are given in terms of the T -repre-
sentation:

Example 10.12 (Pauli channels) t = 0 and T3 = Diag(α, β, γ). Density matrices are
sent to density matrices if and only if

−1 ≤ α, β, γ ≤ 1

for the real parameters α, β, γ.

It is not difficult to compute the representing block-matrix, we have

X =









1+γ
2

0 0 α+β
2

0 1−γ
2

α−β
2

0

0 α−β
2

1−γ
2

0
α+β
2

0 0 1+γ
2









. (10.27)

X is unitarily equivalent to the matrix









1+γ
2

α+β
2

0 0
α+β
2

1+γ
2

0 0

0 0 1−γ
2

α−β
2

0 0 α−β
2

1−γ
2









.

This matrix is obviously positive if and only if

|1± γ| ≥ |α± β|. (10.28)

This positivity condition holds when α = β = γ = p > 0. Hence the next example gives
a channeling transformation. �

Example 10.13 (Depolarizing channel) This channel is given by the matrix T from
(10.25), where t = 0 and T3 = pI. Assume that 0 < p < 1.
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Since

Ep(12σ0 + w · σ) = p(1
2
σ0 + w · σ) + (1− p)1

2
σ0 =

1
2
σ0 + p(w · σ),

the depolarizing channel keeps the density with probability p and moves to the completely
apolar state σ0/2 with probability 1− p.

Extension to n-level systems is rather obvious. Ep,n :Mn →Mn is defined as

Ep,n(A) = pA+ (1− p)
I

n
TrA . (10.29)

This mapping is trivially completely positive for 0 ≤ p ≤ 1, since it is the convex
combination of such mappings. In order to consider the negative values of p we study
the representing block-matrix X . One can see that

X = p
∑

ij

Eij ⊗Eij +
1− p

n
I ⊗ I.

The matrix 1
n

∑

ij Eij ⊗ Eij is a self-adjoint idempotent (that is, a projection), so its
spectrum is {0, 1}. Consequently, the eigenvalues of X are

pn+
1− p

n
,
1− p

n
.

They are positive when

− 1

n2 − 1
≤ p ≤ 1 . (10.30)

This is the necessary and sufficient condition for the complete positivity of Ep,n. �

Example 10.14 (Phase-damping channel) t = 0 and T3 = Diag(p, p, 2p− 1). This
channel describes decoherence, the decay of a superposition into a mixture;

E
[

a b

b c

]

= (1− p)

[

a b

b c

]

+ p

[

a 0
0 c

]

.

�

Example 10.15 (Fuchs channel) This channel is not unit preserving and maps σ2
into 0:

T =















1 0 0 0

0
1√
3

0 0

0 0 0 0
1

3
0 0

1

3















It can be shown that the Fuchs channel is an extreme point in the convex set of channels
M2(C) →M2(C). �
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Example 10.16 (Amplitude-damping channel)

T =









1 0 0 0
0

√
1− p 0 0

0 0
√
1− p 0

p 0 0 1− p









or equivalently

E
[

a b

b c

]

=

[

a + pc
√
1− p b√

1− p b (1− p)c

]

.

The Bloch ball shrinks toward the north pole. �

Amplitude-damping channel

The amplitude-damping channel shrinks the Bloch ball toward the north
pole.

Example 10.17 (The Holevo–Werner channel) Set a linear mapping E : Mn →
Mn as

E(D) =
1

n− 1
(Tr (D)I −DT ),

where DT denotes the transpose of D. The positivity is not obvious from this form but
it is easy to show that

E(D) =
1

2(n− 1)

∑

i,j

(Eij − Eji)
∗D(Eij − Eji),

where Eij denote the matrix units. This is the Kraus representation of E which must be
completely positive.
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In the space of matrices the following matrices are linearly independent.

dk = Diag(1(1), 1(2), . . . , 1(n−k),−(n− k), 0, 0, . . . , 0).

For k = 0 we have the unit matrix and d1, d2, dn−1 are traceless matrices. Moreover, set

eij = Eij −Eji (1 ≤ i < j ≤ n),

fij = −iEij + iEji (1 ≤ i < j ≤ n).

The matrices {dk : 0 ≤ k ≤ n − 1} ∪ {eij : 1 ≤ i < j ≤ n} ∪ {fij : 1 ≤ i < j ≤ n}
are pairwise orthogonal with respect to the Hilbert Schmidt inner product and up to a
normalizing factor they form a basis in the Hilbert space Mn. (Actually these matrices
are a kind of generalization of the Pauli matrices for n > 2.).

The mapping E is unital, hence E(d0) = d0. For 0 < k < n we have

E(dk) =
1

n− 1
dk

and for 1 ≤ i < j ≤ n we have

E(Eij) = Eij

E(Fij) = −Fij .

Hence our basis consists of eigenvectors, the spectrum of E is {1,−1, 1
n−1

} with the
multiplicities n(n− 1)/2 + 1, n(n− 1)/2, n− 2, respectively. Although E is completely
positive, its spectrum contains negative numbers, therefore it is not true that E is positive
definite with respect to the Hilbert-Schmidt inner product. �

Example 10.18 (Transpose depolarizing channel) Let ETp,n : Mn → Mn is defined
as

ETp,n(A) = tAT + (1− t)
I

n
TrA , (10.31)

where AT is the transpose of A. In order to decide the completely positivity, we study
the representing block-matrix X :

X = t
∑

ij

Eij ⊗Eji +
1− t

n
I ⊗ I.

