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Preface

Usual text-books in probability theory describe the laws of randomness by a text con-
sisting of sentences, formulas, etc., and a collection of examples, problems, figures,
etc. which are printed permanently in the book. The reader may read the text, study
the examples, the problems, and look at the figures as many times as he or she wants
to. That is OK. However, the laws of randomness can be experienced only if many ex-
periments are performed many times. It is important to see the effect of the change of
the parameters, as well. In a permanently printed text-book what is printed is printed,
and cannot be changed. The reader cannot modify the parameters.

The main purpose of this electronic text-book is to make it possible to simulate the
experiments as many times as the reader wishes, and to make it possible to change the
parameters according to the wish of the reader. For the simulations, we use the program
Excel, it is available in high-schools and universities, and most students know it to a
certain level.

I am convinced that having experienced the real life meaning of the notions of prob-
ability theory, the mathematical notions and the mathematical proofs become more
interesting and attractive for the reader. Since the mathematical proofs are available in
many usual textbooks, we give only a few proofs in this textbook.

I am sure you will find mistakes in this text-book. I ask you to let me know them so
that I could then correct them. Anyway, I am continuously working on this material, so
new, corrected versions (with less or even more mistakes) will occur again and again
in the future. Thanks for your cooperation.

A list of suggested textbooks is available from the web-page:

http://www.math.bme.hu/~vetier/Probability.htm

Keep in mind that, in the simulation files, whenever you press the F9-key, the computer
recalculates all the formulas, among others it gives new values to random numbers,
consequently, it generates a new experiment.

Sections marked by *** may be skipped.
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1 Introductory problems

Example 1. Coming home from Salzburg to Vac.My sister-in-law regularly plays
the violin in an orchestra in Salzburg almost every Saturday evening, and comes home
to Vac on Sundays. (Salzburg, hometown of W. A. Mozart is 600 km west of Budapest,
and Vac, a little town next the Danube is 30 km north of Budapest.) Her friend brings
her in his car to Nyugati railway station in Budapest, where she takes the train to Vac.
The train leaves for Vac every hour. Sometimes she arrives to Nyugati railway station
some minutes after the departure of the previous train, and has to wait almost an hour.
Other times she arrives to Nyugati railway station some minutes before the departure
of the next train, and she has to wait only some minutes. We may be interested in the
amount of time passing after the departure of the previous train. Using the following
file, you may study a simulation of the amount of time passing after the previous train.

Demonstration file: The amount of time after the departure of the previous train
020-01-00

We may be interested in the amount of time she has to wait until the next train. It is
natural to call this amount of time the waiting time until the next train. In the following
file, the waiting time is also shown.

Demonstration file: Both the amount of time after the previous train and the waiting
time until the next train are shown
020-02-00

As you see the amount of time after the previous train is generated by the command
RAND() . This command gives a random number between 0 and 1, so theRAND()*60
command gives a random number between 0 and 60. Rounding is performed by the
commandsROUNDDOWN(_;_)andROUNDUP(_;_) .

Imagine that you observe the amount of time after the previous train on 10 occasions.
You will get 10 real numbers between 0 and 60. In the following file, 10 experiments
are simulated.

Demonstration file: 10 experiments for the amount of time after the previous train
020-03-00

As you see, the same command, namely,RAND()*60 is used in all the 10 cells, but
the numerical values returned are different.

If we make 1000 experiments, then - as you see in the next file - the 1000 corresponding
dots overcrowd the line.

Demonstration file: 1000 experiments on a line
020-04-00
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This is why, for visualization purposes, we give each of the points a different second
coordinate, as if the points were moved out from the line into a narrow horizontal strip.
In the following file, where only 10 points are shown, you may check how the points
jump out of the line.

Demonstration file: 10 experiments on a narrow horizontal strip
020-05-00

When there are 1000 points, the points melt together on the overcrowded line, while the
distribution of the points on the narrow horizontal strip is really expressive: whenever
you press the F9-key, you may see that the points are uniformly distributed between 0
and 60, they constitute a uniformly distributed point-cloud.

Demonstration file: 1000 experiments on a narrow horizontal strip
020-06-00

For my sister-in-law, it is a rather unpleasant event when she has to wait until the next
train for more than 45 minutes. Waiting more than 45 minutes obviously means that
the amount of time after the departure of the previous train is less than 15 minutes. In
the next file, these points are identified, their number - the so called frequency of the
event - is calculated, and then the relative frequency of the event, that is, the frequency
divided by the total number of experiments is also calculated.

Demonstration file: Frequency and relative frequency of the unpleasant event
020-07-00

In order keep track of whetherRAND()*60 is less than 15 or not, in the simulation
file, we use theIF(_;_;_) command. The structure of this command is very simple:
the first argument is a condition, the second argument is the value of the command if
the condition holds, the third argument is the value of the command if the condition
does not hold.

Pressing the F9-key in the previous simulation file, you may be convinced that the
relative frequency oscillates around a non-random value, in this problem, around 0.25.
This value, around which the relative frequency oscillates, is an important characteristic
of the event. We call this number the probability of the event, and we write:

P(amount of time after the previous train< 15) = 0.25

In the next file, the value of the probability is also visualized. You may see that the
relative frequency oscillates around it.

Demonstration file: Probability of the unpleasant event
020-08-00

Example 2. Random numbers.Random numbers generated by computers play an
essential role in our simulation files. The basic property of a random number is that,

4

http://www.math.bme.hu/~vetier/df/ef-020-05-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-05-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-06-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-06-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-07-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-07-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-08-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-08-00.xls


for any0 ≤ a ≤ b ≤ 1, the probability of the event that the random number is between
a andb is equal to the length of the interval[a; b], which isb− a:

P(a ≤ RND≤ b) = length of the interval[a; b] = b− a

P(a ≤ RND < b) = length of the interval[a; b) = b− a

P(a < RND≤ b) = length of the interval(a; b] = b− a

P(a < RND < b) = length of the interval(a; b) = b− a

Whether the interval is closed or open, it does make any difference in the value of
the probability. In the following file, you may choose the valuesa andb, the left and
right end-points of the interval. You will see that the relative frequency of the event
a ≤ RND≤ b really oscillates aroundb− a.

Demonstration file: Probability of an interval for a random number generated by com-
puter
020-09-00

It is important to remember that, for any fixed numberx which is between0 and1, we
have that

P(RND≤ x) = length of the interval[0;x] = x

P(RND < x) = length of the interval[0;x) = x

Demonstration file: Probability of RND < x
020-10-00

Example 3. Pairs of random numbers.Another basic property of theRAND() com-
mand is that using it twice, and putting the two random numbers RND1 and RND2

together to define a random point(RND1; RND2), for this point it holds that, for any
setA inside the unite square, it holds that

P((RND1; RND2) ∈ A) = area ofA

In order to see this fact, in the following file,A can be any triangle inside the unite
square.

Demonstration file: Probability of a triangle
020-11-00

In the following file, the relative frequencies of more complicated events are studied:

Demonstration file: Special triangle combined with a diamond-shaped region - uncon-
ditional ...
020-12-00

5

http://www.math.bme.hu/~vetier/df/ef-020-09-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-09-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-09-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-10-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-10-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-11-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-11-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-12-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-12-00.xls
http://www.math.bme.hu/~vetier/df/ef-020-12-00.xls


In the following file not only frequencies and probabilities, but conditional frequencies
and probabilities are involved. Playing with the file, you will discover the notion of
conditional frequency and conditional probability.

Demonstration file: Special triangle combined with a diamond-shaped region - condi-
tional ...
020-13-00

Example 4. Non-uniform distributions. Just to see a point-cloud which isnot uni-
formly distributed, let us replace theRAND() command by thePOWER(RAND();2)
command. The commandPOWER(_;2) stands for taking the square.

Demonstration file: Non-uniformly distributed points using the square of a random
number
020-14-00

We get another non-uniformly distributed point-cloud if we apply the square-root func-
tion, POWER(_;1/2)

Demonstration file: Non-uniformly distributed points using the square-root of a ran-
dom number
020-15-00

In the next file, relative frequencies related to non-uniform distributions are calculated.

Demonstration file: Relative frequency for non-uniform distribution
020-16-00

In the next file, conditional relative frequencies related to non-uniform distributions are
calculated.

Demonstration file: Conditional relative frequency for non-uniform distribution
020-17-00

Example 5. Waiting time for the bus. My wife goes to work by bus every day. She
waits for the bus no more than 10 minutes. The amount of time she waits for the bus
is uniformly distributed between 0 and 10. In the next file, we simulate this waiting
time, and we study the event that "the waiting time < 4". The probability of this event
is obviously 0.4 The relative frequency of the event will clearly oscillate around 0.4.

Demonstration file: Waiting time for the bus
020-18-00

Example 6. Traveling by bus and metro.My friend goes to work by bus and metro
every day. He waits for the bus no more than 10 minutes. The amount of time he waits
for the bus is uniformly distributed between 0 and 10. When he changes to the metro,
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he waits for the metro no more than 5 minutes. No matter how much he waited for the
bus, the amount of time he waits for the metro is uniformly distributed between 0 and
5.

This example involves two waiting times. As you will see in the next simulation file, the
two waiting times together define a uniformly distributed random point in a rectangle.

Demonstration file: Traveling by bus and metro: uniformly distributed waiting times
020-19-00

Some events are visualized in the following files:

Demonstration file: Waiting time for bus < 4 , using uniform distribution
020-20-00

Demonstration file: Waiting time for metro > 3 , using uniform distribution
020-21-00

Demonstration file: Waiting time for bus < 4 AND waiting time for metro > 3 , using
uniform distribution
020-22-00

Demonstration file: Waiting time for bus < waiting time for metro , using uniform
distribution
020-23-00

Demonstration file: Total waiting time is more than 4 , using uniform distribution
020-24-00

Demonstration file: Waiting time for bus < waiting time for metro AND total waiting
time > 4
020-25-00

Demonstration file: Waiting time for bus < waiting time for metro OR total waiting
time > 4 , using uniform distribution
020-26-00

Under certain conditions, the application of uniform distribution for the waiting times
is justified, but under other conditions it is not. If the busses and metros follow "strict
time-tables" and randomness is involved in the problem only because my friend does
not follow a "strict time-table", then the application of uniform distribution for the
waiting times gives a good model. However, if the busses and metros arrive to the
stations where my friend gets on them, in a "chaotic" way, then - as we learn later - the
application of a special non-uniform distribution - called "exponential" distribution - is
more correct. You may see in the next file that exponentially distributed waiting times
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are generated by using the-LN(RAND()) command, that is, taking the minus of the
natural logarithm of a simple random number.

Demonstration file: Traveling by bus and metro, using exponential distribution
020-27-00

The events studied above are visualized with exponentially distributed waiting times in
the following files:

Demonstration file: Waiting time for bus < 4 , using exponential distribution
020-28-00

Demonstration file: Waiting time for metro > 3
020-29-00

Demonstration file: Waiting time for bus < 4 AND waiting time for metro > 3 , using
exponential distribution
020-30-00

Demonstration file: Waiting time for bus < waiting time for metro, using exponential
distribution
020-31-00

Demonstration file: Total waiting time > 4 , using exponential distribution
020-32-00

Demonstration file: Waiting time for bus < waiting time for metro AND total waiting
time > 4 , using exponential distribution
020-33-00

Demonstration file: Waiting time for bus < waiting time for metro OR total waiting
time > 4 , using exponential distribution
020-34-00

Example 7. Dice.Toss a fair die and observe the number on top. This random number
will be denoted here byX. It is easy to make 10 experiments forX. You may also
make 100 experiments. But it would be boring to make 1000 experiments. This is why
we will make - in the following file - a simulation of 1000 experiments. We will get
1000 integer numbers. The smallest possible value ofX is 1, the largest is 6. We may
count how many 1-s, 2-s, ... , 6-s we get. The numbers we get are the frequencies of
the possible values. The frequencies divided by the total number of experiments are
the relative frequencies.

In the following file, the frequencies are calculated by theFREQUENCY(_;_) com-
mand, which is a very useful but a little bit complicated command.
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Demonstration file: Fair die, 1000 tosses
020-36-00

How to use theFREQUENCYcommand.The first argument of theFREQUENCY(_;_)
command is the array of the data-set, the second argument is the array containing the
list of the possible values. While entering theFREQUENCY(_;_) command, one
must pay special attention to the following steps:

1. Type theFREQUENCY(_;_) command next to the first possible value with the
correct arguments. You will get the frequency of the first possible value.

2. Mark - with the mouse - all the cells where the frequencies of the other possible
values will be.

3. Press the F2-key.

4. Press theCtrl -key, keep it pressed, and press theShift -key, keep it pressed,
too, and press theEnter -key. You will get the frequencies of all possible values.
(You must not use the copy-paste command instead of the above sequence of
commands. That would give false results.) The cells containing the frequencies
will be stuck together, which means that later on they can be treated only together
as a whole unit.

We see that each relative frequency is oscillating around1/6, so the probability of each
possible value is1/6. This is shown in the next file.

Demonstration file: 1000 tosses with a fair die, relative frequencies and probabilities
020-38-00

In the following file not only frequencies and probabilities, but conditional frequencies
and probabilities are involved. Playing with the file, you may study what the notion
of conditional frequency and probability mean. Because of the large size of the file,
downloading it may take longer time.

Demonstration file: Conditional relative frequency and probability of events related to
fair dice
020-39-00

In the following two files, unfair dice are simulated. Because of the large size of the
files, downloading them may take longer time.

Demonstration file: Unfair dice (larger values have larger probabilities)
020-40-00

Demonstration file: Unfair dice (smaller values have larger probabilities)
020-41-00
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2 Outcomes and events

A phenomenonmeans that, under certain circumstances or conditions, something is
happening, or we do something. When the conditions are fulfilled, we say that we
perform avalid experiment. When the conditions are not fulfilled, we say that this
is an invalid experiment. It will be important in our theory that for phenomenon (at
least theoretically) the experiments can be repeated as many times as we want. When,
related to the phenomenon, we decide or declare what we are interested in, what we
observe, we define as anobservation. The possible results of the observation are called
theoutcomes(or - in some text-books -elementary events). The set of all outcomes
is thesample space. Here are some examples for phenomena and observations.

Example 1. Fair coin. Let the phenomenon mean tossing a fair coin on top of a table.
Let an experiment be valid if one of the sides of the coin shows up (that is the coin does
not stop on one of its edges). Here are some observations:

1. We observe where the center of the coin stops on a rectangular shaped table.
Here the outcomes are the points of the top of the table. The sample space is the
surface of the table, that is, a rectangle.

2. We observe how much time the coin rolls on the table before stopping. Here the
outcomes are the positive real numbers. The sample space is the positive part of
the real line.

3. We observe which side of the coin shows up when it stops. Now the outcomes are
headsandtails. The sample space is the set{H,T} consisting of two elements:
H stands forheads, T stands fortails.

Example 2. Fair die. Let the phenomenon mean rolling a fair die on top of a table.
Let an experiment be valid if the die remains on top of the table so that it stands clearly
on one of its sides. Here are some observations:

1. We observe where the die stops. Here the outcomes are the points of the top of
the table. The sample space is the surface of the table, that is, a rectangle.

2. We observe how much time the die rolls on the table before stopping. Here the
outcomes are the positive real numbers. The sample space is the positive part of
the real line.