The matrix
∑

ij Eij ⊗ Eji is a self-adjoint and its square is the identity. Therefore, its
spectrum is {±1}. Consequently, the eigenvalues of X are

−t + 1− p

n
, p+

1− t

n
.

They are positive when

− 1

n− 1
≤ t ≤ 1

n+ 1
. (10.32)

This is the necessary and sufficient condition for the complete positivity of ETp,n. The
Holevo-Werner channel is a particular case. �
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10.3 Bipartite systems

The physical setting to see entanglement is the bipartite system which corresponds
to tensor product in mathematical terms. Let B(HA) and B(HB) be the algebras of
bounded operators acting on the Hilbert spaces HA and HB. The Hilbert space of the
composite system A + B is HAB := HA ⊗ HB. The algebra of the operators acting on
HAB is B(HAB) = B(HA)⊗B(HB).

Let us recall how to define ordering in a vector space V . A subset V+ ⊂ V is called
positive cone if v, w ∈ V+ implies v + w ∈ V+ and λv ∈ V+ for any positive real λ.
Given the positive cone V+, f ≤ g means that g− f ∈ V+. In the vector space B(H) the
standard positive cone is the set of all positive semidefinite matrices. This cone induces
the partial ordering

A ≤ B ⇐⇒ 〈η, Aη〉 ≤ 〈η, Bη〉 for every vector η .

In the product space B(HAB) = B(HA)⊗B(HB), we have two natural positive cones,
B(HAB)

+ consists of the positive semidefinite matrices acting on HAB := HA⊗HB, and
the cone S consists of all operators of the form

∑

i

Ai ⊗Bi,

where Ai ∈ B(HA)
+ and Bi ∈ B(HB)

+. It is obvious that S ⊂ B(HAB)
+. A state

is called separable (or unentangled) if its density belongs to S. The other states
are the entangled states. Therefore the set of separable states is the convex hull of
product states, or the convex hull of pure product states (since any state is the convex
combination of pure states).

A pure state is separable if and only if it is a product state. Indeed, pure states are
extreme points in the state space, see Lemma 10.1. If a pure state is convex combination
∑

i piPi ⊗Qi of product pure states, then this convex combination must be trivial, that
is, P ⊗Q.

Let (ei)i be a basis for HA and (fj)j be a basis of HB. Then the doubly indexed family
(ei⊗fj)i,j is a basis of HAB. (Such a basis is called product basis.) An arbitrary vector
Ψ ∈ HAB admits an expansion

Ψ =
∑

i,j

cij ei ⊗ fj (10.33)

for some coefficients cij ,
∑

i,j |cij |2 = ‖Ψ‖2.
If hi =

∑

j cij fj , then Ψ =
∑

i ei⊗hi, however, the vectors hi are not orthogonal. We
want to see that a better choice of the representing vectors is possible.

Any unit vector Ψ ∈ HAB can be written in the form

Ψ =
∑

k

√
pk gk ⊗ hk, (10.34)

where the vectors gk ∈ HA and hk ∈ HB are pairwise orthogonal and normalized,
moreover (pk) is a probability distribution, see Lemma 3.1.
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Expansion (10.34) is called Schmidt decomposition.

Let dimHA = dimHB = n. A pure state |Φ〉〈Φ| on the Hilbert space HA ⊗ HB is
called maximally entangled if the following equivalent conditions hold:

• The reduced densities are maximally mixed states.

• When the vector |Φ〉 is written in the form (10.34), then pk = n−1 for every
1 ≤ k ≤ n.

• There is a product basis such that |Φ〉 is complementary to it.

The density matrix of a maximally entangled state on Cn ⊗ Cn is of the form

ρ =
1

n

∑

i,j

Eij ⊗ Eij (10.35)

in an appropriate basis.

A common example of maximally entangled state is the singlet state

|Φ〉 = 1√
2
(|10〉 − |01〉). (10.36)

(HA = HB = C2 which has a basis {|0〉, |1〉}.) In the singlet state there is a particular
correlation between the two spins, Example 10.6.

It is worthwhile to note that formula (10.34) also shows how to purify an arbitrary
density matrix ρ =

∑

i pi|gi〉〈gi| acting on HA. It is enough to choose an orthonormal
family (hi) in another Hilbert space HB and (3.3) gives a pure state whose reduction is
ρ. In this case |Ψ〉 is called the purification of ρ.

Example 10.19 Entanglement is a phenomenon appearing in case of two quantum
components. If the system is composite but one of the two components is classical, then
the possible states are in the form

ρcq =
∑

i

pi|ei〉〈ei| ⊗ ρqi , (10.37)

where (pi)i is a probability distribution, ρqi are densities on Hq and (|ei〉)i is a fixed basis
of Hc. (10.37) is in the convex hull of product states, therefore it is separable.

Composite systems of type classical-quantum appear often, for example, the measure-
ment on a quantum system is described in this formalism. �

Let E : Mn(C) → Mk(C) be a linear mapping. According to Theorem 10.3 the
condition

∑

i,j

Eij ⊗ E(Eij) ≥ 0 (10.38)

is equivalent to the complete positivity of E . Therefore the following is true.

Theorem 10.4 The linear mapping E : Mn(C) → Mk(C) is completely positive if and
only if there exists a maximally entangled state ρ ∈Mn(C)⊗Mn(C) such that

(idn ⊗ E)(ρ) ≥ 0

holds.
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Entanglement is a very special relation of two quantum systems. The same
word means also a different relation in other areas. The sculpture “Entangle-
ment” made by Ruth Bloch (bronze, 71 cm, 1995) might express something.