3. We observe which side of the die shows up when it stops. Now the outcomes are
1, 2, 3, 4, 5, 6. The sample space is the set{1, 2, 3, 4, 5, 6}.

4. We observe whether we get6 or we do not get6. Here there are two outcomes:
6, not6. The sample space is a set consisting of two elements:{6, not6}.

5. We observe whether we get a number greater than4 or not greater than4. Here
there are two outcomes again, namely: greater, not greater. The sample space is
a set consisting of two elements:{greater, not greater}.
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Example 3. Two fair dice. Let the phenomenon mean rolling two fair dice, a red and
a blue, on top of a table. Let an experiment be valid if both dice remain on top of the
table so that they stand clearly on one of their sides. Here are some observations:

1. We observe the pair of numbers we get. Let the first number in the pair be taken
from the red die, the second from the blue. Here we have36 outcomes, which
can be arranges in a6 by 6 table. The sample space may be represented as the
set of the36 cells of a6 by 6 table.

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

2. We observe the maximum of the two numbers we toss. Here the outcomes are
again the numbers1, 2, 3, 4, 5, 6. The sample space is the set{1, 2, 3, 4, 5, 6}.

3. We observe the sum of the two numbers we toss. Here there are11 outcomes:2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12 The sample space is the set{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Example 4. Toss a coin until the first head.Let the phenomenon mean tossing a fair
die until the first time the head occurs. Here are some observations:

1. We observe the sequence of heads and tails we get. Now the outcomes are the
possible sequences of heads and tails. The sample space is the set of all possible
sequences of heads and tails.

2. We observe the number of tosses until the first time the head occurs. Now the
outcomes are the positive integers:1, 2, 3, . . . and the symbol∞. The symbol
∞means: we never ever get a head. The sample space is the set consisting of all
positive integers and the symbol∞: {1, 2, 3, . . . ,∞}

3. We observe how many tails we get before the first head occurs. Now the out-
comes are the non-negative integers:0, 1, 2, . . . and the symbol∞. The symbol
∞means: we never get a head, that is why we get an infinite number of tails. The
sample space is the set consisting of all non-negative integers and the symbol∞:
{0, 1, 2, . . . ,∞}.

An event is a statement related to the phenomenon or to an observation so that when-
ever an experiment is performed we can decide whether the statement istrue or false.
When it is true we say that the eventoccurs, when it is not true, we say that the event
does not occur. Instead of true and false, the wordsyesandnoare also often used. We
often write the number1 for the occurrence, and the number0 for the non-occurrence
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of an event. An event, that is, a statement related to an observation obviously corre-
sponds to asubsetof the sample space taken for that observation. The subset consists
of those outcomes for which the event occurs. For example, tossing a die and observing
the number on the top, the event "greater than 4" corresponds to the subset{5, 6}.

It may happen that two different statements always occur at the same time. In this case
we say that the two statements define thesame event.

Now we list someoperations and relations on events.We put the corresponding
set-theoretical operations and relations into parentheses.

1. Thesureor certain event always occurs. (Whole sample space.)

2. The impossibleevent never occurs. (Empty set.)

3. The complement of an event occurs if and only if the event does not occur.
(Complementary set.)

4. Theintersectionor product of events is the logicaland-operation, meaning that
"each event occurs". (Intersection of sets.)

5. The union or sum of events is the logicalor-operation, meaning that "at least
one of the events occurs". (Union of sets.)

6. Thedifference of an event and another event means that the first event occurs,
but the other event does not occur. (Difference of sets.)

7. Some events are said to beexclusiveevents, and we say that theyexcludeeach
other if the occurrence of one of them guarantees that the others do not occur.
(Disjoint sets.)

8. An event is said toimply another event if the occurrence of the first event guar-
antees the occurrence of the other event. (A set is a subset of the other.)

Drawing aVenn-diagram is a possibility to visualize events, operations on events, etc.
by sets drawn in the plain.

3 Relative frequency and probability

When we make experiments again and again for a phenomenon or an observation, then
we getsequence of experiments. Assume now that we make a sequence of experi-
ments for an event. We may take notes at each experiment whether the event occurs or
does not occur, and we may count how many times the event occurs. This occurrence
number is called thefrequency of the event. The frequency divided by the number of
experiments is therelative frequency. Since the occurrence of an event depends on
randomness, both the frequency and the relative frequency depend on randomness.

12



Now the reader may study the following files again, which appeared among the intro-
ductory problems in Section 1.

Demonstration file: Waiting time for the bus
020-18-00

Demonstration file: Traveling by bus and metro: uniformly distributed waiting times
020-19-00

Demonstration file: Waiting time for bus < 4
020-20-00

Demonstration file: Waiting time for metro > 3
020-21-00

Demonstration file: Waiting time for bus < 4 AND waiting time for metro > 3
020-22-00

Demonstration file: Waiting time for bus < waiting time for metro
020-23-00

Demonstration file: Total waiting time > 4
020-24-00

Demonstration file: Waiting time for bus is less than waiting time for metro AND total
waiting time > 4
020-25-00

Demonstration file: Waiting time for bus < waiting time for metro OR total waiting
time > 4
020-26-00

It is an important law, called the law of large numbers, that the relative frequencies
of an event in a long sequence of experiments stabilize around a number, which does
not depend on randomness, but it is a characteristic of the event itself. This number is
called theprobability of the event. The notion of probability can be interpreted like
these:

1. Consider an interval around the probability value. If we make a large number of
experiments of a (given) large length, then the great majority of relative frequen-
cies (associated to this large length) will be in this interval.

2. If we could make an infinitely long sequence of experiments, then the sequence
of relative frequencies would converge to the probability in the mathematical
sense of convergence.
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Probability theory deals, among others, with figuring out the probability values without
performing any experiments, but using theoretical arguments.

In the following files you may learn how the relative frequencies stabilize around the
probability. The first and the second are simpler, the third is a little-bit trickier.

Demonstration file: Event and relative frequency
030-01-00

Demonstration file: Tossing a die - probability
030-02-00

Demonstration file: Relative frequency with balls
030-03-00

Playing with the next file, you may check your ability to guess a probability based on
your impression when many experiments are performed. When you open it, choose the
option "Don’t Update".

Demonstration file: Probability guessed by impression
030-04-00

If you want to change the hidden probability value in the previous file, then save the
previous file (File A) and the following file (File B) into a folder, and close both. Then
open the second file (File B), press F9 to regenerate a new hidden probability value,
and open the first file (File A), and choose the option "Update", and close the second
file (File B).

Demonstration file: Auxiliary file to generate a new hidden probability value
030-05-00

4 Random numbers

Most calculators have a special key stroke and most computer programs have a simple
command to generate random numbers. Calculators and computer programs are made
so that the generated random number, let us denote it by RND, can be considered
uniformly distributed between0 and1, which means that for any0 ≤ a ≤ b ≤ 1, it is
true that

P(a < RND < b) = length of(a; b) = b− a

or, the same way,

P(a ≤ RND≤ b) = length of[a; b] = b− a

The following file illustrates this fact:
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Demonstration file: Probability of an interval for a random number generated by com-
puter
040-01-00

Specifically, for any0 ≤ x ≤ 1 it is true that

P(RND < x) = x

or, the same way,

P(RND≤ x) = x

The following file illustrates this fact:

Demonstration file: Probability of RND≤ x
020-10-00

The probability that a random number is exactly equal to a given number is equal to0:

P(RND = a) = P(a ≤ RND≤ a) = length of[a; a] = a− a = 0 (for all a)

If two random numbers are generated, say RND1 and RND2, then the random point
(RND1, RND2) is uniformly distributed in the unit squareSwhich has the vertices
(0, 0), (1, 0), (1, 1), (0, 1). This means that for anyA ⊂ S, it is true that

P ((RND1, RND2) ∈ A) = area ofA

In order to illustrate this fact, in the following file,A can be a triangle inside the unite
square.