Example 10.20 Let E : Mn(C) → Mk(C) be a channel. E is called entanglement
breaking if the range of id⊗ E contains only separable states for the identical channel
id : Mn(C) → Mn(C). This condition is very restrictive, an entanglement breaking
channel has the form

E(ρ) =
∑

i

ρiTrSiρ

where ρi is a family of states and Si are positive matrices such that
∑

i Si = I. See also
Exercise 34. �

Theorem 10.5 If the state ρ ∈ AAB is entangled, then there exists W ∈ Asa
AB such that

Tr W (P ⊗Q) ≥ 0

for all pure states P ∈ AA and Q ∈ AB but Tr Wρ < 0.

Proof: Let S denote the set of separable states and assume that ρ /∈ S. let D0 be the
minimizer of a relative entropy:

inf{S(ρ‖Ds) : Ds ∈ S} > 0.

It is well-known that

∂

∂ε
log(X + εK) =

∫ ∞

0

(X + t)−1K(X + t)−1 dt,

and so

∂

∂ε
S(ρ‖(1− ε)D0 + ερ′) = −Tr ρ

∫ ∞

0

(D0 + t)−1(ρ′ −D0)(D0 + t)−1 dt
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= −Tr (ρ−D0)

∫ ∞

0

(D0 + t)−1ρ′(D0 + t)−1 dt

= 1− Tr ρ

∫ ∞

0

(D0 + t)−1ρ′(D0 + t)−1 dt,

for any density ρ′, both derivatives are taken at ε = 0.

Let

W := I −
∫ ∞

0

(D0 + t)−1ρ(D0 + t)−1 dt

and we have

TrWDs =
∂

∂ε
S(ρ‖(1− ε)D0 + εDs) = lim

ε→0

S(ρ‖(1− ε)D0 + εDs)− S(ρ‖D0)

ε
≥ 0

for an arbitrary Ds ∈ S, since (1−ε)D0+εDs ∈ S and S(ρ‖(1−ε)D0+εDs) ≥ S(ρ‖D0).

Due to the convexity of the relative entropy we have

S(ρ‖(1− ε)D0 + ερ)− S(ρ‖D0) ≤ −εS(ρ‖D0) .

Divided by ε > 0 and taking the limit ε→ 0 we arrive at

TrWρ ≤ −S(ρ‖D0) < 0.

�

The operatorW appearing in the previous theorem is called entanglement witness.

Example 10.21 Let

W := σ1 ⊗ σ1 + σ3 ⊗ σ3 =









1 0 0 1
0 −1 1 0
0 1 −1 0
1 0 0 1









.

For any product state ρ1 ⊗ ρ2, we have

Tr (ρ1 ⊗ ρ2)W = Tr ρ1σ1 × Tr ρ2σ1 + Tr ρ1σ3 × Tr ρ2σ3

≤
√

(Tr ρ1σ1)2 + (Tr ρ1σ3)2 ×
√

(Tr ρ2σ1)2 + (Tr ρ2σ3)2

≤ 1 ,

since
(Tr ρσ1)

2 + (Tr ρσ2)
2 + (Tr ρσ3)

2 ≤ 1

for any density matrix ρ. It follows that TrDW ≤ 1 for any separable state D on C4.

Consider now the density

ω :=
1

6









2 0 0 2
0 1 x 0
0 x 1 0
2 0 0 2









, (10.39)

where 0 < x < 1. Since
TrωW = 1 +

x

3
> 1,

ω must be an entangled state. �
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Example 10.22 An entanglement witness determines a linear functional that may sep-
arate a state from the convex hull of product state. The separation can be done by
means of non-linear functionals.

Let ρ be a state and X be an observable. The variance

δ2(X ; ρ) := Tr ρX2 − (Tr ρX)2 (10.40)

is a concave function of the variable ρ.

Let Xi be a family of observables on the system A and assume that
∑

i

δ2(Xi; ρA) ≥ a

for every state ρA. Similarly, choose observables Yi on the system B and let
∑

i

δ2(Yi; ρB) ≥ b

for every state ρB on HB.

Let ρAB now be a state on the composite (or bipartite) system HA ⊗ HB. The
functional

ψ(ρAB) :=
∑

i

δ2(Xi ⊗ I + I ⊗ Yi; ρAB) (10.41)

is the sum of convex functionals (of the variable ρAB), therefore it is convex. For a
product state ρAB = ρA ⊗ ρB we have

∑

i

δ2(Xi ⊗ I + I ⊗ Yi; ρAB) =
∑

i

δ2(Xi; ρA) +
∑

i

δ2(Yi; ρB) ≥ a+ b.

It follows that ψ(ρAB) ≥ a+ b for every separable state ρAB. If

ψ(ρAB) < a + b,

then the state ρAB must be entangled. �

Theorem 10.6 Let ρAB be a separable state on the bipartite system HA ⊗ HB and let
ρA be the reduced state. Then ρAB is more mixed than ρA.

Proof: Let (rk) be the probability vector of eigenvalues of ρAB and (ql) is that for ρA.
We have to show that there is a doubly stochastic matrix S which transform (ql) into
(rk).