Demonstration file: Probability of a triangle
020-11-00

In the following file, the relative frequencies of more complicated events are studied.

Demonstration file: Special triangle combined with a diamond-shaped region
020-12-00

If three random numbers are generated, say RND1, RND2 and RND3, then the random
point (RND1, RND2, RND3) is uniformly distributed in the unit cubeS which has the
vertices(0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 1), (0, 1, 1). This
means that for anyA ⊂ S, it is true that

P ((RND1, RND2, RND3) ∈ A) = volume ofA (A ⊂ S)

The following file deals with powers of random numbers.

Demonstration file: Powers of random numbers
040-02-00
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5 Classical problems

The simplest way of calculating a probability is when an observation has a finite num-
ber of outcomes so that, for some symmetry reasons, each outcome has the same prob-
ability. In this case the probability of an event is calculated by theclassical formula:

probability=
number of favorable outcomes

number of all outcomes

or, briefly:

probability=
favorable

all

In the following files, we simply list all the outcomes, mark those which are favor-
able for the event in question, and then we use the classical formula to calculate the
probability of the event.

Demonstration file: 2 dice, P( Sum = 5 )
050-01-00

Demonstration file: 2 dice, P( Sum = k )
050-02-00

Demonstration file: 5 coins, P( Number of heads = k )
050-03-00

Demonstration file: 4 dice, on each dice: 1,2: red, 3,4,5,6: green, P( Number of red =
k )
050-04-00

When the number of all outcomes is so large that we are unable to list them, or the
problem contains not only numerical values but parameters as well, then combinatorics
plays an important role in finding out the number of all outcomes and the number of
favorable outcomes. The branch of mathematics dealing with calculating the number
of certain cases is calledcombinatorics. It is assumed that the reader is familiar with
the basic notions and techniques of elementary combinatorics. Here is only a list of
some techniques and formulas we often use in combinatorics:

1. Listing - counting

2. Uniting - adding

3. Leaving off - subtracting

4. Tree-diagram, window technique - multiplication

5. Factorization (considering classes of equal size) - division
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6. Permutations without repetition

n!

7. Permutations with repetition

n!
k1!k2! . . . kr!

8. Variations without repetition

n!
(n− k)!

9. Variations with repetition

nk

10. Combinations without repetition(
n
k

)

Remember that the definition of the binomial coefficient

(
n
k

)
is:

(
n
k

)
=

n!
k!(n− k)!

When we have to calculate the value of the binomial coefficient

(
n
k

)
without a

calculator, it is may be advantageous to use the following form of it:(
n
k

)
=

n(n− 1)(n− 2) . . . (n− k + 1)
1 2 3 . . . k

Notice that in the right side formula, both the numerator and the denominator are
a product ofk factors. In the numerator, the first factor isn, and the factors are
decreasing. In the denominator the first factor is1, and the factors are increasing.
Simplification always reduces the fraction into an integer.

11. Combinations with repetition(
n + k − 1

k − 1

)
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12. Pascal triangle: if we arrange the binomial coefficients into a triangle-shaped
table like this: (

0
0

)
(

1
0

) (
1
1

)
(

2
0

) (
2
1

) (
2
2

)
(

3
0

) (
3
1

) (
3
2

) (
3
3

)
(

4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)
(

5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)
. . . . . . . . . . . . . . . . . . . . .

and calculate the numerical value of each binomial coefficient in this triangle-
shaped table, we get the following array:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

. . . . . . . . . . . . . . . . . . . . .

The numbers in this triangle-shaped table satisfy the following two simple rules:

(a) The elements at the edges of each row are equal to1.

(b) Addition rule: Elements which are not at the edges are equal to the sum of
the two numbers which stand above that element.

Based on these rules one can easily construct the table and find out the numerical
values of the binomial coefficients. The following file uses this construction.

Demonstration file: Construction of the Pascal triangle using the addition rule
060-01-00
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6 Geometrical problems, uniform distributions

Another simple way of calculating a probability is when the outcomes can be identi-
fied by an intervalS of the (one-dimensional) real line or by a subsetS of the (two-
dimensional) plane or of the (three-dimensional) space or of ann-dimensional Eu-
clidean space so that the length or area or volume orn-dimensional volume ofS is
finite but not equal to0, and the probability of any event, corresponding to some subset
A of S, is equal to

P(A) =
length ofA
length ofS

in the one-dimensional case, or

P(A) =
area ofA
area ofS

in the two-dimensional case, or

P(A) =
volume ofA
volume ofS

in the three-dimensional case, or

P(A) =
n-dimensional volume ofA
n-dimensional volume ofS

in the n-dimensional case. Since the calculation of lengths, areas, volumes, first in
the life of most students, is taught in geometry, such problems are calledgeometrical
problems.

We also say that a random point is chosen inS according touniform distribution if

P (the point is inA) =
length ofA
length ofS

(A ⊆ S)

in the one-dimensional case, or

P (the point is inA) =
area ofA
area ofS

(A ⊆ S)

in the two-dimensional case, or

P (the point is inA) =
volume ofA
volume ofS

(A ⊆ S)

in the three-dimensional case, or

P (the point is inA) =
n-dimensional volume ofA
n-dimensional volume ofS

(A ⊆ S)

in then-dimensional case.
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Now the reader may study the following files again, which appeared among the intro-
ductory problems in Section 1.

Demonstration file: Waiting time for the bus
020-18-00

Demonstration file: Traveling by bus and metro: uniformly distributed waiting times
020-19-00

Demonstration file: Waiting time for bus < 4
020-20-00

Demonstration file: Waiting time for metro > 3

Demonstration file: Waiting time for bus < 4 AND waiting time for metro > 3
020-22-00

Demonstration file: Waiting time for bus < waiting time for metro
020-23-00

Demonstration file: Total waiting time > 4
020-24-00

Demonstration file: Waiting time for bus < waiting time for metro AND AND total
waiting time > 4
020-25-00

Demonstration file: Waiting time for bus is less than waiting time for metro OR total
waiting time is more than 4
020-26-00

The following example may surprise the reader, because the numberπ appears in the
solution.

Example 1. Buffon’s needle problem.Let us draw several long parallel lines onto a
big paper so that the distance between adjacent lines is alwaysD. Let us take a needle
whose length isL. For simplicity, we assume thatL ≤ D. Let us drop the needle onto
the paper "carelessly, in a random way" so that not any direction or position is preferred
for the needle the same way. When the needle stops jumping it will either intersect a
line (touching without intersection is included) or it will not touch lines at all. We may
ask: what is the probability that the needle will intersect a line?

The following two files interpret Buffon’s needle problem.

Demonstration file: Buffon’s needle problem
070-01-00
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Demonstration file: Buffon’s needle problem, more experiments
070-02-00

Solution. The line of the needle and the given parallel lines define an acute angle,
this is what we denote byX. The center of the needle and the closest line to it define
a distance, this is what we denote byY . Obviously,0 ≤ X ≤ π/2 and0 ≤ Y ≤
D/2. The point(X, Y ) is obviously a random point inside the rectangle defined by the
intervals(0;π/2) and(0;D/2). SinceX andY follow uniform distribution and they
are independent of each other, the random point(X, Y ) follows uniform distribution
on the rectangle. The needle intersects a line if and only ifY ≤ L/2 sin(X), that is,
the points in the rectangle corresponding to intersections constitute the range below the
graph of the curve with equationy = L/2 sin(x). Thus, we get that

P(Intersection) =
Area under the curve
Area of the rectangle

=

π
2∫
0

L
2 sin(x) dx

D
2 ·

(
π
2

) =
2L

πD

Remark. If 2L = D, that is the distance between the parallel lines is twice the length
of the needle, then we get the nice and surprising result:

P(Intersection) =
1
π

The following sequence of problems may seem a contradiction, because the (seem-
ingly) same questions have different answers in the different solutions.