Let
ρAB =

∑

k

rk|ek〉〈ek| =
∑

j

pj |xj〉〈xj | ⊗ |yj〉〈yj|

be decompositions of a density matrix in terms of unit vectors |ek〉 ∈ HA⊗HB , |xj〉 ∈ HA

and |yj〉 ∈ HB. The first decomposition is the Schmidt decomposition and the second
one is guaranteed by the assumed separability condition. For the reduced density ρA we
have the Schmidt decomposition and another one:

ρA =
∑

l

ql|fl〉〈fl| =
∑

j

pj |xj〉〈xj |,
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where fj is an orthonormal family in HA. According to Lemma 2.1 we have two unitary
matrices V and W such that

∑

k

Vkj
√
pj |xj〉 ⊗ |yj〉 =

√
rk|ek

∑

l

Wjl
√
ql|fl〉 =

√
pj |xj〉.

Combine these equations to have

∑

k

Vkj
∑

l

Wjl
√
ql|fl〉 ⊗ |yj〉 =

√
rk|ek

and take the squared norm:

rk =
∑

l

(

∑

j1,j2

V kj1Vkj2W j1lWj2l〈yj1, yj2〉
)

ql

Introduce a matrix
Skl =

(

∑

j1,j2

V kj1Vkj2W j1lWj2l〈yj1, yj2〉
)

and verify that it is doubly stochastic. �

Separable states behaves classically in the sense that the monotonicity of the von
Neumann entropy holds.

Corollary 10.1 Let ρAB be a separable state on the bipartite system HA ⊗HB and let
ρA be the reduced state. Then S(ρAB) ≥ S(ρA).

Proof: The statement is an immediate consequence of the theorem, since the von
Neumann entropy is monotone with respect to the more mixed relation. However, we
give another proof.

First we observe, that for a separable state ρAB, the operator inequality

ρAB ≤ ρA ⊗ IB . (10.42)

holds. Indeed, for a product state the inequality is obvious and we can take convex
combinations. Since log is matrix monotone, we have

− log ρAB ≥ −(log ρA)⊗ IB. (10.43)

Taking the expectation values with respect to the state ρAB, we get S(ρAB) ≥ S(ρA).

Both proofs show that instead of the von Neumann entropy, we can take an α-entropy
as well. �

Theorem 10.7 Let ρAB be a state on the bipartite system HA ⊗HB and let ρA be the
reduced state. If S(ρAB) < S(ρA), then there is ε > 0 such that all states ω satisfying
the condition ‖ω − ρAB‖ < ε are entangled.

Proof: Due to the continuity of the von Neumann entropy S(ω) < S(ωA) holds in a
neighborhood of ρAB. All these states are entangled. �
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Theorem 10.8 ρ ∈ AAB is separable if and only if for any k ∈ N ρ has a symmetric

extension to A
1
⌣

A ⊗A
2
⌣

A ⊗ . . .⊗A
k
⌣

A ⊗AB.

Proof: For a separable state the symmetric extension is easily constructed. Assume
that

ρ =
∑

i

λiAi ⊗ Bi,

then
∑

i

λiAi ⊗Ai ⊗ . . .⊗ Ai ⊗ Bi

is a symmetric extension.

Conversely, let ρn be the assumed symmetric extension and let the state ϕ of the
infinite product algebra be a limit points of ρn’s. Since all ρn’s are extensions of the
given ρ, so is ϕ. According to the quantum de Finetti theorem (see Notes), ϕ is an
integral of product state and so is its restriction, ρ. This shows that ρ is separable. �

Theorem 10.9 Let ρ ∈ AAB. If there is a positive mapping Λ : AB → AB such that
(id ⊗ Λ)ρ is not positive, then ρ is entangled.

Proof: For a product state ρA ⊗ ρB we have

(idA ⊗ Λ)(ρA ⊗ ρB) = ρA ⊗ Λ(ρB) ≥ 0 .

It follows that (idA ⊗ Λ)D is positive when D is separable. �

In place of Λ, there is no use of completely positive mapping but matrix transposition
(in any basis) could be useful.

Example 10.23 Consider the state

1

4









1 + p 0 1− p p
0 1− p 0 1− p

1− p 0 1− p 0
p 1− p 0 1 + p









,

where 0 ≤ p ≤ 1. The partial transpose of this matrix is

1

4









1 + p 0 1− p 0
0 1− p p 1− p

1− p p 1− p 0
0 1− p 0 1 + p









.

If this is positive, so is
[

1− p p
p 1− p

]

.

For 1/2 < p this matrix is not positive, therefore Theorem 10.9 tells us that the state is
entangled for these values of the parameter. �
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Example 10.24 Let |Ψ〉〈Ψ| ∈ C2 ⊗ C2 be a maximally entangled state and τ be the
tracial state. Since τ is separable

ρp := p|Ψ〉〈Ψ|+ (1− p)τ (0 ≤ p ≤ 1) (10.44)

is an interpolation between an entangled state and a separable state. ρp is called Werner
state, its eigenvalues are

p +
1− p

4
,
1− p

4
,
1− p

4
,
1− p

4
(10.45)

and the eigenvalues of the reduced density matrix are (1/2, 1/2). (10.45) is more mixed
than this pair if and only if p ≤ 1/3. Therefore, for p > 1/3, the state ρp must be
entangled due to Theorem 10.6.

We can arrive at the same conclusion also from Theorem 10.9. In an appropriate
basis, the matrix of ρp is

1

4









1− p 0 0 0
0 1 + p 2p 0
0 2p 1 + p 0
0 0 0 1− p









. (10.46)

The partial transpose of this matrix is

1

4









1− p 0 0 2p
0 1 + p 0 0
0 0 1 + p 0
2p 0 0 1− p









(10.47)

which cannot be positive when (1−p)2 < 4p2. For p > 1/3 this is the case and Theorem
10.9 tells us that ρp is entangled.