Example 2. Bertrand’s paradox. Let us consider a circle. For the sake of Bertrand’s
paradox, a chord of the circle is called long, if it is longer than the length of a side of a
regular triangle drawn into the circle. Let us Choose a chord "at random". We may ask:
what is the probability that the chord is long? The following files interpret Bertrand’s
paradox.

Demonstration file: Bertrand paradox, introduction
070-03-00

Demonstration file: Two points on the perimeter
070-04-00

Demonstration file: One point inside
070-05-00

Demonstration file: One point on a radius
070-06-00

Demonstration file: Two points inside
070-07-00
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Demonstration file: One point on the perimeter, other point inside
070-08-00

Demonstration file: Point and direction
070-09-00

Demonstration file: Bertrand paradox, comparison
070-10-00

7 Basic properties of probability

The following properties are formulated for probabilities. If we accept some of them
as axioms, then the others can be proved. We shall not do so. Instead of such an
approach, we emphasize that each of these formulas can be translated into a formula
for relative frequencies by replacing the expression "probability of" by the expression
"relative frequency of", or replacing the letter "P", which is an abbreviation of the
expression "probability of", by the expression "relative frequency of". If you make this
replacement, you will get properties for relative frequencies which are obviously true.

For example, the first three properties for relative frequencies sound like this:

1. Relative frequency of thesure eventis 1.

2. Relative frequency of theimpossible eventis 0.

3. Complement rule for relative frequencies:

relative frequency ofA + relative frequency ofA = 1

This is why it is easy to accept that the following properties for probabilities hold.

1. The probability of thesure eventis 1.

2. The probability of theimpossible eventis 0.

3. Complement rule:

P(A) + P(A) = 1

4. Addition law of probability for exclusive events:

If A,B are exclusive events, then

P(A ∪B) = P(A) + P(B)
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If A,B,C are exclusive events, then

P(A ∪B ∪ C) = P(A) + P(B) + P(C)

If A1, A2, . . . , An are exclusive events, then

P(A1 ∪A2 ∪ . . . ∪An) = P(A1) + P(A2) + . . . + P(An)

5. Addition law of probability for arbitrary events :

If A,B are arbitrary events, then

P(A1 ∪A2) = P(A1) + P(A2)− P(A1 ∩A2)

If A,B,C are arbitrary events, then

P(A1 ∪A2 ∪A3) = +P(A1) + P(A2) + P(A3)
−P(A1 ∩A2)− P(A1 ∩A3)− P(A2 ∩A3)
+P(A1 ∩A2 ∩A3)

Remark. Notice that , on the right side

- in the 1st line, there are

(
3
1

)
= 3 terms, the probabilities of the individual

events with "+" signs,

- in the 2nd line there are

(
3
2

)
= 3 terms, the probabilities of the intersections

of two events with "−" signs,

- in the 3rd line there is

(
3
3

)
= 1 term, the probability of the intersection of all

events with a "+" sign.

Poincaré formula: If A1, A2, . . . , An are arbitrary events, then

P(A1 ∪A2 ∪ . . . ∪An) =

+P(A1) + P(A2) + . . . + P(A3)

−P(A1 ∩A2)− P(A1 ∩A3)− . . .− P(An−1 ∩An)

+P(A1 ∩A2 ∩A3) + P(A1 ∩A2 ∩A4) + . . . + P(An−2 ∩An−1 ∩An)

...

+(−1)n+1P(A1 ∩A2 ∩ . . . ∩An)

Remark. Notice that, on the right side

- in the 1st line, there are

(
n
1

)
= n terms, the probabilities of the individual
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events with "+" signs,

- in the 2nd line there are

(
n
2

)
terms, the probabilities of the intersections of two

events with "−" signs,

- in the 3rd line there are

(
n
3

)
terms, the probabilities of the intersections of two

events, with "+" signs,

- in thenth line there is

(
n
n

)
= 1 term, the probability of the intersection of all

events with a "+" or "−" sign depending on whethern is odd or even.

6. Special subtraction rule: If eventA implies eventB, then

P(B\A) = P (B)− P(A)

7. General subtraction rule: If A andB are arbitrary events, then

P(B\A) = P (B)− P(A ∩B)

8 Conditional relative frequency and conditional prob-
ability

Let A andB denote events related to a phenomenon. Imagine that we makeN exper-
iments for the phenomenon. LetNA denote the number of times thatA occurs, and
let NA∩B denote the number of times thatB occurs together withA. Theconditional
relative frequency is introduced by the fraction:

NA∩B

NA

This fraction shows how oftenB occurs among the occurrences ofA. Dividing both
the numerator and the denominator byN , we get that, for largeN , if P(A) 6= 0, then

NA∩B

NA
=

NA∩B

N
NA

N

≈ P(A ∩B)
P(A)

that is, for a large number of experiments, the conditional relative frequency stabilizes
around

P(A ∩B)
P(A)

This value will be called theconditional probability of B on condition thatA occurs,
and will be denoted byP(B|A):

P(B|A) =
P(A ∩B)

P(A)
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This formula is also named as thedivision rule for probabilities .

In the following files, not only frequencies and probabilities, but conditional frequen-
cies and probabilities are involved.

Demonstration file: Special triangle combined with a diamond-shaped region
020-13-00

Demonstration file: Circle and/or hyperbolas
090-01-00

Multiplication rules. Rearranging the division rule, we get themultiplication rule
for two events:

P(A ∩B) = P(A) P(B|A)

which can be easily extended to themultiplication rule for arbitrary events :

P(A1 ∩A2) = P(A1) P(A2|A1)
P(A1 ∩A2 ∩A3) = P(A1) P(A2|A1) P(A3|A1 ∩A2)
P(A1 ∩A2 ∩A3 ∩A4) = P(A1) P(A2|A1) P(A3|A1 ∩A2) P(A4|A1 ∩A2 ∩A3)

...

As a special case, we get themultiplication rule for a decreasing sequence of events:

If

A2 is impliesA1, that is,A2 ⊆ A1 , or equivalently,A1 ∩A2 = A2,
A3 is impliesA2, that is,A3 ⊆ A2 , or equivalently,A2 ∩A3 = A3,
A4 is impliesA3, that is,A4 ⊆ A3 , or equivalently,A3 ∩A4 = A4,
...

then

P(A2) = P(A1) P(A2|A1)
P(A3) = P(A2) P(A3|A2)
P(A4) = P(A3) P(A4|A3)

...

and, consequently

P(A2) = P(A1) P(A2|A1)
P(A3) = P(A1) P(A2|A1) P(A3|A2)
P(A4) = P(A1) P(A2|A1) P(A3|A2) P(A4|A3)

...
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Example 1. Birthday paradox. Imagine that in a group ofn people, everybody, one
after the other, tells which day of the year he or she was born. (For simplicity, loop
years are neglected, that is, there are only 365 days in a year.) It may happen that
all then people say different days, but it may happen that there will be one ore more
coincidences. The reader, in the future, at parties, may make experiments. Obviously,
if n is small, then the probability that at least one coincidence occurs, is small. Ifn
is larger, then this probability is larger. Ifn ≥ 366, then the coincidence is sure. The
following file simulates the problem:

Demonstration file: Birthday paradox - simulation
090-02-10

We ask two questions:
1. For a givenn (n = 2, 3, 4, . . . , 366), how much is the probability that at least

one coincidence occurs?
2. Which is the smallestn for whichP(at least one coincidence occurs) ≥ 0.5 ?