If p = 1/3, then ρp is

1

6









1 0 0 0
0 2 1 0
0 1 2 0
0 0 0 1









.

and we want to show that this is separable by presenting a decomposition. We have








1 0 0 0
0 2 1 0
0 1 2 0
0 0 0 1









=
1

3









3 0 0 0
0 3 3 0
0 3 3 0
0 0 0 3









+









0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0









.

Here the first summand has a decomposition
(

1 1
1 1

)

⊗
(

1 1
1 1

)

+

(

1 ε
ε2 1

)

⊗
(

1 ε
ε2 1

)

+

(

1 ε2

ε 1

)

⊗
(

1 ε2

ε 1

)

,

where ε := exp(2πi/3) and the second summand is
(

1 0
0 0

)

⊗
(

0 0
0 1

)

+

(

0 0
0 1

)

⊗
(

1 0
0 0

)

.

Since separable states form a convex set, we conclude that ρp is separable for every
p ≤ 1/3. �
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10.4 Dense coding and teleportation

Quantum information and classical information are very different concepts and strictly
speaking, it has no meaning to compare them. However, transmission of a single qubit
can carry two bits of classical information and transmitting classical information of two
bits can yield the teleportation of the state of a quantum spin. From this point of view
a qubit is equivalent to two classical bits. Both protocols are based on a basis consisting
of maximally entangled states on the 4 dimensional space.

The Bell basis of C2 ⊗ C2 consists of the following vectors

|β0〉 =
1√
2
(|00〉+ |11〉),

|β1〉 =
1√
2
(|10〉+ |01〉) = (σ1 ⊗ I)|β0〉,

|β2〉 =
i√
2
(|10〉 − |01〉) = (σ2 ⊗ I)|β0〉,

|β3〉 =
1√
2
(|00〉 − |11〉) = (σ3 ⊗ I)|β0〉.

All of them give maximally entangled states of the bipartite system.

Assume that Alice wants to communicate an element of the set {0, 1, 2, 3} to Bob and
both of them have a spin. Assume that the two spins are initially in the state |β0〉. Alice
and Bob may follow the following protocol called dense coding

1. If the number to communicate to Bob is k, Alice applies the unitary σk to her spin.
After this the joint state of the two spins will be the kth vector of the Bell basis.

2. Alice sends her qubit to Bob and Bob will be in the possession of both spins.

3. Bob performs the measurement corresponding to the Bell basis, and the outcome
will exactly be k.

Next we turn to the teleportation protocol initiated by Bennett at al. in 1993 [9].
Consider a 3-qubit system in the initial state

|ψ〉A ⊗ |β0〉XB.

(So the spin A is statistically independent from the other two spins.) Assume that Alice
is in a possession of the qubits A and X and the spin B is at Bob’s disposal. The aim is
to convert Bob’s spin into the state |ψ〉. Alice and Bob are separated, they could be far
away from each other but they can communicate in a classical channel. How can this
task be accomplished?

1. Alice measures the Bell basis on the spins A and X . The outcome of the measure-
ment is an element of the set {0, 1, 2, 3}.

2. Alice communicates this outcome to Bob in a classical communication channel.This
requires the transmission of two classical bits to distinguish among 0, 1, 2, 3.



140 CHAPTER 10. MATRICES IN QUANTUM THEORY

3. Bob applies the unitary σk to the state vector of spin B if the message of Alice is
“k”.

Then the state of spin B is the same as the state of spin A was at the beginning of
the procedure.

This protocol depends on an important identity

|ψ〉A ⊗ |β0〉XB =
1

2

3
∑

k=0

|βk〉AX ⊗ σk|ψ〉B. (10.48)

The measurement of Alice is described by the projections Ei := |βi〉〈βi|⊗ IB (0 ≤ i ≤
3). The outcome k appears with probability

〈η, (|βk〉〈βk| ⊗ IB)η〉,

where η is the vector (10.48) and this is 1/4. If the measurement gives the value k, then
after the measurement the new state vector is

Ekη

‖Ekη‖
= |βk〉AX ⊗ σk|ψ〉B.

When Bob applies the unitary σk to the state vector σk|ψ〉B of his spin, he really gets
|ψ〉B.

There are a few important features concerning the protocol. The actions of Alice and
Bob are local, they manipulate only the spins at their disposal and they act indepen-
dently of the unknown spin X . It is also important to observe that the spin A changes
immediately after Alice’ measurement. If this were not the case, then the procedure
could be used to copy (or to clone) a quantum state which is impossible, Wooters and
Zurek argued for a “no-cloning” theorem [53]. Another price the two parties have to pay
for the teleportation is the entanglement. The state of AX and B becomes separable.

The identity (10.48) implies that

Ek

(

|ψ〉〈ψ|A ⊗ |β0〉〈β0|XB
)

Ek =
1

4
|β0〉〈β0|AX ⊗ (σk|ψ〉〈ψ|Bσk) .

Both sides are linear in |ψ〉〈ψ| which can be replaced by an arbitrary density matrix ρ:

Ek

(

ρ⊗ |β0〉〈β0|XB
)

Ek =
1

4
|β0〉〈β0|AX ⊗ (σkρBσk), (10.49)

This formula shows that the teleportation protocol works for a density matrix ρ as well.
The only modification is that when Bob receives the information that the outcome of
Alice’s measurement has been k, he must perform the transformation D 7→ σkDσk on
his spin.

We can generalize the above protocol. Assume that H is n-dimensional and we have
unitaries Ui (1 ≤ i ≤ n2) such that

TrU∗
i Uj = 0 if i 6= j . (10.50)
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These orthogonality relations guarantee that the operators Ui are linearly independent
and they must span the linear space of all matrices.

Let Φ ∈ H ⊗H be a maximally entangled state vector and set

Φi := (Ui ⊗ I)Φ (1 ≤ i ≤ n2).

One can check that (Φi)i is a basis in H⊗H:

〈(Ui ⊗ I)Φ, (Uj ⊗ I)Φ〉 = 〈Φ, (U∗
i Uj ⊗ I)Φ〉 = Tr (U∗

i Uj ⊗ I)|Φ〉〈Φ|
= TrTr2

(

U∗
i Uj ⊗ I)|Φ〉〈Φ|

)

= Tr (U∗
i Uj)Tr2|Φ〉〈Φ|

=
1

n
TrU∗

i Uj .

Consider 3 quantum systems, similarly to the spin-1
2
case, assume that the system X

and A are localized at Alice and B is at Bob. Each of these n-level systems are described
an n dimensional Hilbert space H. Let the initial state be

ρA ⊗ |Φ〉〈Φ|XB.

The density ρ is to be teleported from Alice to Bob by the following protocol:

1. Alice measures the basis (Φi)i on the quantum system A+X . The outcome of the
measurement is an element of the set {1, 2, 3, . . . , n2}.

2. Alice communicates this outcome to Bob in a classical communication channel.

3. Bob applies the state transformation D 7→ UkDU
∗
k to his quantum system B if the

message of Alice is “k” (1 ≤ k ≤ n2).

The measurement of Alice is described by the projections Ei := |Φi〉〈Φi| ⊗ IB (1 ≤
i ≤ n2). The state transformation D 7→ UkDU

∗
k corresponds to the transformation

A 7→ U∗
kAUk, hence to show that the protocol works we need

∑

k

TrEk(ρ⊗ |Φ〉〈Φ|)Ek(IAX ⊗ UkAU
∗
k ) = Tr ρA (10.51)

for all A ∈ B(H). Indeed, the left-hand-side is the expectation value of A after telepor-
tation, while the right-hand-side is the expectation value in the state ρ.

Since this equation is linear both in ρ and in A, we may assume that ρ = |φ〉〈φ| and
A = |ψ〉〈ψ|. Then the right-hand-side is |〈ψ, φ〉|2 and the left-hand-side is

∑

k

|〈φ⊗ Φ, (Uk ⊗ I)Φ⊗ U∗
kψ〉|2 =

∑

k

|〈U∗
kφ⊗ Φ,Φ⊗ U∗

kψ〉|2 .

Since 〈η1 ⊗ Φ,Φ⊗ η2〉 = n−1〈η1, η2〉, the above expression equals to,

∑

k

|〈U∗
kφ⊗ Φ,Φ⊗ U∗

kψ〉|2 =
1

n2

∑

k

|〈U∗
kφ, U

∗
kψ〉|2 = |〈φ, ψ〉|2 .
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This proves (10.51) which can be written more abstractly:

∑

k

Tr (ρ⊗ ω)(Ek ⊗ Tk(A)) = Tr ρA (10.52)

for all ρ, A ∈ B(H), where Ek is a von Neumann measurement on H ⊗ H and Tk :
B(H) → B(H) is a noiseless channel, Tk(A) = UkAU

∗
k for some unitary Uk. In this style,

the dense coding is the equation

Trω(Tk ⊗ id)Eℓ = δk,ℓ. (10.53)

Recall that in the teleportation protocol we had a maximally entangled state ω = |Φ〉〈Φ|,
a basis Uk of unitaries which determined the measurement

Ek = |Φk〉〈Φk|, Φi := (Ui ⊗ I)Φ

and the channels Tk(A) = UkAU
∗
k . These objects satisfy equation (10.53) as well, so the

dense coding protocol works on n level systems.

Next we see how to find unitaries satisfying the orthogonality relation (10.50).

Example 10.25 Let e0, e1, . . . , en−1 be a basis in the n-dimensional Hilbert space H
and let X be the unitary operator permuting the basis vectors cyclically:

Xei =

{

ei+1 if 0 ≤ i ≤ n− 2,
e0 if i = n− 1.

Let q := ei2π/n and define another unitary by Y ei = qiei. It is easy to check that
Y X = qXY or more generally the commutation relation

ZkXℓ = qkℓXℓZk (10.54)

is satisfied. For Sj,k = ZjXk, we have

Sj,k =

n−1
∑

m=0

qmj|em〉〈em+k| and Sj,kSu,v = qkuSj+u,k+v,

where the additions m+k, j+u, k+ v are understood modulo n. Since TrSj,k = 0 when
at least one of j and k is not zero, the unitaries

{Sj,k : 0 ≤ j, k ≤ n− 1}

are pairwise orthogonal.

Note that Sj,k and Su,v commute if ku = jv mod n. These unitaries satisfy a discrete
form of the Weyl commutation relation and the case n = 2 simply reduces to the
Pauli matrices: X = σ1 and Z = σ3. (This fact motivated our notation.) �
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John von Neumann (1903–1957)

David Hilbert invited von Neumann in 1927 to Göttingen. That time
Heisenberg lectured about the new field called quantum theory. Von
Neumann transformed the physical things into a mathematical formalism.
Therefore his book Mathematische Grundlagen der Quantenmechanik (pub-
lished in 1932) contained the basic mathematical approach.