Remark. People often argue like this: the half of 365 is365/2 = 182.5, so the answer
to the second question is 183. We shall see that this answer is very far from the truth.
The correct answer is surprisingly small: 23. This means that when 23 people gather
together, then the probability that at least one birthday coincidence occurs is more than
half, and the probability that no birthday coincidence occurs is less than half. If you
do not believe, then make experiments: if you make many experiments with groups
consisting of at least 23 people, then the case that at least one birthday coincidence
occurs will be more frequent than the case that no birthday coincidence occurs.

Solution. Let us define the eventAk like this:

Ak = the firstk people have different birthdays (k = 1, 2, 3, . . .)

The complement ofAk is:

Ak = at least one coincidence occurs

It is obvious thatP(A1) = 1. The sequence of the eventsA1, A2, A3, . . . clearly consti-
tutes a decreasing sequence of events. In order to determine the conditional probability
P(Ak|Ak−1), let us assume thatAk−1 occurs, that is, the firstk− 1 people have differ-
ent birthdays. It is obvious thatAk occurs if and only if thekth person has a birthday
different from the previousk − 1 birthdays, that is, he or she was born on one of the
remaining365− (k − 1) days. This is why

P(Ak|Ak−1) = (365− (k − 1))/365 (k ≥ 1)

that is

P(A2|A1) = 364/365 = 0, 9973
P(A3|A2) = 363/365 = 0, 9945
P(A4|A3) = 362/365 = 0, 9918
...
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Now, using the multiplication rule for our decreasing sequence of events, we get:

P(A1) = 1
P(A2) = P(A1) P(A2|A1) = 1 0, 9973 = 0, 9973
P(A3) = P(A2) P(A3|A2) = 0, 9973 0, 9945 = 0, 9918
P(A4) = P(A3) P(A4|A3) = 0, 9918 0, 9918 = 0, 9836
...

Since the eventsAn mean no coincidences, in order to to get the probabilities of the
birthday coincidences we need to find the probabilities of their complements :

P
(

A1

)
= 1− P(A1) = 1− 1 = 0

P
(

A2

)
= 1− P(A2) = 1− 0, 9973 = 0, 0027

P
(

A3

)
= 1− P(A3) = 1− 0, 9918 = 0, 0082

P
(

A4

)
= 1− P(A4) = 1− 0, 9836 = 0, 0164

...

The following file shows how such a table can be easily constructed and extended up
to n = 366 in Excel:

Demonstration file: Birthday paradox - calculation
090-02-00

In this Excel table, we find the answer to our first question: the probability that at
least one coincidence occurs is calculated for alln = 1, 2, . . . , 366. In order to get the
answer to the second question, we must find where the first time the probability of the
coincidence is larger than half in the table. Wee see that

P
(

A22

)
= 0, 4757

P
(

A23

)
= 0, 5073

which means that 23 is the smallestn for which the probability that at least one coin-
cidence occurs is greater than half.

We say that the eventsA1, A2, . . . constitute atotal systemif they are exclusive, and
their union is the sure event.

Total probability formula. If the eventsA1, A2, . . . have a probability different from
zero, and they constitute a total system, then

P(B) =
∑

i

P(Ai)P(B|Ai)

The following example illustrates how the total probability formula may be used.
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Example 2. Is it defective? There are three workshops in a factory:A1, A2 A3.
Assume that
- workshopA1 makes 30 percent,
- workshopA2 makes 40 percent,
- workshopA3 makes 30 percent of all production.
We assume that
- the probability that an item made in workshopA1 is defective is 0,05,
- the probability that an item made in workshopA2 is defective is 0.04,
- the probability that an item made in workshopA3 is defective is 0.07.
Now taking an item made in the factory, what is the probability that it is defective?

Solution. The following file - using the total probability formula - gives the answer:

Demonstration file: Application of the total probability formula
090-02-50

The Bayes formula expresses a conditional probability in terms of other conditional
and unconditional probabilities.

Bayes formula. If the eventsA1, A2, . . . have a probability different from zero, and
they constitute a total system, then

P(Ak|B) =
P(Ak)P(B|Ak)

P(B)
=

P(Ak)P(B|Ak)∑
i P(Ai)P(B|Ai)

The following files illustrate and use the Bayes formula.

Example 3. Which workshop made the defective item?Assuming that an item made
in the factory in the previous problem is defective, we may ask: Which workshop made
it? Obviously, any of them may make defective items. So, the good question consists
of 3 questions, which may sound like this:
- What is the probability that the defective item was made in workshopA1?
- What is the probability that the defective item was made in workshopA2?
- What is the probability that the defective item was made in workshopA3?

Solution. The following file - using the Bayes formula - gives the answer to these
questions:

Demonstration file: Application of the Bayes formula
090-03-00

Example 4. Is he sick or healthy?Assume that 0.001 part of people are infected by a
certain bad illness, 0.999 part of people are healthy. Assume also that if a person is in-
fected by the illness, then he or she will be correctly diagnosed sick with a probability
0.9, and he or she will be mistakenly diagnosed healthy with a probability 0.1. More-
over, if a person is healthy, then he or she will be correctly diagnosed healthy with a
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probability 0.8. and he or she will be mistakenly diagnosed sick with a probability 0.2,
Now imagine that a person is examined, and the test says the person is sick. Knowing
this fact what is the probability that this person is really sick?

Solution. The answer is surprising. Using the Bayes formula, it is given in the follow-
ing file.

Demonstration file: Sick or healthy?
090-04-00

9 Independence of events

Independence of two events.The eventB and its complement̄B are called to be
independent ofthe eventA and its complement̄A if

P(B|A) = P(B|Ā) = P(B)

P(B̄|A) = P(B̄|Ā) = P(B̄)

It is easy to see that in order for these four equalities to hold it is enough that one
of them holds, because the other three equalities are consequences of the chosen one.
This is why many textbooks introduce the notion of independence so that the eventB
is called to beindependent ofthe eventA if

P(B|A) = P(B)

On the left side of this equality, replacingP(B|A) by P(A∩B)
P(A) , we get that independence

means that

P(A ∩B)
P(A)

= P(B)

or, equivalently,

P(A ∩B) = P(A)P(B)

Now dividing byP(B), we get that

P(A ∩B)
P(B)

= P(A)

that is

P(A|B) = P(A)

which means that eventA is independent of the eventB. Thus, we see that inde-
pendence is a symmetrical relation, and we can simply say, that eventsA andB are
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independent of each other, or more generally the pairA, Ā and the pairB, B̄ areinde-
pendent of each other.

Independence of three events.The notion of independence of three events is intro-
duced in the following way. The sequence of eventsA, B, C is called independent
if

P(B|A) = P(B|Ā) = P(B)

P(B̄|A) = P(B̄|Ā) = P(B̄)

P(C|A ∩B) = P(C|A ∩ B̄) = P(C|Ā ∩B) = P(C|Ā ∩ B̄) = P(C)

P(C̄|A ∩B) = P(|A ∩ B̄) = P(C̄|Ā ∩B) = P(C̄|Ā ∩ B̄) = P(C̄)

Pairwise and total independence.It can be shown (we omit the proof) that these
equalities hold if and only if the following23 = 8 multiplication rules hold:

P(A ∩B ∩ C) = P(A) P(B) P(C)
P

(
A ∩B ∩ C̄

)
= P(A) P(B) P

(
C̄

)
P

(
A ∩ B̄ ∩ C

)
= P(A) P

(
B̄

)
P(C)

P
(
A ∩ B̄ ∩ C̄

)
= P(A) P

(
B̄

)
P

(
C̄

)
P

(
Ā ∩B ∩ C

)
= P

(
Ā

)
P(B) P(C)

P
(
Ā ∩B ∩ C̄

)
= P

(
Ā

)
P(B) P

(
C̄

)
P

(
Ā ∩ B̄ ∩ C

)
= P

(
Ā

)
P

(
B̄

)
P(C)

P
(
Ā ∩ B̄ ∩ C̄

)
= P

(
Ā

)
P

(
B̄

)
P

(
C̄

)
The multiplication rules are symmetrical with respect to any permutation of the events
A, B, C, which means that in the terminology we do not have to take into account
the order of the eventsA, B, C, and we can just say that the eventsA, B, C are
independent of each other.

It is important to keep in mind that it may happen that any two of the three eventsA,
B, C are independent of each other, that is,

1. A andB are independent of each other,

2. A andC are independent of each other,

3. B andC are independent of each other,

4. but the three eventsA, B, C are not independent of each other.

If this is the case, then we say that the eventsA, B, C arepairwise independent,
but they are nottotally independent. So, pairwise independence does not imply total
independence.

Independence of more events.The independence ofn events can be introduced sim-
ilarly to the independence of three events. It can be shown that the independence ofn
events can also be characterized by2n multiplication rules :
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P(A1 ∩A2 ∩ . . . ∩An) = P(A1) P(A2) . . . P(An)
P

(
A1 ∩A2 ∩ . . . ∩ Ān

)
= P(A1) P(A2) . . . P

(
Ān

)
...

P
(
Ā1 ∩ Ā2 ∩ . . . ∩ Ān

)
= P

(
Ā1

)
P

(
Ā2

)
. . . P

(
Ān

)
The following files illustrate and use the multiplication rules for independent events.

Demonstration file: Multiplication rules for independent events
100-01-00

Demonstration file: How many events occur?
100-02-00

Playing with the following file, you may check your ability to decide - on the basis of
performed experiments - whether two events are dependent or independent.

Demonstration file: Colors dependent or independent
100-03-00

10 *** Infinite sequences of events

The following rule is a generalization of the addition law of the probability for a fi-
nite number of exclusive events, which was described among the basic properties of
probability.

Addition law of probability for an infinite number of exclusive events: If A1, A2, . . . , An

are exclusive events, then

P(A1 ∪A2 ∪ . . .) = P(A1) + P(A2) + . . .

Example 1. Odd or even?My friend I play with a fair coin. We toss it until the first
time a head occurs. We agree that I win if the number of tosses is an odd number, that
is, 1 or 3 or 5 . . ., and my friend wins if the number of tosses is an even number, that
is, 2 or 4 or 6 . . .. What is the probability that I win? What is the probability that my
friend wins?

Remark. You may think that odd end even numbers "balance" each other, so the asked
probabilities are equal. However, if you play with the following simulation file for a
couple of times, or you read the theoretical solution, then you will experience that this
is not true:

Demonstration file: Odd or even?
100-03-50
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Solution.

P(I win) =

P(First head occurs at the1st toss or 3rd toss or 5th toss or ...) =

P(1st) + P(3rd) + P(5th) + . . . =

0.5 + 0.53 + 0.55 + . . . =
0.5

1− 0.52
=

0.5
1− 0.25

=
0.5
0.75

=
2
3

P(My friend wins) =

P(First head occurs at the 2nd toss or 4th toss or 6th toss or ...) =

P(2nd) + P(4th) + P(6th) + . . . =

0.52 + 0.54 + 0.56 + . . . =
0.52

1− 0.52
=

0.25
1− 0.25

=
0.25
0.75

=
1
3

The following two properties are closely related to the addition law of probability for
an infinite number of exclusive events.

Limit for an increasing sequence of events. Let A1, A2, . . . be anincreasing se-
quence of events, that is,Ak impliesAk+1 for al k. Let A be the union of the events
A1, A2, . . .. A clearly means that one of the infinitely many eventsA1, A2, . . . occurs.
The following limit relation holds.

P(A) = lim
n→∞

P(An)

Limit for a decreasing sequence of events. LetA1, A2, . . . be adecreasing sequence
of events, that is, Ak is implied by Ak+1 for all k. Let A be the intersection of
the eventsA1, A2, . . .. A clearly means the event that all the infinitely many events
A1, A2, . . . occur. The following limit relation holds:

P(A) = lim
n→∞

P(An)

The following example gives us an important message: if we consider an event which
has a positive probability, and we make an unlimited number of independent experi-
ments, then regardless of how small that probability of the event is, the event, sooner
or later, will occur for sure.

Example 2. Unlimited number of exams.Let us assume that a student passes each of
his exams, independently of the previous exams, with a positive probabilityp, and fails
with a probabilityq = 1− p. We will show that ifp is positive and our student has an
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unlimited number of possibilities to take the exam in a course, then it is sure that the
student, sooner ar later, passes the course.

Solution. Let the eventAn mean that our student fails the firstn exams. Because of
the independence of the exams, the probability ofAn is:

P(An) = qn

Let the eventA mean that the student fails all the infinite number of exams. Obviously
A impliesAn for all n, so

P(A) ≤ P(An) for all n

SinceP(An) → 0, whenn → 0, the value of the probabilityP(A) cannot be positive.
Thus, it is0, which means that its complement has a probability1, that is, the student,
sooner ar later, passes the course for sure.

In order to simulate the above problem see the following file. Whenever you press
the F9 key, 10000 experiments are performed. Pressing the F9 key again and again,
you will see that, regardless how small the probability of the success is, sooner or later
success will occur.

Demonstration file: Many experiments for an event which has a small probability
100-04-00

The purpose of the following numerical example is to show that, if our student’s knowl-
edge is strongly declining, then, in spite of the fact that he or she has an infinite number
of possibilities, the probabilityP(A) may be positive, that is, it is not sure at all that
the student ever passes the course.

Example 3. Student’s knowledge strongly declining.Let us assume that our student
fails the first exam with a probability

P(A1) = 0.6 + 0.4/2 = 0.8000

and if our student fails the firstn exams, then the probability of failing the next exam
is:

P(An+1|An) =
0.6 + 0.4/(n + 1)

0.6 + 0.4/n
for all n

meaning that

P(A2|A1) =
0.6 + 0.4/3
0.6 + 0.4/2

= 0.9167

P(A3|A2) =
0.6 + 0.4/4
0.6 + 0.4/3

= 0.9545
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P(A4|A3) =
0.6 + 0.4/5
0.6 + 0.4/4

= 0.9714

...

Using the multiplication rule for a decreasing sequence of events we get, for example,
that the value ofP(A4) is:

P(A4) = P(A1) P(A2|A1) P(A3|A2) P(A4|A3) =

=
0.6 + 0.4/2

1
0.6 + 0.4/3
0.6 + 0.4/2

0.6 + 0.4/4
0.6 + 0.4/3

0.6 + 0.4/5
0.6 + 0.4/4

= 0.6 + 0.4/5

In a similar way, it can be shown that the value ofP(An) is:

P(An) = 0.6 + 0.4/(n + 1)

Since the eventsA1, A2, . . . constitute a decreasing sequence of events, we get:

P(A) = lim
n→∞

P(An) = lim
n→∞

0.6 + 0.4/(n + 1) = 0, 6.

which means that the student fails all the infinite number of exams with a probability
0.6.

Remark. Notice that in this numerical example the probability that the student fails all
the infinite number of exams has a probability not only positive but greater than half.
So, in spite of the fact that the student has an infinite number of possibilities, failure
forever is more likely than a success ever.

Remark. Let us choose the positive numbersa andb so thata + b = 1. If in the above
example, we replace the value 0.6 bya and the value 0.4 byb , then obviously

P(An) = a + b/(n + 1)

and the probability that the student fails all the infinite number of exams is:

P(A) = lim
n→∞

P(An) = lim
n→∞

a + b/(n + 1) = a.

The following file illustrates this more general case.