10.5 Notes and remarks

There are several books about the mathematical foundations of quantum mechanics.
The book of von Neumann [39] has a historical value, it was published in 1932. Holevo’s
lecture note [27] is rather comprehensive and [13] treats unbounded linear operators of
Hilbert spaces in details. My book [47] is close to the material of this chapter.

Theorem 10.6 was proved by M. A. Nielsen and J. Kempe, see Separable states are
more disordered globally than locally, Phys. Rev. Lett., 86, 5184-7 (2001).

The quantum de Finetti theorem is about states of the infinite product

A⊗ B ⊗ B ⊗ . . .

which remain invariant under the fine permutations of the factors B. Such states are
called symmetric. The theorem obtained from the paper M. Fannes, J. T. Lewis and
A. Verbeure, Symmetric states of composite systems, Lett. Math. Phys. 15(1988), 255–
260. We have that symmetric states are in the closed convex hull of symmetric product
states. (For other generalization of the de Finetti theorem, see [40].)

Example 10.22 is from the paper H. F. Hofmann and S. Takeuchi, Violation of local
uncertainty relations as a signature of entanglement, Phys. Rev. A 68(2003), 032103.

The unitaries Sjk in Example 10.25 give a discrete form of the Weyl commutation
relation

U(h1)U(h2) = U(h1 + h2) exp (i Im 〈h1, h2〉),
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where the unitary family is labeled by the vectors of a Hilbert space [46]. The construc-
tion in Example 10.25 is due to Schwinger, Unitary operator basis, Proc. Nat. Acad.
Sci. USA 46(1960), 570–579.

The bases (ei) and (fj) has the property

|〈ei, fj〉|2 =
1

n
.

Such bases are called complementary or unbiased. They appeared in connection
with the uncertainty relation, it is due to K. Kraus, see Chap. 16 of [40]. A family of
mutually unbiased bases on an n-dimensional space has cardinality at most n + 1. It is
not known if the bound is reachable for any n. (It is easy to construct n + 1 mutually
unbiased bases if n = 2k.) More details about complementarity are also in the paper D.
Petz, Algebraic complementarity in quantum theory, J. Math. Phys. 51, 015215 (2010).

10.6 Exercises

1. Show that the vectors |x1〉, |x2, 〉, . . . , |xn〉 form an orthonormal basis in an n-
dimensional Hilbert space if and only if

∑

i

|xi〉〈xi| = I.

2. Express the Pauli matrices in terms of the ket vectors |0〉 and |1〉.

3. Show that the Pauli matrices are unitarily equivalent.

4. Show that for a 2× 2 matrix A the relation

1

2

3
∑

i=0

σiAσi = (TrA)I

holds.

5. Let t be a real number and n be a unit vector in R3. Show that

exp(itn · σ) = cos t (n · σ) + i sin t (n · σ).

6. Let v and w be complex numbers and let n be a unit vector in R3. Show that

exp(vσ0 + w(n · σ)) = ev ((coshw) σ0 + (sinhw)n · σ) . (10.55)

7. Let |1〉, |2〉, |3〉 be a basis in C3 and

|v1〉 =
1√
3
(|1〉+ |2〉+ |3〉),

|v2〉 =
1√
3
(|1〉 − |2〉 − |3〉),

|v3〉 =
1√
3
(|1〉 − |2〉+ |3〉),

|v4〉 =
1√
3
(|1〉+ |2〉 − |3〉).
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Compute
∑4

i=1 |vi〉〈vi|.

8. Show the identity

(I2 − σk)⊗ (I2 + σk) + (I2 + σk)⊗ (I2 − σk) = I4 − σk ⊗ σk (10.56)

for k = 1, 2, 3.

9. Let e and f be unit vectors in C2 and assume that they are eigenvectors of two
different Pauli matrices. Show that

|〈e, f〉|2 = 1

2
.

10. Consider two complementary orthonormal bases in a Hilbert space. Let A and B
operators such that TrA = TrB = 0, A is diagonal in the first basis, while B is
diagonal in the second one. Show that TrAB = 0.

11. Show that the number of pairwise complementary orthonormal bases in an
n-dimensional Hilbert space is at most n + 1. (Hint: Estimate the dimension of
the subspace of traceless operators.)

12. Show that the quantum Fourier transform moves the standard basis to a comple-
mentary basis.

13. What is the 8 × 8 matrix of the controlled-swap gate? (This unitary is called
Fredkin gate.)

14. Give the density matrix corresponding to the singlet state (10.8) and compute the
reduced density matrices.

15. Let ρ be a density matrix. Show that ρ corresponds to a pure state if and only if
ρ2 = ρ.

16. Compute the dimension of the set of the extreme points and the dimension of the
topological boundary of the n× n density matrices.

17. Compute the reduced density matrices of the state

1

3









1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0









.

18. Let 0 < p < 1. Show that the Kraus representation of the depolarizing channel on
M2 is

Ep,2(A) =
3p+ 1

4
A +

1− p

4
σ1Aσ1 +

1− p

4
σ2Aσ2 +

1− p

4
σ3Aσ3.
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19. Assume that E :Mn(C) →Mn(C) is defined as

E(A) = 1

n− 1
(I TrA− A).

Show that E is positive but not completely positive.

20. Let p be a real number. Show that the mapping Ep,2 :M2 →M2 is defined as

Ep,2(A) = pA+ (1− p)
I

2
TrA

is positive if and only if −1 ≤ p ≤ 1. Show that Ep,2 is completely positive if and
only if −1/3 ≤ p ≤ 1. (Hint: Ep,2 is a Pauli channel.)