Demonstration file: Student’s knowledge strongly declining
100-05-00

Remark. We may also calculate how much is the probability that the student fails the
first n− 1 exams, but passes thenth exam:

P(fails the first n-1 exams, but passes the nth exam) =
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P(fails the first n-1 exams)− P(fails the first n exams) =(
a +

b

n

)
−

(
a +

b

n + 1

)
=

b

n(n + 1)

The following file show these probabilities.

Demonstration file: When does the student pass the exam?
100-06-00

11 *** Drawing with or without replacement. Permu-
tations

Drawing with replacement. Assume that a box contains 5 tickets with different letters
on them, say A, B, C, D, E. Let us draw a ticket, write down the letter written on it,
and let us put back the ticket into the box. Then, let us draw again, write down the
letter on this ticket, and let us put back this ticket into the box, too. What we did is
called drawing twicewith replacement. Obviously, we may draw several times with
replacement, as well. The following files illustrate what drawing with replacement
means.

Demonstration file: Drawing with replacement from 10 elements
110-01-00

Demonstration file: Drawing with replacement from 4 red balls and 6 blue balls
110-02-00

Drawing without replacement. Now let us draw a ticket, write down the letter on it,
and let us put aside the ticket. Then, let us draw another ticket from the box, write
down the letter on this ticket, and let us put aside this ticket, too. What we did is called
drawing twicewithout replacement. Obviously, if there aren tickets in the box, we
may draw at mostn times without replacement. The following files illustrate what
drawing without replacement means.

Demonstration file: Drawing without replacement from 10 elements
110-03-00

Demonstration file: Drawing without replacement from 4 red balls and 6 blue balls
110-04-00

Permutations. If there aren tickets in the box, and we drawn times without replace-
ment, then we get a permutation of then tickets. Obviously, all possible permutations
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have the same probability. The following file gives a random permutation of the 10
given elements.

Demonstration file: Permutations of 10 elements
110-03-05

The following problem entitled "Catching the Queen" may seem an artificial problem
which is far from real life. But as you will see the solution of this problem will help us
to find the optimal strategy of a typical real life problem which will be presented later
under the title "Sinbad and the 100 beautiful girls".

Example 1. Catching the Queen.First, let us choose and fix a numberc between0
and9. Take, for example,c = 4. Then let us consider a permutation of the numbers
1, 2, . . . , 10, for example,6, 5, 7, 4, 1, 2, 8, 10, 9, 3. The largest number, that is, the10
is called "the Queen", and the largest number before the Queen is called the Servant.
In the above example, the Servant is the number7. Let us denote the position of the
Queen byX, and let us denote the position of the Servant byY . In the above example,
the position of the Queen is8, that is,X = 8. and the position of the Servant is3,
that is,Y = 3. We are interested in the probability of the event that the position of the
Queen is larger thanc and the position of the Servant is smaller than or equal toc, that
is, X > c and Y ≤ c . This probability obviously depends onc. We will express
this probability in terms ofc.,

Solution.

P( X > c and Y ≤ c ) =

10∑
k=c+1

P( X = k and Y ≤ c )) =

10∑
k=c+1

P( X = k ) P( Y ≤ c | X = k ) =

10∑
k=c+1

1
10

c

k − 1
=

c

10

10∑
k=c+1

1
k − 1

Remark. Let us consider a permutation of the numbers1, 2, . . . , 100. The largest
number, that is, the100 is called "the Queen", and the largest number before the Queen
is called the Servant. Let us choose a numberc between0 and99. The probability of
the event that the position of the Queen is larger thanc and the position of the Servant
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is smaller than or equal toc, that is, X > c and Y ≤ c can be calculated the same
way as in the previous example:

P( X > c and Y ≤ c ) =

100∑
k=c+1

P( X = k and Y ≤ c )) =

100∑
k=c+1

P( X = k ) P( Y ≤ c | X = k ) =

100∑
k=c+1

1
100

c

k − 1
=

c

100

100∑
k=c+1

1
k − 1

For each numberc between0 and99, the value of this probability can be calculated by
Excel:

Demonstration file: Catching the Queen
110-03-08

We see that the maximal probability occurs whenc = 37, and the value of the maximal
probability rounded to 6 decimal places is 0.371043, or rounded to 2 decimal places is
0.37. This fact will be used in the following example.

Example 2. Sinbad and the 100 beautiful girls.Imagine that the sultan offers Sinbad
to choose one of the 100 beautiful girls in his harem. Sinbad has never seen the girls
before. The method how Sinbad is allowed to make his choice is very strict: the girls
show up for Sinbad separately, one after the other, in a random order, and Sinbad has
the right to say "this is the girl I choose" only once. This means that when a girls
shows up and then disappears because Sinbad does not choose her, then Sinbad has a
vary small chance to meet this girl again. The purpose of Sinbad is to catch the most
beautiful girl, so when he makes his choice, he will ask whether he could catch the
most beautiful girl. If he realizes that has caught the most beautiful girl, then he will be
happy, otherwise he will be not. (We assume that "beauty" is well defined for each girls
so that the girls could be arranged into a well defined order according to their beauties.)

You probably think that Sinbad has no much chance to become happy: 100 unknown
girls are too many for Sinbad being able to catch one specific one, namely, the most
beautiful one! If Sinbad picks a girl at random, then the probability to catch the most
beautiful one is 0.01. You will see soon that, applying a tricky strategy, Sinbad can
catch the most beautiful girl with 0.37 probability, which is much larger than 0.01.
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Solution. What Sinbad can actually do is to apply a strategy like this. First he observes,
sayc, girls, without choosing any of them, but keeping in mind the maximal beauty of
them. Then he compares the beauty of each later girl to this maximal beauty. If one of
the later girls is more beautiful than this maximal beauty, then he chooses that girl. If
none of the later girls is more beautiful than this maximal beauty, then he will choose
the last girl. Let us think out what is the probability that he can catch the most beautiful
girl. Using the terminology and notation of the previous example, we may write:

P( Sinbad catches the Queen) =

P( X > c and Y ≤ c ) =
100∑

k=c+1

P( X = k and Y ≤ c )) =

100∑
k=c+1

P( X = k ) P( Y ≤ c | X = k ) =

100∑
k=c+1

1
100

c

k − 1
=

c

100

100∑
k=c+1

1
k − 1

The maximal value of this expression is calculated in the following file:

Demonstration file: Catching the Queen
110-03-08

So we see that ifc = 37, thenP( Sinbad catches the Queen) = 0.37. The best strategy
for Sinbad is to observe 37 girls, remembering the maximal beauty of them, and then
waiting for a girl who is more beautiful than this maximal beauty, and choosing this
girl.

Remark. A very good approximation to the optimal strategy for Sinbad can be derived
by the following analytical method. Using the approximation

100∑
k=c+1

1
k − 1

≈ ln(100)− ln(c) = −ln(
c

100
)

we may write

P( Sinbad catches the Queen) =

c

100

100∑
k=c+1

1
k − 1

≈ − c

100
ln(

c

100
) = −x ln(x)
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wherex = − c
100 ln( c

100 ). We know that the function

f(x) = −x ln(x)

takes its maximum atx = 1
e , and the maximal value of this function is1e . This is how

we get that the best strategy for Sinbad is to use approximately ac so that

c

100
≈ 1

e
≈ 0.37

that is

c ≈ 100
e

≈ 37

and then

P( Sinbad catches the Queen) ≈ 1
e

≈ 0.37

which is really an excellent approximation to the exact solution.

If the number of girls is not 100 butn, then this analytical method obviously gives the
approximation

c ≈ n

e
≈ 0.37 n

and

P( Sinbad catches the Queen) ≈ 1
e

≈ 0.37

for the optimal solution. The best strategy for Sinbad is to observe approximately 37
percent of the girls, remembering the maximal beauty of them, and then waiting for a
girl who is more beautiful than this maximal beauty, and choosing this girl.
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