21. Let Ep,2 : M2 → M2 be the depolarizing channel and denote by AT the trans-
pose of A. For which values of the parameter p will be A 7→ Ep,2(A)T a state
transformation?

22. What is the spectrum of the linear mapping Ep,2? May a positive mapping have
negative eigenvalues?

23. Give the Kraus representation of the phase-damping channel.

24. Show that

1

3









5 0 0
√
3

0 1 i
√
3 0

0 −i
√
3 3 0√

3 0 0 3









is the representing block-matrix of the Fuchs channel.

25. Show that the matrix

T =









1 0 0 0
0 cos δ 0 0
0 0 cos γ 0

sin γ sin δ 0 0 cos γ cos δ









determines a state transformation of a qubit.

26. Compute the limit of En if E is the amplitude-damping channel.

27. Assume that E :Mn(C) →Mn(C) acts as

E(A)ij = δijAij ,

that is, E kills all off-diagonal entries. Find the Kraus representation of E .

28. Let e1, e2, . . . , en be a basis in the Hilbert space H. Show that the vector

1√
n

n
∑

i,j=1

Uijei ⊗ ej

gives a maximally entangled state in H ⊗H if and only if the matrix (Uij)
n
i,j=1 is

a unitary.



10.6. EXERCISES 147

29. Let Φ be a unit vector in H ⊗H and let n be the dimension of H. Show that Φ
gives a maximally entangled state if and only if

〈η1 ⊗ Φ,Φ⊗ η2〉 = n−1〈η1, η2〉

for every vector η1, η2 ∈ H.

30. Let Φ be a maximally entangled state in H⊗H and W be a unitary on H. Show
that (W ⊗ I)Φ gives a maximally entangled state.

31. Use the partial transposition and Theorem 10.9 to show that the density (10.39)
is entangled.

32. Show that the matrix of an operator on C2⊗C2 is diagonal in the Bell basis if and
only if it is a linear combination of the operators σi ⊗ σi, 0 ≤ i ≤ 3.

33. Use Theorem 10.6 to show that the density (10.39) is entangled.

34. Let E :Mn(C) →Mk(C) be a channel and assume that

id⊗ E(|Φ〉〈Φ|)

is separable for a maximally entangled state |Φ〉〈Φ| in Mn(C)⊗Mn(C), where idn
is the identity Mn(C) → Mn(C). Show that E has the form

E(ρ) =
∑

i

ρiTrSiρ (10.57)

where ρi is a family of states and Si are positive matrices such that
∑

i Si = I.

35. Show that
1

12

3
∑

k=1

(I4 − σk ⊗ σk)

is a Werner state. Use identity (10.56) to show that it is separable.

36. Show that the range of Ep,2 ⊗ Ep,2 does not contain an entangled state if Ep,2 :
M2(C) → M2(C) is the depolarizing channel and 0 ≤ p ≤ 1/2.

37. Assume that three qubits are in the pure state

1√
2
(|000〉+ |111〉)

(called GHZ state, named after Greeneberger-Horne-Zeilinger). Show that all
qubits are in a maximally mixed state and any two qubits are in a separable state.

38. Let |Ψ〉〈Ψ| ∈ B(Cn⊗Cn) be a maximally entangled state (n ≥ 3) and assume that
for another state ρ we have ‖ |Ψ〉〈Ψ| − ρ ‖1 ≤ 1/3. Show that ρ is entangled.

39. Let |Ψ〉〈Ψ| ∈ B(Cn⊗Cn) be a maximally entangled state and τ be the tracial state
on B(Cn ⊗ Cn). When will be the Werner state

ρp := p|Ψ〉〈Ψ|+ (1− p)τ (0 ≤ p ≤ 1) (10.58)

entangled?
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40. Compute the state of the spin X after the teleportation procedure between Alice
and Bob.

41. Compute the joint state of the spins A and B after the teleportation procedure.

42. Show that relation (10.50) implies the condition

∑

i

U∗
i AUi = n(TrA)I

for every A ∈ B(H).



Index

adjoint operator, 12
annihilating

polynomial, 18

bases
complementary, 144
mutually unbiased, 144

basis, 8
Bell, 30, 123, 139
product, 28, 131

bilinear form, 13
bipartite system, 131
Bloch

ball, 116
sphere, 114

block-matrix
representation, 125

Boltzmann entropy, 40, 80
bra and ket, 10

Cayley transform, 16
channel

amplitude-damping, 129
depolarizing, 127
entanglement breaking, 133
Fuchs, 128
phase-damping, 128
transpose depolarizing, 130
Werner-Holevo, 129

Choi, 125
commutation relation

Weyl, 142, 143
complementary

bases, 118, 145
vector, 118

completely positive, 44, 124
composite system, 118
concave

jointly, 95
conjecture

BMV, 67
conjugate

convex function, 92
contraction, 11
convex

function, 90
hal, 90
set, 89

Cramer’s rule, 26

decomposition
polar, 38
Schmidt, 21
spectral, 21

dense coding, 139
density

matrix, 115
determinant, 6
distinguished with certainty, 117
divided difference, 90

eigenvector, 19
entangled, 42
entangled state, 131
entanglement

breaking channel, 133
witness, 134

entropy
Boltzmann, 40, 80
quasi, 110
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Cramér-Rao, 76
Golden-Thompson-Lieb, 54
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